Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants
Abstract
:1. Introduction
2. Pristine MOFs Directly as Flame Retardants
3. Hybrid of Phosphorus–Nitrogen Compounds and MOFs as Flame Retardants
3.1. Ammonium Salts and MOFs as Flame Retardants
3.2. DOPO and MOFs as Flame Retardants
3.3. Phosphonitrile Compounds and MOFs as Flame Retardants
3.4. Other Phosphorus and Nitrogen Compounds and MOFs as Flame Retardants
4. Carbon-Based Materials and MOFs as Flame Retardants
4.1. Graphene and MOFs as Flame Retardants
4.2. Other Carbon-Based Materials and MOFs as Flame Retardants
4.3. MOFs and Biomass Materials as Flame Retardants
5. MOFs as Derivatize Templates and Hybrids with LDHs as Flame Retardants
5.1. MOFs as Templates to Derivatize LDHs as Flame Retardants
5.2. MOFs as a Template for Other Derivatives as Flame Retardants
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, T.; Guo, D.M.; Chen, L.; Wu, W.S.; Wang, X.L.; Wang, Y.Z. Fire hazards management for polymeric materials via synergy effects of pyrolysates-fixation and aromatized-charring. J. Hazard. Mater. 2020, 389, 122040. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zhu, Q.Q.; Yan, X.T.; Wang, Y.W.; Liao, C.Y.; Jiang, G.B. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment. Sci. Total Environ. 2020, 731, 139071. [Google Scholar] [CrossRef]
- Besis, A.; Samara, C. Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments—A review on occurrence and human exposure. Environ. Pollut. 2012, 169, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Li, J.; Yan, S.J.; Zhang, W.; Li, Y.J.; Han, D. A review of status of tetrabromobisphenol a (TBBPA) in China. Chemosphere 2016, 148, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Aschberger, K.; Campia, I.; Pesudo, L.Q.; Radovnikovic, A.; Reina, V. Chemical alternatives assessment of different flame retardants—A case study including multi-walled carbon nanotubes as synergist. Environ. Int. 2017, 101, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.O.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batten, S.R.; Champness, N.R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (iupac recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285. [Google Scholar] [CrossRef]
- Yang, G.L.; Jiang, X.L.; Xu, H.; Zhao, B. Applications of MOFs as luminescent sensors for environmental pollutants. Small 2021, 17, e2005327. [Google Scholar] [CrossRef]
- Konnerth, H.; Matsagar, B.M.; Chen, S.S.; Prechtl, M.H.G.; Shieh, F.-K.; Wu, K.C.W. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord. Chem. Rev. 2020, 416, 213319. [Google Scholar] [CrossRef]
- Sun, Y.M.; Xue, Z.Q.; Liu, Q.L.; Jia, Y.L.; Li, Y.L.; Liu, K.; Lin, Y.Y.; Liu, M.; Li, G.Q.; Su, C.Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, S.; Liu, J.; Guo, Y.; Mao, F.; Wu, H.; Zhang, Q. Fe-based coordination polymers as battery-type electrodes in semi-solid-state battery-supercapacitor hybrid devices. ACS Appl. Mater. Interfaces 2021, 13, 15315–15323. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, G.; Sekhar, S.C.; Ramulu, B.; Yu, J.S. High-performance hybrid supercapacitors based on MOF-derived hollow ternary chalcogenides. Energy Storage Mater. 2021, 35, 750–760. [Google Scholar] [CrossRef]
- Shu, J.C.; Cao, W.Q.; Cao, M.S. Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470. [Google Scholar] [CrossRef]
- Ma, M.L.; Bi, Y.X.; Tong, Z.Y.; Liu, Y.Y.; Lyu, P.; Wang, R.Z.; Ma, Y.; Wu, G.L.; Liao, Z.J.; Chen, Y. Recent progress of MOF-derived porous carbon materials for microwave absorption. RSC Adv. 2021, 11, 16572–16591. [Google Scholar] [CrossRef] [PubMed]
- Lawson, H.D.; Walton, S.P.; Chan, C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. [Google Scholar] [CrossRef]
- Fan, Z.J.; Liu, H.X.; Xue, Y.H.; Lin, J.Y.; Fu, Y.; Xia, Z.H.; Pan, D.M.; Zhang, J.; Qiao, K.; Zhang, Z.Z.; et al. Reversing cold tumors to hot: An immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photoimmunotherapy. Bioact. Mater. 2021, 6, 312–325. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Wan, J.; Yu, C. MOF-on-MOF hybrids: Synthesis and applications. Coord. Chem. Rev. 2021, 432, 213743. [Google Scholar] [CrossRef]
- Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (mof)-based and mof-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef]
- Hou, C.C.; Wang, H.-F.; Li, C.; Xu, Q. From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693. [Google Scholar] [CrossRef]
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qiao, H.; Guo, J.; Sun, J.; Li, H.; Zhang, S.; Gu, X. Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos. B Eng. 2020, 182, 107498. [Google Scholar] [CrossRef]
- Wang, J.L.; Yuan, B.H.; Cai, W.; Qiu, S.L.; Tai, Q.L.; Yang, H.Y.; Hu, Y. Facile design of transition metal based organophosphorus hybrids towards the flame retardancy reinforcement and toxic effluent elimination of polystyrene. Mater. Chem. Phys. 2018, 214, 209–220. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhang, W.C.; Pan, Y.T.; Yang, R.J. Facile synthesis of transition metal containing polyhedral oligomeric silsesquioxane complexes with mesoporous structures and their applications in reducing fire hazards, enhancing mechanical and dielectric properties of epoxy composites. J. Hazard. Mater. 2021, 401, 123439. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.B.; Qiu, S.L.; Xu, Z.M.; Chu, F.K.; Liao, C.; Gui, Z.; Song, L.; Hu, Y.; Hu, W.Z. Which part of metal-organic frameworks affects polymers’ heat release, smoke emission and CO production behaviors more significantly, metallic component or organic ligand? Compos. B Eng. 2021, 223, 109131. [Google Scholar] [CrossRef]
- Hou, Y.B.; Hu, W.Z.; Gui, Z.; Hu, Y. Preparation of metal-organic frameworks and their application as flame retardants for polystyrene. Ind. Eng. Chem. Res. 2017, 56, 2036–2045. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.; Chen, R.; Cheng, C.; Hu, Y. Effect of different zeolitic imidazolate frameworks nanoparticle-modified β-FeOOH rods on flame retardancy and smoke suppression of epoxy resin. J. Appl. Polym. Sci. 2020, 138, 49637. [Google Scholar] [CrossRef]
- Shi, X.; Dai, X.; Cao, Y.; Li, J.; Huo, C.; