Rational Design of Solid Polymer Electrolyte Based on Ionic Liquid Monomer for Supercapacitor Applications via Molecular Dynamics Study
Abstract
:1. Introduction
2. Methods and Simulation Procedure
2.1. General Simulation Details
2.2. Sample Preparation Procedure
2.3. In Situ Crosslinking Procedure
2.4. Constant Potential Simulations
3. Results and Discussion
3.1. Mass and Charge Density Distribution in the Liquid Precursor Mixture
3.2. Mass and Charge Density Distribution in the Polymer
3.3. Charge Density Evolution and Distribution on the Electrodes
3.4. Reorganisation of Anions in the EDL
3.5. Mobility of Ions
4. Conclusions
- -
- The computational procedure that was devised and used here, generated reliable results. For example, the distribution of each component (i.e., anion, cation (monomer) and hardener) in the liquid precursor mixture was almost symmetrical on both electrodes, indicating a well-equilibrated liquid system in the presence of solid electrodes.
- -
- The normalised mass density distribution (MDD) plots revealed a first peak at a distance of ∼3.5 Å from each electrode for the components in the liquid mixture. This is the shortest distance with the electrodes that the atoms of components can approach due to the strong solid–liquid interactions. In addition, a second peak for the anion was formed at ∼5.5 Å. This is attributed to the absolute charge difference between the anion and cation (the ratio in molecules was 1:2). Another observation related to MDDs was the formation of a depleted region for the hardener near each electrode. This can be attributed to the lack of free space near the electrodes, where both the anion and cation occupied most of the space. Therefore, a rational design of a supercapacitor based on SPE needs to carefully consider the anion/cation/hardener architecture, functionality, net charge on each species and attraction/repulsion between species.
- -
- The charge density distribution (CDD) in the liquid precursor mixture showed a positive peak next to both electrodes, which is due to the presence of the cation-rich region next to the electrodes. Additionally, the first negative peak is considered to be the cumulative effect of the presence of both anion and cation in the vicinity of electrodes. In short, the CDD can be used as one of the informative metrics to better understand and predict the supercapacitor’s performance.
- -
- The distribution of the reacted reactive atomic sites that are found on each component indicated a solidification of the polymer during the polymerisation process and proved the limited mobility of the polymer network. In addition, the solidification of the polymer network did not affect the charge density distribution within the polymer sample with no potential applied. This means that a well-equilibrated liquid precursor mixture determines the distribution of atomic sites in the solid polymer.
- -
- Both and temperature increased the absolute value of the charge density on each electrode. This is attributed to the fact of the reorientation/accumulation of ions in the vicinity of EDL. Additionally, the SPE system came to saturation faster at higher temperatures, which proved the positive effect of temperature on the orientation of the components.
- -
- Anions, which are free to move in the polymer network, because they are not chemically connected to the epoxy network formed by the polymerised monomers and hardeners, showed higher mean square displacement (MSD) compared with that for the epoxy network. This is an expected outcome because the anions, which are smaller when compared to the entire epoxy network, respond to the applied potential difference with higher mobility.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SPE | Solid polymer electrolyte |
LE | Liquid electrolyte |
IL | Ionic liquid |
ILM | Ionic liquid monomer |
DOC | Degree of crosslinking |
MD | Molecular dynamics |
CPM | Constant potential method |
RDF | Radial distribution function |
EDL | Electric double layer |
MDD | Mass density distribution |
CDD | Charge density distribution |
References
- Wang, F.; Wu, X.; Yuan, X.; Liu, Z.; Zhang, Y.; Fu, L.; Zhu, Y.; Zhou, Q.; Wu, Y.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854. [Google Scholar] [CrossRef] [PubMed]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef] [PubMed]
