pH-Dependent Release of Vancomycin from Modularly Assembled Collagen Laminates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Collagen Samples
2.2. Release of Vancomycin
2.3. Determination of the Swelling Degree of Collagen Samples
3. Results
3.1. Release of Vancomycin from the RGX-Modified Atelocollagen
3.2. Release of Vancomycin from the Two-Layer Heterogenous Laminates (AC-Laminates)
4. Discussion
5. Conclusions and Outlook
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiang, H.-Y.; Herwaldt, L.A.; Blevins, A.E.; Cho, E.; Schweizer, M.L. Effectiveness of local vancomycin powder to decrease surgical site infections: A meta-analysis. Spine J. 2014, 14, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Gaynes, R.P.; Martone, W.J.; Jarvis, W.R.; Emori, T.G. CDC definitions of nosocomial surgical site infections, 1992: A modification of CDC definitions of surgical wound infections. Infect. Control Hosp. Epidemiol. 1992, 13, 606–608. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.; Eckes, S.; Rommens, P.M.; Schmitz, K.; Nickel, D.; Ritz, U. Toxic Effect of Vancomycin on Viability and Functionality of Different Cells Involved in Tissue Regeneration. Antibiotics 2020, 9, 238. [Google Scholar] [CrossRef] [PubMed]
- Pachuau, L. Recent developments in novel drug delivery systems for wound healing. Expert Opin. Drug Deliv. 2015, 12, 1895–1909. [Google Scholar] [CrossRef]
- Derakhshandeh, H.; Kashaf, S.S.; Aghabaglou, F.; Ghanavati, I.O.; Tamayol, A. Smart Bandages: The Future of Wound Care. Trends Biotechnol. 2018, 36, 1259–1274. [Google Scholar] [CrossRef]
- Zirak, N.; Maadani, A.M.; Salahinejad, E.; Abbasnezhad, N.; Shirinbayan, M. Fabrication, drug delivery kinetics and cell viability assay of PLGA-coated vancomycin-loaded silicate porous microspheres. Ceram. Int. 2022, 48, 48–54. [Google Scholar] [CrossRef]
- Somu, P.; Paul, S. Surface conjugation of curcumin with self-assembled lysozyme nanoparticle enhanced its bioavailability and therapeutic efficacy in multiple cancer cells. J. Mol. Liq. 2021, 338, 116623. [Google Scholar] [CrossRef]
- Nutan, B.; Chandel, A.K.S.; Bhalani, D.V.; Jewrajka, S.K. Synthesis and tailoring the degradation of multi-responsive amphiphilic conetwork gels and hydrogels of poly(β-amino ester) and poly(amido amine). Polymer 2017, 111, 265–274. [Google Scholar] [CrossRef]
- Chandel, A.K.S.; Nutan, B.; Raval, I.H.; Jewrajka, S.K. Self-Assembly of Partially Alkylated Dextran-graft-poly(2-dimethylamino)ethyl methacrylate Copolymer Facilitating Hydrophobic/Hydrophilic Drug Delivery and Improving Conetwork Hydrogel Properties. Biomacromolecules 2018, 19, 1142–1153. [Google Scholar] [CrossRef]
- Chandel, A.K.S.; Kannan, D.; Nutan, B.; Singh, S.; Jewrajka, S.K. Dually crosslinked injectable hydrogels of poly(ethylene glycol) and poly(2-dimethylamino)ethyl methacrylate-b-poly(N-isopropyl acrylamide) as a wound healing promoter. J. Mater. Chem. B 2017, 5, 4955–4965. [Google Scholar] [CrossRef]
- Hofmann, G.O.; Kluger, P.; Fische, R. Biomechanical evaluation of a bioresorbable PLA dowel for arthroscopic surgery of the shoulder. Biomaterials 1997, 18, 1441–1445. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, D.M.R.; Black, C.R.M.; Dawson, J.I.; Oreffo, R.O.C. A review of hydrogel use in fracture healing and bone regeneration. J. Tissue Eng. Regen. Med. 2016, 10, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Akhir, H.M.; Teoh, P.L. Collagen type I promotes osteogenic differentiation of amniotic membrane-derived mesenchymal stromal cells in basal and induction media. Biosci. Rep. 2020, 40, BSR20201325. [Google Scholar] [CrossRef]
- Somaiah, C.; Kumar, A.; Mawrie, D.; Sharma, A.; Patil, S.D.; Bhattacharyya, J.; Swaminathan, R.; Jaganathan, B.G. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells. PLoS ONE 2015, 10, e0145068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.; Eckes, S.; Kilb, M.F.; Fischer, D.; Eßbach, C.; Rommens, P.M.; Drees, P.; Schmitz, K.; Nickel, D.; Ritz, U. Mechanical characterization of rose bengal and green light crosslinked collagen scaffolds for regenerative medicine. Regen. Biomater. 2021, 8, rbab059. [Google Scholar] [CrossRef] [PubMed]
- Kilb, M.F.; Moos, Y.; Eckes, S.; Braun, J.; Ritz, U.; Nickel, D.; Schmitz, K. An Additively Manufactured Sample Holder to Measure the Controlled Release of Vancomycin from Collagen Laminates. Biomedicines 2021, 9, 1668. [Google Scholar] [CrossRef]
- Eckes, S.; Braun, J.; Wack, J.S.; Ritz, U.; Nickel, D.; Schmitz, K. Rose Bengal Crosslinking to Stabilize Collagen Sheets and Generate Modulated Collagen Laminates. Int. J. Mol. Sci. 2020, 21, 7408. [Google Scholar] [CrossRef]
- Alexander, W. American society of clinical oncology, 2010 annual meeting and rose bengal: From a wool dye to a cancer therapy. Pharm. Ther. 2010, 35, 469–478. [Google Scholar]
- Redmond, R.W.; Kochevar, I.E. Medical Applications of Rose Bengal- and Riboflavin-Photosensitized Protein Crosslinking. Photochem. Photobiol. 2019, 95, 1097–1115. [Google Scholar] [CrossRef]
- Schreml, S.; Meier, R.J.; Wolfbeis, O.S.; Landthaler, M.; Szeimies, R.-M.; Babilas, P. 2D luminescence imaging of pH in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 2432–2437. [Google Scholar] [CrossRef] [Green Version]
- Junka, A.; Szymczyk, P.; Ziółkowski, G.; Karuga-Kuzniewska, E.; Smutnicka, D.; Bil-Lula, I.; Bartoszewicz, M.; Mahabady, S.; Sedghizadeh, P.P. Bad to the Bone: On In Vitro and Ex Vivo Microbial Biofilm Ability to Directly Destroy Colonized Bone Surfaces without Participation of Host Immunity or Osteoclastogenesis. PLoS ONE 2017, 12, e0169565. [Google Scholar] [CrossRef] [PubMed]
- Berkmann, J.C.; Martin, A.X.H.; Ellinghaus, A.; Schlundt, C.; Schell, H.; Lippens, E.; Duda, G.N.; Tsitsilonis, S.; Schmidt-Bleek, K. Early pH Changes in Musculoskeletal Tissues upon Injury-Aerobic Catabolic Pathway Activity Linked to Inter-Individual Differences in Local pH. Int. J. Mol. Sci. 2020, 21, 2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicuéndez, M.; Doadrio, J.C.; Hernández, A.; Portolés, M.T.; Izquierdo-Barba, I.; Vallet-Regí, M. Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater. 2018, 65, 450–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onat, B.; Bütün, V.; Banerjee, S.; Erel-Goktepe, I. Bacterial anti-adhesive and pH-induced antibacterial agent releasing ultra-thin films of zwitterionic copolymer micelles. Acta Biomater. 2016, 40, 293–309. [Google Scholar] [CrossRef]
- Ono, S.; Imai, R.; Ida, Y.; Shibata, D.; Komiya, T.; Matsumura, H. Increased wound pH as an indicator of local wound infection in second degree burns. Burns 2015, 41, 820–824. [Google Scholar] [CrossRef]
- ELDEN, H.R. Rate of swelling of collagen. Science 1958, 128, 1624–1625. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical Mechanics of Cross—Linked Polymer Networks II. Swelling. J. Chem. Phys. 1943, 11, 521–526. [Google Scholar] [CrossRef]
- Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical Description of Hydrogel Swelling: A Review. Iran. Polym. J. 2010, 375–398. [Google Scholar]
- Zhang, Q.; Liu, L.; Zhou, H.; Wu, X.; Yao, K.D. pH-responsive swelling behavior of collagen complex materials. Artif. Cells Blood Substit. Immobil. Biotechnol. 2000, 28, 255–262. [Google Scholar] [CrossRef]
- Lefter, C.-M.; Maier, S.S.; Maier, V.; Popa, M.; Desbrieres, J. Engineering preliminaries to obtain reproducible mixtures of atelocollagen and polysaccharides. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 2323–2331. [Google Scholar] [CrossRef]
- Pfeiffer, R.R. Structural features of vancomycin. Rev. Infect. Dis. 1981, 3, S205–S209. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, E.I.; Poblete, H.; Roh, H.; Couture, J.-F.; Comer, J.; Kochevar, I.E. Rose Bengal Binding to Collagen and Tissue Photobonding. ACS Omega 2017, 2, 6646–6657. [Google Scholar] [CrossRef] [PubMed]
Laminate or Single Sheet | Released Vancomycin | Swelling Degree | Release Direction | ||
---|---|---|---|---|---|
Name | Property | After 24 h | Half-Max. Release | ||
A (RGX) | pH 5.5 | 71 ± 2% | 41 ± 1% (4 h) | 1562 ± 283% | Equal |
A (RGX) | pH 7.4 | 68 ± 8% * | 32 ± 6% (1 h) * | 539 ± 20% | Equal * |
A (RGX) | pH 8.5 | 74 ± 3% | 39 ± 3% (2 h) | 541 ± 64% | Unequal after 8 h and 24 h (upper > lower cavity) |
AC | pH 5.5 | 61 ± 6% | 33 ± 3% (4 h) | 1053 ± 114% | Unequal (C > A) |
AC | pH 7.4 | 69 ± 4% * | 38 ± 5% (2 h) * | 643 ± 69% | Unequal (C > A) * |
AC | pH 8.5 | 67 ± 3% | 45 ± 2% (4 h) | 568 ± 73% | Unequal (C > A) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilb, M.F.; Ritz, U.; Nickel, D.; Schmitz, K. pH-Dependent Release of Vancomycin from Modularly Assembled Collagen Laminates. Polymers 2022, 14, 5227. https://doi.org/10.3390/polym14235227
Kilb MF, Ritz U, Nickel D, Schmitz K. pH-Dependent Release of Vancomycin from Modularly Assembled Collagen Laminates. Polymers. 2022; 14(23):5227. https://doi.org/10.3390/polym14235227
Chicago/Turabian StyleKilb, Michelle Fiona, Ulrike Ritz, Daniela Nickel, and Katja Schmitz. 2022. "pH-Dependent Release of Vancomycin from Modularly Assembled Collagen Laminates" Polymers 14, no. 23: 5227. https://doi.org/10.3390/polym14235227
APA StyleKilb, M. F., Ritz, U., Nickel, D., & Schmitz, K. (2022). pH-Dependent Release of Vancomycin from Modularly Assembled Collagen Laminates. Polymers, 14(23), 5227. https://doi.org/10.3390/polym14235227