Capsule-Based Self-Healing and Self-Sensing Composites with Enhanced Mechanical and Electrical Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Encapsulation Process
2.3. Manufacturing of Mode-II Specimens
2.4. Lap Strap Specimens
2.5. Mode-II Interlaminar Fracture Toughness
2.6. Lap Strap Specimen Testing Protocol—Modelled Structure Composites
2.7. Healing Process/Healing Efficiency of Mode-II Tests
2.8. Healing Process/Healing Efficiency at Lap Strap Specimens
2.9. Scanning Electron Microscopy
2.10. Impedance Spectroscopy Measurements
3. Results
3.1. SEM Images
3.2. Recovery of the Mode-II Fracture Toughness Energy
3.3. Recovery of the Electrical Properties on Mode-II—Offline
3.4. Recovery of the Electrical Properties on Mode-II—Online
3.5. Recovery of Lap Strap Strength
3.6. Recovery of the Electrical Properties on Lap Strap—Offline
3.7. Recovery of the Electrical Properties on Lap Strap—Online
3.8. Fractography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rocha, H.; Semprimoschnig, C.; Nunes, J.P. Sensors for Process and Structural Health Monitoring of Aerospace Composites: A Review. Eng. Struct. 2021, 237, 112231. [Google Scholar] [CrossRef]
- Abbas, S.; Li, F.; Qiu, J. A Review on SHM Techniques and Current Challenges for Characteristic Investigation of Damage in Composite Material Components of Aviation Industry. Mater. Perform. Charact. 2018, 7, 224–258. [Google Scholar] [CrossRef]
- Swait, T.J.; Rauf, A.; Grainger, R.; Bailey, P.B.S.; Lafferty, A.D.; Fleet, E.J.; Hand, R.J.; Hayes, S.A. Smart Composite Materials for Self-Sensing and Self-Healing. Plast. Rubber Compos. 2012, 41, 215–224. [Google Scholar] [CrossRef]
- Qureshi, Y.; Tarfaoui, M.; Lafdi, K.K.; Lafdi, K. Development of Microscale Flexible Nylon/Ag Strain Sensor Wire for Real-Time Monitoring and Damage Detection in Composite Structures Subjected to Three-Point Bend Test. Compos. Sci. Technol. 2019, 181, 107693. [Google Scholar] [CrossRef]
- Souza, G.; Tarpani, J.R. Distributed Fiber Optics Sensing Applied to Laminated Composites: Embedding Process, Strain Field Monitoring with OBR and Fracture Mechanisms. J. Nondestruct. Eval. 2020, 39, 77. [Google Scholar] [CrossRef]
- Mei, H.; Haider, M.F.; Joseph, R.; Migot, A.; Giurgiutiu, V. Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications. Sensors 2019, 19, 383. [Google Scholar] [CrossRef] [Green Version]
- Giurgiutiu, V. Structural Health Monitoring (SHM) of Aerospace Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; ISBN 9780081026793. [Google Scholar]
- Bekas, D.G.; Sharif-Khodaei, Z.; Ferri Aliabadi, M.H. An Innovative Diagnostic Film for Structural Health Monitoring of Metallic and Composite Structures. Sensors 2018, 18, 2084. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Bilotti, E.; Peijs, T. The Use of Carbon Nanotubes for Damage Sensing and Structural Health Monitoring in Laminated Composites: A Review. Nanocomposites 2015, 1, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Ghezzo, F.; Starr, A.F.; Smith, D.R. Integration of Networks of Sensors and Electronics for Structural Health Monitoring of Composite Materials. Adv. Civ. Eng. 2010, 2010, 598458. [Google Scholar] [CrossRef] [Green Version]
- Foteinidis, G.; Paipetis, A.S. A Novel Composite with Structural Health Monitoring Functionality via 2d and 3d Impedance Mapping Topography. Appl. Sci. 2021, 11, 1647. [Google Scholar] [CrossRef]
- Kosarli, M.; Foteinidis, G.; Tsirka, K.; Bekas, D.G.; Paipetis, A.S. Concurrent Recovery of Mechanical and Electrical Properties in Nanomodified Capsule-Based Self-Healing Epoxies. Polymer 2021, 227, 123843. [Google Scholar] [CrossRef]