- Kumaravel, V.; Bartlett, J.; Pillai, S.C. Solid Electrolytes for High-Temperature Stable Batteries and Supercapacitors. Adv. Energy Mater. 2021, 11, 2002869. [Google Scholar] [CrossRef]
- Kuo, P.L.; Wu, C.A.; Lu, C.Y.; Tsao, C.H.; Hsu, C.H.; Hou, S.S. High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte. ACS Appl. Mater. Inter. 2014, 6, 3156–3162. [Google Scholar] [CrossRef]
- Wiegmann, E.; Helmers, L.; Michalowski, P.; Kwade, A. Highly scalable and solvent-free fabrication of a solid polymer electrolyte separator via film casting technology. Adv. Ind. Manuf. Eng. 2021, 3, 100065. [Google Scholar] [CrossRef]
- Hubert, O.; Todorovic, N.; Bismarck, A. Towards separator-free structural composite supercapacitors. Compos. Sci. Technol. 2022, 217, 109126. [Google Scholar] [CrossRef]
- Hegde, G.S.; Sundara, R. A flexible, ceramic-rich solid electrolyte for room-temperature sodium–sulfur batteries. Chem. Commun. 2022, 58, 8794–8797. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, J.; Sun, L.; Zhang, X.; Zhao, Y. Microfluidic Generation of Microsprings with Ionic Liquid Encapsulation for Flexible Electronics. Research 2019, 2019, 6906275. [Google Scholar] [CrossRef] [Green Version]
- Demir, B.; Searles, D.J. Investigation of the Ionic Liquid Graphene Electric Double Layer in Supercapacitors Using Constant Potential Simulations. Nanomaterials 2020, 10, 2181. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Lu, Y.C. Liquid electrolyte design for metal-sulfur batteries: Mechanistic understanding and perspective. EcoMat 2021, 3, e12115. [Google Scholar] [CrossRef]
- Jiang, G.; Wang, G.; Zhu, Y.; Cheng, W.; Cao, K.; Xu, G.; Zhao, D.; Yu, H. A Scalable Bacterial Cellulose Ionogel for Multisensory Electronic Skin. Research 2022, 2022, 9814767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, T.; France-Lanord, A.; Berkley, A.; Johnson, J.A.; Shao-Horn, Y.; Grossman, J.C. Toward Designing Highly Conductive Polymer Electrolytes by Machine Learning Assisted Coarse-Grained Molecular Dynamics. Chem. Mater. 2020, 32, 4144–4151. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T. Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. Adv. Sci. 2021, 8, 2003675. [Google Scholar] [CrossRef] [PubMed]
- Sutto, T.E. Hydrophobic and Hydrophilic Interactions of Ionic Liquids and Polymers in Solid Polymer Gel Electrolytes. J. Electrochem. Soc. 2007, 154, P101. [Google Scholar] [CrossRef]
- Na, R.; Liu, Y.; Lu, N.; Zhang, S.; Liu, F.; Wang, G. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors. Chem. Eng. J. 2019, 374, 738–747. [Google Scholar] [CrossRef]
- Kwon, S.J.; Kim, T.; Jung, B.M.; Lee, S.B.; Choi, U.H. Multifunctional Epoxy-Based Solid Polymer Electrolytes for Solid-State Supercapacitors. ACS Appl. Mater. Inter. 2018, 10, 35108–35117. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Endo, T. Confinement of Ionic Liquid by Networked Polymers Based on Multifunctional Epoxy Resins. Macromolecules 2008, 41, 6981–6986. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, Q.; Qi, F.; Zhang, J.; Liu, K.; Li, J.; Chen, W.; Du, Y.; Jin, Y.; Liang, Y.; et al. Epoxy containing solid polymer electrolyte for lithium ion battery. Electrochim. Acta 2019, 318, 302–313. [Google Scholar] [CrossRef]
- Song, Y.H.; Kim, T.; Choi, U.H. Tuning Morphology and Properties of Epoxy-Based Solid-State Polymer Electrolytes by Molecular Interaction for Flexible All-Solid-State Supercapacitors. Chem. Mater. 2020, 32, 3879–3892. [Google Scholar] [CrossRef]
- Li, C.; Strachan, A. Evolution of network topology of bifunctional epoxy thermosets during cure and its relationship to thermo-mechanical properties: A molecular dynamics study. Polymer 2015, 75, 151–160. [Google Scholar] [CrossRef]
- Demir, B.; Walsh, T.R. A robust and reproducible procedure for cross-linking thermoset polymers using molecular simulation. Soft Matter 2016, 12, 2453–2464. [Google Scholar] [CrossRef]
- Chen, K.; Demir, B. A Computational Procedure for Atomistic Modelling of Polyphosphazenes towards Better Capturing Molecular-Level Structuring and Thermo-Mechanical Properties. Polymers 2022, 14, 1451. [Google Scholar] [CrossRef]
