Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gel-Forming Soil Conditioners
2.2. Experimental Sites and Design
2.3. Instrumental Methods and Equipment; Data Processing
3. Results
3.1. Advanced Intelligent Soil Design
3.2. Automated Monitoring of Natural Hydrothermal Conditions
3.3. Lawn Planting in Urban Landscaping with Gel-Forming Soil Conditioners
3.3.1. Experiment in Arid Climate (UAE., Dubai Emirate)
3.3.2. Experiment in a Temperate Climate (Russian Federation, Moscow Region)
3.4. Potato Plantings in Irrigated Agriculture with Gel-Forming Soil Conditioners
3.4.1. Experiments in Arid Climate (Uzbekistan)
3.4.2. Experiments in a Greenhouse with Drip Irrigation (Russian Federation, Moscow Region)
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Sojka, R.E.; Bjorneberg, D.L.; Entry, J.A. Polyacrylamide in Agriculture and Environmental Land Management. Adv. Agron. 2007, 92, 75–162. [Google Scholar]
- Behera, S.; Mahanwar, P.A. Superabsorbent Polymers in Agriculture and Other Applications: A review. Polym. Plast. Technol. Mat. 2020, 59, 341–356. [Google Scholar] [CrossRef]
- Wu, L.; Liu, M.; Rui-Liang, R.L. Preparation and Properties of a Double-coated slow-release NPK Compound Fertilizer with Superabsorbent and Water-retention. Biores. Technol. 2008, 99, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Smagin, A.; Sadovnikova, N.; Smagina, M. Synthetic Gel Structures in Soils for Sustainable Potato Farming. Sci. Rep. 2019, 9, 18588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F.; Singh, B. Polysaccharides as Safer Release Systems for Agrochemicals. Agron. Sustain. Dev. 2015, 35, 47–66. [Google Scholar] [CrossRef]
- Lentz, R.D.; Andrawes, F.F.; Barvenik, F.W.; Koehn, A.C. Acrylamide Monomer Leaching from Polyacrylamide-treated Irrigation Furrows. J. Environ. Qual. 2008, 37, 2293–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoskoltseva, O.A.; Panova, I.G.; Loiko, N.G.; Nikolaev, Y.A.; Litmanovich, E.A.; Yaroslavov, A.A. Polyelectrolytes and Polycomplexes for Stabilizing Sandy Grounds. Polym. Sci. Ser. B 2021, 63, 488–495. [Google Scholar] [CrossRef]
- Smagin, A.V.; Budnikov, V.I.; Sadovnikova, N.B.; Kirichenko, A.V.; Belyaeva, E.A.; Krivtsova, V.N. Gel-Forming Soil Conditioners of Combined Action: Laboratory Tests for Functionality and Stability. Polymers 2022, 14, 4665. [Google Scholar] [CrossRef]
- Al-Darby, A.M. The Hydraulic Properties of a Sandy Soil Treated with Gel-forming Soil Conditioner. Soil Technol. 1996, 9, 15–28. [Google Scholar] [CrossRef]
- El-Rehim, H.A.A.; Hegazy, E.S.A.; El-Mohdy, H.L.A. Radiation Synthesis of Hydrogels to Enhance Sandy Soils Water Retention and Increase Plant Performance. J. Appl. Polym. Sci. 2004, 93, 1360–1371. [Google Scholar] [CrossRef]
- Al-Darby, A.M.; Al-Asfoor, S.I.; El-Shafei, Y.Z. Effect of Soil Gel-Conditioner on the Hydrophysical Properties of Sandy Soil. J. Saudi Soc. Agric.Sci. 2002, 1, 14–40. [Google Scholar]
- Shahid, S.A.; Qidwai, A.A.; Anwar, F.; Ullah, I.; Rashid, U. Improvement in the Water Retention Characteristics of Sandy Loam Soil Using a Newly Synthesized Poly(acrylamide-co-acrylic Acid)/AlZnFe2O4 Superabsorbent Hydrogel Nanocomposite Material. Molecules 2012, 17, 9397–9412. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Chen, Z. Influence of Super Absorbent Polymer on Soil Water Retention, Seed Germination and Plant Survivals for Rocky Slopes Eco-engineering. Ecol. Eng. 2014, 62, 27–32. [Google Scholar] [CrossRef]
- Banedjschafie, S.; Durner, W. Water Retention Properties of a Sandy Soil with Superabsorbent Polymers as Affected by Aging and Water Quality. J. Plant Nutr. Soil Sci. 2015, 178, 798–806. [Google Scholar] [CrossRef]
- Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F. Applications of Controlled Release Systems for Fungicides, Herbicides, Acaricides, Nutrients, and Plant Growth Hormones: A Review. Adv. Sci. Eng. Med. 2014, 6, 373–387. [Google Scholar] [CrossRef]
- Ghani, A.A.; Shahzad, A.; Moztahida, M.; Tahir, K.; Jeon, H.; Kim, B.; Lee, D.S. Adsorption and Electrochemical Regeneration of Intercalated Ti3C2Tx MXene for the Removal of Ciprofloxacin from Wastewater. Chem. Eng. J. 2020, 421, 127780. [Google Scholar] [CrossRef]
- Xu, X.; Bizmark, N.; Christie, K.S.S.; Datta, S.S.; Ren, Z.J.; Priestley, R.D. Thermoresponsive Polymers for Water Treatment and Collection. Macromolecules 2022, 55, 1894–1909. [Google Scholar] [CrossRef]
- Guo, Y.; Guan, W.; Lei, C.; Lu, H.; Shi, W.; Yu, G. Scalable super hygroscopic polymer films for sustainable moisture harvesting in arid environments. Nat. Com. 2022, 13, 2761. [Google Scholar] [CrossRef]
- Mikula, P.; Mlnaříková, M.; Nadres, E.T.; Takahashi, H.; Babica, P.; Kuroda, K.; Bláha, L.; Sovadinová, I. Synthetic Biomimetic Polymethacrylates: Promising Platform for the Design of Anti-Cyanobacterial and Anti-Algal Agents. Polymers 2021, 13, 1025. [Google Scholar] [CrossRef]
- Smagin, A.V.; Sadovnikova, N.B.; Vasenev, V.I.; Smagina, M.V. Biodegradation of Some Organic Materials in Soils and Soil Constructions: Experiments, Modeling and Prevention. Materials 2018, 11, 1889. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.S. Effect of Soluble Salts on Water Absorption by Gel-forming Soil Conditioners. J. Sci. Food Agric. 1984, 35, 1063–1066. [Google Scholar] [CrossRef]
- Kazanskii, K.S.; Dubrovskii, S.A. Chemistry and Physics of Agricultural Hydrogels. Adv. Polym. Sci. 1992, 104, 97–133. [Google Scholar] [CrossRef]
- Vorobieva, E.V. Swelling of Polyacrylamide-based Hydrogel in Aqueous Solutions of Low-molecular Salts. Dokl. Nat. Acad. Sci. Belarus 2020, 64, 293–299. [Google Scholar] [CrossRef]
- Hadas, A.; Kautsky, L.; Goek, M.; Kara, E.E. Rates of Decomposition of Plant Residues and Available Nitrogen in Soil, Related to Residue Composition Through Simulation of Carbon and Nitrogen Turnover. Soil Biol. Biochem. 2004, 36, 255–266. [Google Scholar] [CrossRef]
- Lande, S.S.; Bosch, S.J.; Howard, P.H. Degradation and Leaching of Acrylamide in soil. J. Environ. Qual. 1979, 8, 133–137. [Google Scholar] [CrossRef]
- Abdelmagid, H.M.; Tabatabai, M.A. Decomposition of Acrylamide in Soils. J. Environ. Qual. 1982, 11, 701–704. [Google Scholar] [CrossRef]
- Shanker, R.; Ramakrishna, C.; Seth, P.K. Microbial Degradation of Acrylamide Monomer. Arch. Microb. 1990, 154, 192–198. [Google Scholar] [CrossRef]
- Kay-Shoemake, J.L.; Watwood, M.E.; Sojka, R.E.; Lentz, R.D. Polyacrylamide as a Substrate for Microbial Amidase in Culture and in Soil. Soil Biol. Biochem. 1998, 30, 1647–1654. [Google Scholar] [CrossRef]
- Sojka, R.E.; Entry, J.A. Influence of Polyacrylamide Application to Soil on Movement of Microorganisms in Runoff Water. Environ. Pollut. 2000, 108, 405–412. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Arolu, F.; Chukwu, S.C.; Salisu, M.A.; Fagbohun, I.K.; Muftaudeen, T.K.; Swaray, S.; Haliru, B.S. Superabsorbent Polymer Hydrogels for Sustainable Agriculture: A Review. Horticulturae 2022, 8, 605. [Google Scholar] [CrossRef]
- Akhter, J.; Mahmood, K.; Malik, K.A.; Mardan, A.; Ahmad, M.; Iqbal, M.M. Effects of Hydrogel Amendment on Water Storage of Sandy Loam and Loam Soils and Seedling Growth of Barley, Wheat, and Chickpea. Plant Soil Environ. 2004, 50, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Koupai, A.J.; Asadkazemi, J. Effects of a Hydrophilic Polymer on the Field Performance of an Ornamental Plant (Cupressus arizonica) under Reduced Irrigation Regimes. Iran. Polym. J. 2006, 15, 715–722. [Google Scholar]
- Yangyuoru, M.; Boateng, E.; Adiku, S.G.K.; Acquah, D.; Adjadeh, T.A.; Mawunya, F. Effects of Natural and Synthetic Soil Conditioners on Soil Moisture Retention and Maize Yield. J. App. Eco. 2006, 9, 1–8. [Google Scholar] [CrossRef]
- Yazdani, F.; Allahdadi, I.; Akbari, G.A. Impact of Superabsorbent Polymer on Yield and Growth Analysis of Soybean (Glycine max L.) under Drought Stress Condition. Pak. J. Biol. Sci. 2007, 10, 4190–4196. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Ahmad, R.; Safdar, M. Effect of Hydrogel on the Performance of Aerobic Rice Sown under Different Techniques. Plant Soil Environ. 2011, 57, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Moghadam, T.; Shirani-Rad, H.R.; Mohammadi, A.H.N.; Habibi, G.; Modarres, S.; Mashhadi, S.A.M.; Dolatabadian, M.A. Response of Six Oilseed Rape Genotypes to Water Stress and Hydrogel Application. Pesqui. Agropecuária Trop. 2013, 39, 243–250. [Google Scholar]
- Scremin, O.B.; da Silva, A.G.; de Mamann, A.T.V.; Mantai, R.D.; Brezolin, A.P. Nitrogen Efficiency in Oat Yield through the Biopolymer Hydrogel. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Dar, S.B.; Mishra, D.; Zahida, R.; Afshana, B.B. Hydrogel: To Enhance Crop Productivity Per Unit Available Water under Moisture Stress Agriculture. Bull. Environ. Pharma. Life Sci. 2017, 6, 129–135. [Google Scholar]
- Rezashateri, M.; Khajeddin, S.J.; Matinkhah, S.H.; Majidi, M.M. The Effects of Soil Ameliorating Hydrogels on Root System Characteristics of Avena fatua in Two Different Soil Textures. J. Water Soil Sci. 2017, 21, 151–164. [Google Scholar] [CrossRef]