- Kosarli, M.; Polymerou, A.; Foteinidis, G.; Vazouras, C.; Paipetis, A.S. Healing Efficiency of CNTs-Modified-UF Microcapsules That Provide Higher Electrical Conductivity and EMI Shielding Properties. Polymers 2021, 13, 2753. [Google Scholar] [CrossRef] [PubMed]
- Karalis, G.; Mytafides, C.K.; Tzounis, L.; Paipetis, A.S.; Barkoula, N.M. An Approach toward the Realization of a Through-Thickness Glass Fiber/Epoxy Thermoelectric Generator. Materials 2021, 14, 2173. [Google Scholar] [CrossRef] [PubMed]
- Karalis, G.; Mytafides, C.; Polymerou, A.; Tsirka, K.; Tzounis, L.; Gergidis, L.; Paipetis, A.S. Hierarchical Reinforcing Fibers for Energy Harvesting Applications-A Strength Study. Key Eng. Mater. 2020, 827 KEM, 252–257. [Google Scholar] [CrossRef]
- Grammatikos, S.A.; Gkikas, G.; Paipetis, A. Monitoring Strain and Damage in Multi Phase Composite Materials Using Electrical Resistance Methods. In Smart Sensor Phenomena, Technology, Networks, and Systems 2011; SPIE: Bellingham, WA, USA, 2011; Volume 7982, pp. 182–187. [Google Scholar] [CrossRef]
- Kosarli, M.; Foteinidis, G.; Tsirka, K.; Markaide, N.; Luzuriaga, A.R. 3R Composites: Knockdown Effect Assessment and Repair Efficiency via Mechanical and NDE Testing. Appl. Sci. 2022, 12, 7269. [Google Scholar] [CrossRef]
- Bekas, D.G.; Paipetis, A.S. Damage Monitoring in Nanoenhanced Composites Using Impedance Spectroscopy. Compos. Sci. Technol. 2016, 134, 96–105. [Google Scholar] [CrossRef]
- Su, Y.; Xu, L.; Zhou, P.; Yang, J.; Wang, K.; Zhou, L.M.; Su, Z. Carbon Nanotube-Decorated Glass Fibre Bundles for Cure Self-Monitoring and Load Self-Sensing of FRPs. Compos. Commun. 2021, 27, 100899. [Google Scholar] [CrossRef]
- Ud Din, I.; Aslam, N.; Medhin, Y.; Sikandar Bathusha, M.S.; Irfan, M.S.; Umer, R.; Khan, K.A. Electromechanical Behavior of Self-Sensing Composite Sandwich Structures for next Generation More Electric Aerostructures. Compos. Struct. 2022, 300, 116169. [Google Scholar] [CrossRef]
- Ud Din, I.; Medhin, Y.; Aslam, N.; Bathusha, M.S.S.; Umer, R.; Khan, K.A. Rate Dependent Piezoresistive Characterization of Smart Aerospace Sandwich Structures Embedded with Reduced Graphene Oxide (RGO) Coated Fabric Sensors. Compos. Commun. 2022, 36, 101382. [Google Scholar] [CrossRef]
- Lubin, G. Handbook of Composites, 1st ed.; Springer: New York, NY, USA, 1982; ISBN 9781461571414. [Google Scholar]
- Grammatikos, S.A.; Kouli, M.; Gkikas, G.; Paipetis, A.S. Structural Health Monitoring of Aerospace Materials Used in Industry Using Electrical Potential Mapping Methods. In Smart Sensor Phenomena, Technology, Networks, and Systems Integration 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8346, pp. 331–337. [Google Scholar] [CrossRef]
- Hayes, S.A.; Swait, T.J.; Lafferty, A.D. Self-Sensing and Self-Healing in Composites; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9781782422921. [Google Scholar]
- Ke, K.; Solouki Bonab, V.; Yuan, D.; Manas-Zloczower, I. Piezoresistive Thermoplastic Polyurethane Nanocomposites with Carbon Nanostructures. Carbon 2018, 139, 52–58. [Google Scholar] [CrossRef]
- Cortés, A.; Sánchez Romate, X.F.; Jiménez-Suárez, A.; Campo, M.; Prolongo, M.G.; Ureña, A.; Prolongo, S.G. 3D Printed Anti-Icing and de-Icing System Based on CNT/GNP Doped Epoxy Composites with Self-Curing and Structural Health Monitoring Capabilities. Smart Mater. Struct. 2021, 30, 025016. [Google Scholar] [CrossRef]
- Foteinidis, G.; Tsirka, K.; Tzounis, L.; Baltzis, D. Applied Sciences The Role of Synergies of MWCNTs and Carbon Black in the Enhancement of the Electrical and Mechanical Response of Modified Epoxy Resins. Appl. Sci. 2019, 9, 3757. [Google Scholar] [CrossRef] [Green Version]
