Deformation and Simulation of the Cellular Structure of Foamed Polypropylene Composites
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Materials
2.2. Visual Injection Foaming
2.3. Testing and Characterization
2.3.1. Characterization of the Cell Deformation Parameters
2.3.2. Rheological Test
3. Influence of Injection Temperature on the Cell Deformation of Foamed PP Composites and the Corresponding Simulation
3.1. Influence of Injection Temperature on an Isolated Cell Deformation of Foamed PP Composites
3.1.1. An Isolated Cell Deformation at an Injection Temperature of 185 °C
3.1.2. An Isolated Cell Deformation at an Injection Temperature of 195 °C
3.1.3. An Isolated Cell Deformation at an Injection Temperature of 205 °C
3.2. Influence of Injection Temperature on Adjacent Cells Deformation of Foamed PP Composites
Adjacent Cells Deformation at Different Injection Temperature
3.3. Finite Element Modeling and Analysis of the Experimental Results
3.3.1. Finite Element Modeling
- (1)
- Establishment of solid model
- (2)
- Boundary conditions
- (3)
- Determination of physical parameters of the foamed PP composites
3.3.2. Finite Element Simulation of the PP Viscoelasticity on the Cell Deformation at Different Temperatures
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rizvi, A.; Chu, R.K.; Park, C.B. Scalable fabrication of thermally insulating mechanically resilient hierarchically porous polymer foams. ACS Appl. Mater. Interfaces 2018, 10, 38410. [Google Scholar] [CrossRef] [PubMed]
- Zakiyan, S.E.; Azizi, H.; Ghasemi, I. Effect of cell morphology on electrical properties and electromagnetic interference shielding of graphene-poly (methyl methacrylate) microcellular foams. Compos. Sci. Technol. 2018, 157, 217. [Google Scholar] [CrossRef]
- Li, R.; Lin, H.; Lan, P.; Gao, J.; Huang, Y.; Wen, Y.; Yang, W. Lightweight cellulose/carbon fiber composite foam for electromagnetic interference (EMI) shielding. Polymers 2018, 10, 1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Shaayegan, V.; Ataei, M.; Costa, F.; Han, S.; Bussmann, M.; Park, C.B. Accurate theoretical modeling of cell growth by comparing with visualized data in high-pressure foam injection molding. Eur. Polym. J. 2019, 119, 189. [Google Scholar] [CrossRef]
- Li, J.; Zhang, A.; Zhang, S.; Gao, Q.; Zhang, W.; Li, J. Larch tannin-based rigid phenolic foam with high compressive strength, low friability, and low thermal conductivity reinforced by cork powder. Compos. Part B Eng. 2019, 156, 368. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, J.; Yu, K.; Mark, L.H.; Wang, G.; Gong, P.; Park, C.B.; Zhao, G. Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms. Polymer 2017, 119, 28–39. [Google Scholar] [CrossRef]
- Tromm, M.; Shaayegan, V.; Wang, C.; Heim, H.-P.; Park, C.B. Investigation of the mold-filling phenomenon in high-pressure foam injection molding and its effects on the cellular structure in expanded foams. Polymer 2019, 160, 43–52. [Google Scholar] [CrossRef]
- Ataei, M.; Shaayegan, V.; Wang, C.; Costa, F.; Han, S.; Park, C.B.; Bussmann, M. Numerical analysis of the effect of the local variation of viscosity on cell growth and deformation in polymer foaming. J. Rheol. 2019, 63, 895–903. [Google Scholar] [CrossRef]
- Wong, A.; Guo, Y.; Park, C.B.; Zhou, N.Q. A polymer visualization system with accurate heating and cooling control and high-speed imaging. Int. J. Mol. Sci. 2015, 16, 9196–9216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirzaeea, A. Experimental and Numerical Investigation of Polypropylene Foam Formation through Extrusion Process; Concordia University: Montreal, QC, Canada, 2019. [Google Scholar]
- Wang, D.J. Simulation and Characterization of Polymer Foaming Process. Master’s Thesis, Guizhou University, Guizhou, China, 2019. [Google Scholar]
- Zhu, Z.; Xu, D.; Park, C.B.; Fenton, R.G. Finite element analysis of cell coarsening in plastic foaming. J. Cell. Plast. 2005, 41, 475–486. [Google Scholar] [CrossRef]
- Zhang, T. Finite Element Simulation and Cluster Analysis of Thermal Insulation Performance of Polymer Foam Materials. Master’s Thesis, Changchun University of Technology, Changchun, China, 2021. [Google Scholar]
- Upretis, V.K.; Kamal, S.K.; Singh, V.K.; Jain, A.; Dixit, A. Modelling and analysis of honeycomb sandwich structure using finite element method. Mater. Today Process. 2020, 25, 620. [Google Scholar] [CrossRef]
- Niedziela, D.; Ireka, I.E.; Steiner, K. Computational Analysis of Nonuniform Expansion in Polyurethane Foams. Polymers 2019, 11, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, W.; Wang, D.J.; Jiang, T.H.; Zeng, X.B.; Zhang, C.; He, L. cell growth, deformation and model establishment of micro-foamed polystyrene material. J. Mater. Res. Technol. 2021, 6, 2260–2271. [Google Scholar] [CrossRef]
- Yang, J.K.; Jiang, T.H.; Liu, B.J.; Zhang, C.; Zeng, X.B.; He, L.; Gong, W. Experimental and numerical analysis of cell nucleation in foaming polymer. Mater. Des. 2021, 203, 109577–109588. [Google Scholar] [CrossRef]
- Ge, T.; Tang, K.; Yu, Y.; Tan, X. Preparation and properties of the 3-pentadecyl-phenol in situ modified foamable phenolic resin. Polymers 2018, 10, 1124. [Google Scholar] [CrossRef]
- Muller-Fischer, N.; Toble, P.; Dressler, M.; Fischer, P.; Windhab, E.J. Single cell deformation and break up in simple shear flow. Exp. Fluids 2008, 45, 917. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, M.; Ichihara, M.; Tormaru, A. Bubble deformation in magma under transient flow conditions. J. Volcanol. Geoth. Res. 2018, 364, 59–75. [Google Scholar] [CrossRef]
- Taki, K.; Tabatak, K.I.; Kihara, S.-I.; Ohshima, M. Bubble coalescence in foaming process of polymers. Polym. Eng. Sci. 2006, 46, 680. [Google Scholar] [CrossRef]
Foaming Processing Parameters | Injection Speed (mm/s) | Injection Pressure (bar) | Injection Volume (mm) | Mold Opening Distance (mm) | Mold Temperature (°C) | Cooling Time (s) |
30 | 40 | 22 | 0.6 | 40 | 30 |
No. | T (°C) | Cell Deformation Parameter (D) | Cell Deformation Stability |
---|---|---|---|
1 | 185 | ≤0.017 | random variation |
2 | 195 | ≤0.015 | random variation |
3 | 205 | ≤0.018 | random variation |
Rheological Parameters | Density/g·m−3 | Poisson’s Ratio | Young’s Modulus/Pa | Temperature/°C | Shear Modulus/Pa | Viscosity/Pa·s |
---|---|---|---|---|---|---|
Foamed PP | 0.91 | 0.34 | 713 | 185 | 338 | 2380 |
195 | 266 | 2020 | ||||
205 | 202 | 1697 |
No. | T (°C) | A (μm) | B (μm) | D |
---|---|---|---|---|
1 | 185 | 108.67 | 103.89 | 0.022 |
2 | 195 | 106.85 | 103.08 | 0.018 |
3 | 205 | 111.35 | 105.09 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Zhang, D.; Zhang, C.; Zeng, X.; He, L.; Jiang, T. Deformation and Simulation of the Cellular Structure of Foamed Polypropylene Composites. Polymers 2022, 14, 5103. https://doi.org/10.3390/polym14235103
Gong W, Zhang D, Zhang C, Zeng X, He L, Jiang T. Deformation and Simulation of the Cellular Structure of Foamed Polypropylene Composites. Polymers. 2022; 14(23):5103. https://doi.org/10.3390/polym14235103
Chicago/Turabian StyleGong, Wei, Di Zhang, Chun Zhang, Xiangbu Zeng, Li He, and Tuanhui Jiang. 2022. "Deformation and Simulation of the Cellular Structure of Foamed Polypropylene Composites" Polymers 14, no. 23: 5103. https://doi.org/10.3390/polym14235103
APA StyleGong, W., Zhang, D., Zhang, C., Zeng, X., He, L., & Jiang, T. (2022). Deformation and Simulation of the Cellular Structure of Foamed Polypropylene Composites. Polymers, 14(23), 5103. https://doi.org/10.3390/polym14235103