- Abd El-Aziz, G.H.; Ibrahim, A.S.; Fahmy, A.H. Using Environmentally Friendly Hydrogels to Alleviate the Negative Impact of Drought on Plant. Open J. Appl. Sci. 2022, 12, 111–133. [Google Scholar] [CrossRef]
- Rajanna, G.A.; Manna, S.; Singh, A.; Babu, S.; Singh, V.K.; Dass, A.; Chakraborty, D.; Patanjali, N.; Chopra, I.; Banerjee, T.; et al. Biopolymeric Superabsorbent Hydrogels Enhance Crop and Water Productivity of Soybean–Wheat System in Indo-Gangetic Plains of India. Sci. Rep. 2022, 12, 11955. [Google Scholar] [CrossRef] [PubMed]
- Smagin, A.V.; Sadovnikova, N.B. Creation of Soil-Like Constructions. Eur. Soil Sci. 2015, 48, 981–990. [Google Scholar] [CrossRef]
- Lentz, R.D.; Sojka, R.E. Long-term Polyacrylamide Formulation Effects on Soil Erosion, Water Infiltration, and Yields of Furrow-Irrigated Crops. Agron. J. 2009, 101, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Vasenev, V.I.; Smagin, A.V.; Ananyeva, N.D.; Ivashchenko, K.V.; Gavrilenko, E.G.; Prokofeva, T.V.; Patlseva, A.; Stoorvogel, J.J.; Gosse, D.D.; Valentini, R. Urban Soil’s Functions: Monitoring, Assessment, and Management. In Adaptive Soil Management: From Theory to Practices; Rakshit, A., Abhilash, P.C., Singh, H.B., Ghosh, S., Eds.; Springer: Singapore, 2017; pp. 359–409. [Google Scholar] [CrossRef]
- Rizwan, M.; Gilani, S.R.; Durani, A.I.; Naseem, S. Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. J. Adv. Res. 2021, 33, 15–40. [Google Scholar] [CrossRef]
- Fedotov, G.N.; Dobrovolskii, G.V. Soil Gels and Their Research. Dokl. Biol. Sci. 2012, 444, 169–172. [Google Scholar] [CrossRef]
- Krutyakov, Y.A.; Kudrinskiy, A.A.; Zherebin, P.M.; Yapryntsev, A.D.; Pobedinskaya, M.A.; Ebansky, S.N.; Denisov, A.N.; Mikhaylov, D.M.; Lisichkin, G.V. Tallow Amphopolycarboxyglycinate-Stabilized Silver Nanoparticles: New Frontiers in Development of Plant Protection Products with a Broad Spectrum of Action Against Phytopathogens. Mater. Res. Express 2016, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. (Ed.) Diagnosis and Improvement of Saline and Alkali Soils; U.S. Department Agriculture Handbook 60; U.S. Government Printing Office: Washington, DC, USA, 1954. [Google Scholar]
- Smagin, A.V.; Sadovnikova, N.B.; Belyaeva, E.A.; Kirichenko, A.V.; Krivtsova, V.N. Capillary Effects in Polydisperse Systems and Their Use in Soil Engineering. Eur. Soil Sci. 2021, 54, 1433–1446. [Google Scholar] [CrossRef]
- Smagin, A.V. Thermodynamic Concept of Water Retention and Physical Quality of the Soil. Agronomy 2021, 11, 1686. [Google Scholar] [CrossRef]
- Asimovic, Z.; Cengic, L.; Hodzic, J.; Murtic, S. Spectrophotometric Determination of Total Chlorophyll Content in Fresh Vegetables. Godina LXI Broj 2016, 66, 104–108. [Google Scholar]
- GenBit LLC. Available online: http://genbitgroup.com/ (accessed on 14 October 2022).
- VNIIF. Available online: http://http://vniif.ru/ (accessed on 14 October 2022).
- Kingsland, S. The Refractory Model: The Logistic Curve and the History of Population Ecology. Q. Rev. Biol. 1982, 57, 29–52. [Google Scholar] [CrossRef]
- PC-Progress. Available online: https://www.pc-progress.com/ (accessed on 15 October 2022).
- Lagutina, M.A.; Dubrovskii, S.A. The Swelling Pressure of Weakly Ionic Acrylamide Gels. Polym. Sci. Ser. A 1996, 38, 1059–1064. [Google Scholar]
- Bakr, D.I.; Al-Khalidi, J.; Hadi, A.S. Comparison of Some Mathematical Models to Calculate Evapotranspiration in Contrasting Regions of Iraq. Environ. Asia 2021, 14, 40–50. [Google Scholar] [CrossRef]
- Darrah, P.R. Models of the rhizosphere: I. Microbial Population Dynamics Around a Root Releasing Soluble and Insoluble Carbon. Plant Soil 1991, 133, 187–199. [Google Scholar] [CrossRef]
- Khamiraev, U.K. Availability of Phytophthora infestans (Mont.) de Bary on the Uzbekistan territory and modern fungicides application to control it. Bull. Sci. Pract. 2018, 4, 148–152. [Google Scholar] [CrossRef]
- Chevillard, A.; Angellier-Coussy, H.; Guillard, V.; Gontard, N.; Gastaldi, E. Controlling Pesticide Release via Structuring Agropolymer and Nanoclays Based Materials. J. Hazard. Mater. 2012, 205–206, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Dhanapal, V.; Subramanian, K. Superabsorbent polymers: A state-of-art review on their classification, synthesis, physicochemical properties, and applications. Rev.Chem. Eng. 2021, 2, 1–45. [Google Scholar] [CrossRef]
- Kudryavskii, D.L.; Fomina, E.K.; Krul, L.P.; Yakimenko, O.V. Swelling of a hydrogel based on a copolymer of acrylamide and sodium acrylate in aqueous solutions copper (II) chloride with amino acid additives. Weight. Natl. Acad. Sci. Belarus. Ser. Chem. 2020, 56, 339–351. [Google Scholar] [CrossRef]
- Shirinov, S.D.; Jalilov, A.T. Investigation of the swelling kinetics of synthesized hydrogels based on hydrolyzed polyacrylonitrile. Univers. Chem. Biol. Electron. Sci. J. 2018, 3, 1–3. Available online: https://7universum.com/ru/nature/archive/item/5601 (accessed on 21 August 2022).
- Louf, J.-F.; Lu, N.B.; O’Connell, M.G.; Cho, H.G.; Datta, S.S. Under pressure: Hydrogel swelling in a granular medium. Sci. Adv. 2021, 7, eabd2711. [Google Scholar] [CrossRef]
- Misiewicz, J.; Głogowski, A.; Lejcuś, K.; Marczak, D. The Characteristics of Swelling Pressure for Superabsorbent Polymer and Soil Mixtures. Materials 2020, 13, 5071. [Google Scholar] [CrossRef]
Granulometric Fractions: | Soils: | ||
---|---|---|---|
Carbonate Loamy–Sandy Arenosol from the Emirate of Dubai, U.A.E. | Loamy–Sandy Retisol from the Moscow Region, Russia | Loamy Serozem from the Tashkent Region, Uzbekistan | |
Clay (<2 µm) | 4.2 | 2.4 | 20.7 |
Silt (2–50 µm) | 23.3 | 24.6 | 45.6 |
Very fine sand (50–100 µm) | 22.4 | 15.4 | 13.3 |
Fine sand (100–250 µm) | 39.2 | 36.0 | 8.9 |
Medium sand (250–500 µm) | 9.6 | 17.0 | 6.4 |
Coarse sand (500–1000 µm) | 1.3 | 4.6 | 5.1 |
Very coarse sand (1000–2000 µm) | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smagin, A.V.; Sadovnikova, N.B.; Belyaeva, E.A.; Krivtsova, V.N.; Shoba, S.A.; Smagina, M.V. Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping. Polymers 2022, 14, 5131. https://doi.org/10.3390/polym14235131
Smagin AV, Sadovnikova NB, Belyaeva EA, Krivtsova VN, Shoba SA, Smagina MV. Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping. Polymers. 2022; 14(23):5131. https://doi.org/10.3390/polym14235131
Chicago/Turabian StyleSmagin, Andrey V., Nadezhda B. Sadovnikova, Elena A. Belyaeva, Victoria N. Krivtsova, Sergey A. Shoba, and Marina V. Smagina. 2022. "Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping" Polymers 14, no. 23: 5131. https://doi.org/10.3390/polym14235131
APA StyleSmagin, A. V., Sadovnikova, N. B., Belyaeva, E. A., Krivtsova, V. N., Shoba, S. A., & Smagina, M. V. (2022). Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping. Polymers, 14(23), 5131. https://doi.org/10.3390/polym14235131