Parametric Study on Low-Velocity Impact (LVI) Damage and Compression after Impact (CAI) Strength of Composite Laminates
Abstract
:1. Introduction
2. Experimental Tests
3. Numerical Model
3.1. Failure Criterion
3.1.1. Intra-Laminar Damage Model
3.1.2. Inter-Laminar Damage Model
3.2. Finite Element Model
4. Impact Damage and Compressive Strength
4.1. Impact-Induced Damage
4.2. Simulation of Compression Failure
4.3. Influences of Damage Criterion
5. Parameter Influences
5.1. Influence of Impact Energy on Compression after Impact
5.2. Influence of Ply Thickness on Compression after Impact
6. Conclusions
- The damage zone of the fiber breakage and matrix cracking caused by the impact is approximately circular.
- The predicted CAI value is in good agreement with the experimental one, and the error is 4.7%.
- The CAI strength decreases as impact energy increases from 10 to 30 J. After the impact energy exceeds 30 J, the CAI strength remains basically unchanged.
- Decreasing the single ply thickness can effectively improve the damage resistance and CAI strength of the composite laminates. When the single ply thickness decreases to 0.04 mm, the CAI strength increases by 22.4%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González, E.; Maimí, P.; Camanho, P.; Lopes, C.; Blanco, N. Effects of ply clustering in laminated composite plates under low-velocity impact loading. Compos. Sci. Technol. 2011, 71, 805–817. [Google Scholar] [CrossRef] [Green Version]
- Zobeiry, N.; Vaziri, R.; Poursartip, A. Characterization of strain-softening behavior and failure mechanisms of composites under tension and compression. Compos. Part A Appl. Sci. Manuf. 2015, 68, 29–41. [Google Scholar] [CrossRef]
- Abrate, S. Impact on Composite Structures; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Gong, W.; Chen, J.; Patterson, E.A. An experimental study of the behaviour of delaminations in composite panels subjected to bending. Compos. Struct. 2015, 123, 9–18. [Google Scholar] [CrossRef]
- Cantwell, W.; Morton, J. The impact resistance of composite materials—A review. Composites 1991, 22, 347–362. [Google Scholar] [CrossRef]
- Sergii, G.K.; Chris, V.; Oleksandr, G.K. An experimental investigation on low-velocity impact response and compression after impact of a stochastic, discontinuous prepreg tape composite. Compos. Part A 2021, 149, 106524. [Google Scholar]
- Gliszczynski, A.; Bogenfeld, R.; Degenhardt, R.; Kubiak, T. Corner impact and Compression After Impact (CAI) of thin-walled compo-site profile-an experimental study. Compos. Struct. 2020, 248, 112502. [Google Scholar] [CrossRef]
- Elamin, M.; Li, B.; Tan, K.T. Compression after impact performance of carbon-fiber foam-core sandwich composites in low tem-perature arctic conditions. Compos. Struct. 2021, 261, 113568. [Google Scholar] [CrossRef]
- Abdulhamid, H.; Bouvet, C.; Michel, L.; Aboissière, J.; Minot, C. Experimental study of compression after impact of asymmetrically tapered compo-site laminate. Compos. Struct. 2016, 149, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Huang, J.; Tan, R.; Su, Y.; Guan, Z.; Guo, X. Experimental investigation on damage mechanisms and buckling behaviors of thin composite laminates in compression after impact. Compos. Struct. 2020, 256, 113122. [Google Scholar] [CrossRef]
- Liu, D.; Bai, R.; Lei, Z.; Guo, J.; Zou, J.; Wu, W.; Yan, C. Experimental and numerical study on compression-after-impact behavior of composite panels with foam-filled hat-stiffener. Ocean Eng. 2020, 198, 106991. [Google Scholar] [CrossRef]