- Baltzis, D.; Bekas, D.G.; Tzachristas, G.; Parlamas, A.; Karabela, M.; Zafeiropoulos, N.E.; Paipetis, A.S. Multi-Scaled Carbon Reinforcements in Ternary Epoxy Composite Materials: Dispersion and Electrical Impedance Study. Compos. Sci. Technol. 2017, 153, 7–17. [Google Scholar] [CrossRef]
- Safdari, M.; Al-haik, M.S. 5. A Review on Polymeric Nanocomposites: Effect of Hybridization and Synergy on Electrical Properties; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128135747. [Google Scholar]
- Blaiszik, B.J.; Kramer, S.L.B.; Olugebefola, S.C.; Moore, J.S.; Sottos, N.R.; White, S.R. Self-Healing Polymers and Composites. Annu. Rev. Mater. Res. 2010, 40, 179–211. [Google Scholar] [CrossRef]
- Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-Healing Materials: A Review of Advances in Materials, Evaluation, Characterization and Monitoring Techniques. Compos. Part B 2016, 87, 92–119. [Google Scholar] [CrossRef]
- Cohades, A.; Branfoot, C.; Rae, S.; Bond, I.; Michaud, V. Progress in Self-Healing Fiber-Reinforced Polymer Composites. Adv. Mater. Interfaces 2018, 5, 1800177. [Google Scholar] [CrossRef]
- Ikura, R.; Park, J.; Osaki, M.; Yamaguchi, H.; Harada, A.; Takashima, Y. Design of Self-Healing and Self-Restoring Materials Utilizing Reversible and Movable Crosslinks. NPG Asia Mater. 2022, 14, 10. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, J.; Qu, D.; Wang, H.; Chai, C.; Feng, L. Thermo-Adjusted Self-Healing Epoxy Resins Based on Diels–Alder Dynamic Chemical Reaction. Polym. Eng. Sci. 2021, 61, 2257–2266. [Google Scholar] [CrossRef]
- Bekas, D.G.; Baltzis, D.; Paipetis, A.S. Nano-reinforced polymeric healing agents for vascular self-repairing composites. Mater. Des. 2017, 116, 538–544. [Google Scholar] [CrossRef]
- Wen, N.; Song, T.; Ji, Z.; Jiang, D.; Wu, Z.; Wang, Y.; Guo, Z. Recent Advancements in Self-Healing Materials: Mechanicals, Performances and Features. React. Funct. Polym. 2021, 168, 105041. [Google Scholar] [CrossRef]
- Kosarli, M.; Bekas, D.G.; Tsirka, K.; Baltzis, D.; Vaimakis-Tsogkas, D.; Orfanidis, S.; Papavassiliou, G.; Paipetis, A.S. Microcapsule-Based Self-Healing Materials: Healing Efficiency and Toughness Reduction vs. Capsule Size. Compos. Part B Eng. 2019, 171, 78–86. [Google Scholar] [CrossRef]
- Ghazali, H.; Ye, L.; Amir, A.N. Microencapsulated Healing Agents for an Elevated-Temperature Cured Epoxy: Influence of Viscosity on Healing Efficiency. Polym. Polym. Compos. 2021, 29, S1317–S1327. [Google Scholar] [CrossRef]
- Jiang, Y.; Yao, J.; Zhu, C. Improving the Dispersibility of Poly(Urea-Formaldehyde) Microcapsules for Self-Healing Coatings Using Preparation Process. J. Renew. Mater. 2022, 10, 135–148. [Google Scholar] [CrossRef]
- Rodriguez, R.; Bekas, D.G.; Flórez, S.; Kosarli, M.; Paipetis, A.S. Development of Self-Contained Microcapsules for Optimised Catalyst Position in Self-Healing Materials. Polymer 2020, 187, 122084. [Google Scholar] [CrossRef]
- Tsilimigkra, X.; Bekas, D.; Kosarli, M.; Tsantzalis, S.; Paipetis, A.; Kostopoulos, V. Mechanical Properties Assessment of Low-Content Capsule-Based Self-Healing Structural Composites. Appl. Sci. 2020, 10, 5739. [Google Scholar] [CrossRef]
- Luterbacher, R.; Coope, T.S.; Trask, R.S.; Bond, I.P. Vascular Self-Healing within Carbon Fibre Reinforced Polymer Stringer Run-out Configurations. Compos. Sci. Technol. 2016, 136, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Airbus Industrie Test Method (AITM 1.0006), Determination of Interlaminar Fracture Toughness Energy Mode II (GIIc). 1994. Available online: https://compositestestinglab.com/standards (accessed on 17 November 2022).