- Laurien, M.; Demir, B.; Büttemeyer, H.; Herrmann, A.S.; Walsh, T.R.; Ciacchi, L.C. Atomistic Modeling of the Formation of a Thermoset/Thermoplastic Interphase during Co-Curing. Macromolecules 2018, 51, 3983–3993. [Google Scholar] [CrossRef]
- Demir, B.; Henderson, L.C.; Walsh, T.R. Design Rules for Enhanced Interfacial Shear Response in Functionalized Carbon Fiber Epoxy Composites. ACS Appl. Mater. Inter. 2017, 9, 11846–11857. [Google Scholar] [CrossRef]
- De Klerk, N.J.J.; van der Maas, E.; Wagemaker, M. Analysis of Diffusion in Solid-State Electrolytes through MD Simulations, Improvement of the Li-Ion Conductivity in -Li3PS4 as an Example. ACS Appl. Energy Mater. 2018, 1, 3230–3242. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; France-Lanord, A.; Wang, Y.; Lopez, J.; Stolberg, M.A.; Hill, M.; Leverick, G.M.; Gomez-Bombarelli, R.; Johnson, J.A.; Shao-Horn, Y.; et al. Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties. Nat. Commun. 2022, 13, 3415. [Google Scholar] [CrossRef] [PubMed]
- Demir, B.; Chan, K.y.; Searles, D.J. Structural Electrolytes Based on Epoxy Resins and Ionic Liquids: A Molecular-Level Investigation. Macromolecules 2020, 53, 7635–7649. [Google Scholar] [CrossRef]
- Livi, S.; Baudoux, J.; Gérard, J.F.; Duchet-Rumeau, J. Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Prog. Polym. Sci. 2022, 132, 101581. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Livi, S.; Soares, B.G.; Benes, H.; Gérard, J.F.; Duchet-Rumeau, J. Toughening of Epoxy/Ionic Liquid Networks with Thermoplastics Based on Poly(2,6-dimethyl-1,4-phenylene ether) (PPE). ACS Sustain. Chem. Eng. 2017, 5, 1153–1164. [Google Scholar] [CrossRef]
- Radchenko, A.V.; Chabane, H.; Demir, B.; Searles, D.J.; Duchet-Rumeau, J.; Gerard, J.F.; Baudoux, J.; Livi, S. New Epoxy Thermosets Derived from Bisimidazolium Ionic Liquid Monomer: An Experimental and Modelling Investigation. ACS Sustain. Chem. Eng. 2020, 8, 12208–12221. [Google Scholar] [CrossRef]
- Druvari, D.; Koromilas, N.D.; Lainioti, G.C.; Bokias, G.; Vasilopoulos, G.; Vantarakis, A.; Baras, I.; Dourala, N.; Kallitsis, J.K. Polymeric Quaternary Ammonium-Containing Coatings with Potential Dual Contact-Based and Release-Based Antimicrobial Activity. ACS Appl. Mater. Inter. 2016, 8, 35593–35605. [Google Scholar] [CrossRef] [PubMed]
- Livi, S.; Lins, L.C.; Capeletti, L.B.; Chardin, C.; Halawani, N.; Baudoux, J.; Cardoso, M.B. Antibacterial surface based on new epoxy-amine networks from ionic liquid monomers. Eur. Polym. J. 2019, 116, 56–64. [Google Scholar] [CrossRef]
- Cui, J.; Nie, F.M.; Yang, J.X.; Pan, L.; Ma, Z.; Li, Y.S. Novel imidazolium-based poly(ionic liquid)s with different counterions for self-healing. J. Mater. Chem. A 2017, 5, 25220–25229. [Google Scholar] [CrossRef]
- Livi, S.; Chardin, C.; Lins, L.C.; Halawani, N.; Pruvost, S.; Duchet-Rumeau, J.; Gérard, J.F.; Baudoux, J. From Ionic Liquid Epoxy Monomer to Tunable Epoxy–Amine Network: Reaction Mechanism and Final Properties. ACS Sustain. Chem. Eng. 2019, 7, 3602–3613. [Google Scholar] [CrossRef]
- Radchenko, A.V.; Duchet-Rumeau, J.; Gérard, J.F.; Baudoux, J.; Livi, S. Cycloaliphatic epoxidized ionic liquids as new versatile monomers for the development of shape memory PIL networks by 3D printing. Polym. Chem. 2020, 11, 5475–5483. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Derecskei, B.; Derecskei-Kovacs, A. Molecular modelling simulations to predict density and solubility parameters of ionic liquids. Mol. Simulat. 2008, 34, 1167–1175. [Google Scholar] [CrossRef]
- Aoun, B.; Goldbach, A.; González, M.A.; Kohara, S.; Price, D.L.; Saboungi, M.L. Nanoscale heterogeneity in alkyl-methylimidazolium bromide ionic liquids. J. Chem. Phys. 2011, 134, 104509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, T.; Ramos, J.; Garrido, N.M.; Fröba, A.P.; Economou, I.G. Development of a united-atom force field for 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid. Mol. Phys. 2012, 110, 1115–1126. [Google Scholar] [CrossRef]
- Dommert, F.; Wendler, K.; Berger, R.; Delle Site, L.; Holm, C. Force fields for studying the structure and dynamics of ionic liquids: A critical review of recent developments. ChemPhysChem 2012, 13, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Choi, P.; Kavassalis, T.A.; Rudin, A. Estimation of Hansen Solubility Parameters for (Hydroxyethyl) and (Hydroxypropyl) cellulose through Molecular Simulation. Ind. Eng. Chem. Res. 1994, 33, 3154–3159. [Google Scholar] [CrossRef]