- Zhang, C.; Tan, K. Low-velocity impact response and compression after impact behavior of tubular composite sandwich structures. Compos. Part B: Eng. 2020, 193, 108026. [Google Scholar] [CrossRef]
- Ouyang, T.; Bao, R.; Sun, W.; Guan, Z.; Tan, R. A fast and efficient numerical prediction of compression after impact (CAI) strength of composite laminates and structures. Thin-Walled Struct. 2020, 148, 106588. [Google Scholar] [CrossRef]
- Shah, S.; Megat-Yusoff, P.; Karuppanan, S.; Choudhry, R.; Din, I.U.; Othman, A.; Sharp, K.; Gerard, P. Compression and buckling after impact response of resininfused thermoplastic and thermoset 3D woven composites. Compos. Part B Eng. 2021, 207, 108592. [Google Scholar] [CrossRef]
- Tuo, H.; Lu, Z.; Ma, X.; Xing, J.; Zhang, C. Damage and failure mechanism of thin composite laminates under low-velocity impact and com-pression-after-impact loading conditions. Compos. Part B 2019, 163, 642–654. [Google Scholar] [CrossRef]
- Zhang, D.; Gu, Y.; Zhang, Z.; Jia, M.; Yue, S.; Li, G. Effect of off-axis angle on low-velocity impact and compression after impact damage mechanisms of 3D woven composites. Mater. Des. 2020, 192, 108672. [Google Scholar] [CrossRef]
- Bull, D.J.; Spearing, S.M.; Sinclair, I. Image-enhanced modelling of residual compressive after impact strength in laminated composites. Compos. Struct. 2018, 192, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Chen, X.; Wang, H. Predicting compression-after-impact behavior of thermoplastic composite laminates by an experiment-based approach. Compos. Sci. Technol. 2021, 213, 108952. [Google Scholar] [CrossRef]
- Johannes, R.; Navid, Z.; Reza, V. Efficient finite element simulation of compression after impact behaviour in quasi-isotropic composite laminates. Compos. Commun. 2021, 28, 100967. [Google Scholar]
- Yang, B.; Chen, Y.; Lee, J.; Fu, K.; Li, Y. In-plane compression response of woven CFRP composite after low-velocity impact: Modelling and experiment. Thin-Walled Struct. 2020, 158, 107186. [Google Scholar] [CrossRef]
- Mencattelli, L.; Pinho, S. Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting dif-fused sub-critical helicoidal damage. Compos. Sci. Technol. 2019, 182, 107684. [Google Scholar] [CrossRef]
- Sebaey, T.; Mahdi, E. Using thin-plies to improve the damage resistance and tolerance of aeronautical CFRP composites. Compos. Part A Appl. Sci. Manuf. 2016, 86, 31–38. [Google Scholar] [CrossRef]
- Cameron, C.J.; Larsson, J.; Loukil, M.S.; Murtagh, T.; Wennhage, P. Bearing strength performance of mixed thin/thick-ply, quasi-isotropic composite laminates. Compos. Struct. 2020, 261, 113312. [Google Scholar] [CrossRef]
- Cugnoni, J.; Amacher, R.; Kohler, S.; Brunner, J.; Kramer, E.; Dransfeld, C.; Smith, W.; Scobbie, K.; Sorensen, L.; Botsis, J. Towards aerospace grade thin-ply composites: Effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance. Compos. Sci. Technol. 2018, 168, 467–477. [Google Scholar] [CrossRef]
- Saito, H.; Morita, M.; Kawabe, K.; Kanesaki, M.; Takeuchi, H.; Tanaka, M.; Kimpara, I. Effect of ply-thickness on impact damage morphology in CFRP laminates. J. Reinf. Plast. Compos. 2011, 30, 1097–1106. [Google Scholar] [CrossRef]
- Drodziel, M.; Jakubczak, P.; Bienia, J. Low-velocity impact resistance of thin-ply in comparison with conventional alumini-um-carbon laminates. Compos. Struct. 2021, 256, 113083. [Google Scholar] [CrossRef]
- D 7136/D 7136M-07[S] ASTM Standards; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International: West Conshohocken, PA, USA, 2007.
- D 7137/D 7137M-07[S] ASTM Standards; Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Compo-site Plates. ASTM International: West Conshohocken, PA, USA, 2007.