- Ebeling, T.; Hiltner, A.; Baer, E.; Fraser, I.M.; Orton, M.L. Delamination Failure of a Woven Glass Fiber Composite. J. Compos. Mater. 1997, 31, 1318–1333. [Google Scholar] [CrossRef]
- Ghazali, H.; Ye, L.; Zhang, M.Q. Mode II Interlaminar Fracture Toughness of CF/EP Composite Containing Microencapsulated Healing Resins. Compos. Sci. Technol. 2017, 142, 275–285. [Google Scholar] [CrossRef]
- Bradley, W.L. Relationship of Matrix Toughness to Interlaminar Fracture Toughness. Compos. Mater. Ser. 1989, 6, 159–187. [Google Scholar] [CrossRef]
System | Mean Diameter (μm) | GIIc (kJ/m2) Initial | GIIc (kJ/m2) Healed | Healing Efficiency (%) | Change in Initial Properties (%) |
---|---|---|---|---|---|
Reference | 1.68 ± 0.11 | ||||
Neat capsules | 205.81 ± 26.32 | 2.15 ± 0.32 | 3.89 ± 0.69 | 180.93 | +27.98 |
Nanomodified capsules | 167.25 ± 10.24 | 2.17 ± 0.35 | 4.15 ± 0.73 | 191.24 | +29.17 |
System | Mean Diameter (μm) | Max Load (N) Virgin | Max Load (N) Healed | Healing Efficiency (%) | Change in Initial Properties (%) |
---|---|---|---|---|---|
Reference | 616.00 ± 33.61 | ||||
Neat capsules | 205.81 ± 26.32 | 574.14 ± 27.25 | 628.27 ± 28.41 | 109.42 | −6.80 |
Nanomodified capsules | 167.25 ± 10.24 | 598.57 ± 25.08 | 702.00 ± 42.29 | 117.28 | −2.83 |
System | Mean Diameter (μm) | Max Stress (MPa) Virgin | Max Stress (MPa) Healed | Healing Efficiency (%) | Change in Initial Properties (%) |
---|---|---|---|---|---|
Reference | 232.91 ± 7.33 | ||||
Neat capsules | 205.81 ± 26.32 | 228.08 ± 17.24 | 207.33 ± 39.53 | 90.67 | −2.07 |
Nanomodified capsules | 167.25 ± 10.24 | 233.68 ± 18.25 | 240.07 ± 32.21 | 107.36 | +0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foteinidis, G.; Kosarli, M.; Nikiphorides, P.; Tsirka, K.; Paipetis, A.S. Capsule-Based Self-Healing and Self-Sensing Composites with Enhanced Mechanical and Electrical Restoration. Polymers 2022, 14, 5264. https://doi.org/10.3390/polym14235264
Foteinidis G, Kosarli M, Nikiphorides P, Tsirka K, Paipetis AS. Capsule-Based Self-Healing and Self-Sensing Composites with Enhanced Mechanical and Electrical Restoration. Polymers. 2022; 14(23):5264. https://doi.org/10.3390/polym14235264
Chicago/Turabian StyleFoteinidis, Georgios, Maria Kosarli, Pantelis Nikiphorides, Kyriaki Tsirka, and Alkiviadis S. Paipetis. 2022. "Capsule-Based Self-Healing and Self-Sensing Composites with Enhanced Mechanical and Electrical Restoration" Polymers 14, no. 23: 5264. https://doi.org/10.3390/polym14235264
APA StyleFoteinidis, G., Kosarli, M., Nikiphorides, P., Tsirka, K., & Paipetis, A. S. (2022). Capsule-Based Self-Healing and Self-Sensing Composites with Enhanced Mechanical and Electrical Restoration. Polymers, 14(23), 5264. https://doi.org/10.3390/polym14235264