- Eyckens, D.J.; Servinis, L.; Scheffler, C.; Wolfel, E.; Demir, B.; Walsh, T.R.; Henderson, L.C. Synergistic interfacial effects of ionic liquids as sizing agents and surface modified carbon fibers. J. Mater. Chem. A 2018, 6, 4504–4514. [Google Scholar] [CrossRef]
- Randall, J.D.; Eyckens, D.J.; Servinis, L.; Stojcevski, F.; O’Dell, L.A.; Gengenbach, T.R.; Demir, B.; Walsh, T.R.; Henderson, L.C. Designing carbon fiber composite interfaces using a `graft-to’ approach: Surface grafting density versus interphase penetration. Carbon 2019, 146, 88–96. [Google Scholar] [CrossRef]
- Arnold, C.L.; Eyckens, D.J.; Servinis, L.; Nave, M.D.; Yin, H.; Marceau, R.K.W.; Pinson, J.; Demir, B.; Walsh, T.R.; Henderson, L.C. Simultaneously increasing the hydrophobicity and interfacial adhesion of carbon fibres: A simple pathway to install passive functionality into composites. J. Mater. Chem. A 2019, 7, 13483–13494. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G. Constant-pressure equations of motion. Phys. Rev. A 1986, 34, 2499–2500. [Google Scholar] [CrossRef] [PubMed]
- Hockney, R.; Eastwood, J. Computer Simulation Using Particles; Taylor & Francis: Oxford, UK, 1989. [Google Scholar]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Hanwell, M.; Curtis, D.; Lonie, D.; Vandermeersch, T.; Zurek, E.; Hutchison, G. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Yeh, I.C.; Berkowitz, M.L. Ewald summation for systems with slab geometry. J. Chem. Phys. 1999, 111, 3155–3162. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Olmsted, D.L.; Asta, M.; Laird, B.B. Evaluation of the constant potential method in simulating electric double-layer capacitors. J. Chem. Phys. 2014, 141, 184102. [Google Scholar] [CrossRef] [Green Version]
- Siepmann, J.I.; Sprik, M. Influence of surface topology and electrostatic potential on water/electrode systems. J. Chem. Phys. 1995, 102, 511–524. [Google Scholar] [CrossRef]
- Reed, S.K.; Lanning, O.J.; Madden, P.A. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys. 2007, 126, 084704. [Google Scholar] [CrossRef] [PubMed]
- Demir, B. In silico study of bio-based epoxy precursors for sustainable and renewable thermosets. Polymer 2020, 191, 122253. [Google Scholar] [CrossRef]
- Seebeck, J.; Schiffels, P.; Schweizer, S.; Hill, J.R.; Meißner, R.H. Electrical Double Layer Capacitance of Curved Graphite Electrodes. J. Phys. Chem. C 2020, 124, 5515–5521. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X. Transport and Structure of Room-Temperature Ionic Liquids in Conical Nanopores under External Electric Fields. J. Phys. Chem. C 2020, 124, 5817–5828. [Google Scholar] [CrossRef]
- Tu, Y.J.; Delmerico, S.; McDaniel, J.G. Inner Layer Capacitance of Organic Electrolytes from Constant Voltage Molecular Dynamics. J. Phys. Chem. C 2020, 124, 2907–2922. [Google Scholar] [CrossRef]
- Park, S.; McDaniel, J.G. Interference of electrical double layers: Confinement effects on structure, dynamics, and screening of ionic liquids. J. Chem. Phys. 2020, 152, 074709. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demir, B.; Chan, K.-Y.; Livi, S. Rational Design of Solid Polymer Electrolyte Based on Ionic Liquid Monomer for Supercapacitor Applications via Molecular Dynamics Study. Polymers 2022, 14, 5106. https://doi.org/10.3390/polym14235106
Demir B, Chan K-Y, Livi S. Rational Design of Solid Polymer Electrolyte Based on Ionic Liquid Monomer for Supercapacitor Applications via Molecular Dynamics Study. Polymers. 2022; 14(23):5106. https://doi.org/10.3390/polym14235106
Chicago/Turabian StyleDemir, Baris, Kit-Ying Chan, and Sébastien Livi. 2022. "Rational Design of Solid Polymer Electrolyte Based on Ionic Liquid Monomer for Supercapacitor Applications via Molecular Dynamics Study" Polymers 14, no. 23: 5106. https://doi.org/10.3390/polym14235106
APA StyleDemir, B., Chan, K. -Y., & Livi, S. (2022). Rational Design of Solid Polymer Electrolyte Based on Ionic Liquid Monomer for Supercapacitor Applications via Molecular Dynamics Study. Polymers, 14(23), 5106. https://doi.org/10.3390/polym14235106