- Hashin, Z. Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Camanho, P.P.; Matthews, F.L. A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. J. Compos. Mater. 1999, 33, 2248–2280. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact. Compos. Struct. 2015, 125, 51–57. [Google Scholar] [CrossRef]
- Guo, S.X.; Li, X.Q. The influences of cohesive element compressive stress and its thickness on delamination prediction of compo-site. Fiber Reinf. Plast. Compos. 2019, 2, 20–25. (In Chinese) [Google Scholar]
- Borg, R.; Nilsson, L.; Simonsson, K. Simulation of delamination in fiber composites with a discrete cohesive failure model. Compos. Sci. Technol. 2001, 61, 667–677. [Google Scholar] [CrossRef]
- Raman, V.; Drissi-Habti, M.; Guillaumat, L.; Khadhour, A. Numerical simulation analysis as a tool to identify areas of weakness in a turbine wind-blade and solutions for their reinforcement. Compos. Part B Eng. 2016, 103, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Wagih, A.; Maimí, P.; González, E.; Blanco, N.; de Aja, J.S.; de la Escalera, F.; Olsson, R.; Alvarez, E. Damage sequence in thin-ply composite laminates under out-of-plane loading. Compos. Part A Appl. Sci. Manuf. 2016, 87, 66–77. [Google Scholar] [CrossRef]
- Huang, C.; He, M.; He, Y.; Xiao, J.; Zhang, J.; Ju, S.; Jiang, D. Exploration relation between interlaminar shear properties of thin-ply laminates under short-beam bending and meso-structures. J. Compos. Mater. 2017, 52, 2375–2386. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
E11/GPa | 171.0 |
E22/GPa | 8.76 |
G12/GPa | 4.2 |
v12 | 0.25 |
Xt/MPa | 2889.0 |
Xc/MPa | 1562.0 |
Yt/MPa | 84.1 |
Yc/MPa | 221.0 |
S/MPa | 163.0 |
Specimen | Impact Damage Area (mm2) | Maximum Contact Force (kN) | CAI Strength (MPa) | Failure Displacement (mm) |
---|---|---|---|---|
1 | 438 | 12.0 | 324 | 0.86 |
2 | 454 | 10.9 | 315 | 0.83 |
3 | 378 | 12.4 | 345 | 0.89 |
4 | 436 | 11.3 | 316 | 0.83 |
5 | 473 | 10.2 | 295 | 0.77 |
Average | 436 | 11.4 | 320 | 0.84 |
Numerical | 419 | 11.8 | 334 | 0.81 |
Error (%) | 3.9 | 2.6 | 4.7 | 3.6 |
Parameter | Value |
---|---|
GⅠC/(N/m) | 329.0 |
GⅡC/(N/m) | 2215.0 |
Tensile strength/MPa | 60.0 |
Shear strength/MPa | 112.0 |
Item | Cured Ply Thickness/mm | Layup |
---|---|---|
1 | 0.12 | [45/0/−45/90]5s |
2 | 0.10 | [45/0/−45/90]6s |
3 | 0.08 | [45/0/−45/90]7s |
4 | 0.06 | [45/0/−45/90]9s |
5 | 0.04 | [45/0/−45/90]13s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Li, X.; Liu, T.; Bu, G.; Bai, J. Parametric Study on Low-Velocity Impact (LVI) Damage and Compression after Impact (CAI) Strength of Composite Laminates. Polymers 2022, 14, 5200. https://doi.org/10.3390/polym14235200
Guo S, Li X, Liu T, Bu G, Bai J. Parametric Study on Low-Velocity Impact (LVI) Damage and Compression after Impact (CAI) Strength of Composite Laminates. Polymers. 2022; 14(23):5200. https://doi.org/10.3390/polym14235200
Chicago/Turabian StyleGuo, Shuangxi, Xueqin Li, Tianwei Liu, Guangyu Bu, and Jiangbo Bai. 2022. "Parametric Study on Low-Velocity Impact (LVI) Damage and Compression after Impact (CAI) Strength of Composite Laminates" Polymers 14, no. 23: 5200. https://doi.org/10.3390/polym14235200
APA StyleGuo, S., Li, X., Liu, T., Bu, G., & Bai, J. (2022). Parametric Study on Low-Velocity Impact (LVI) Damage and Compression after Impact (CAI) Strength of Composite Laminates. Polymers, 14(23), 5200. https://doi.org/10.3390/polym14235200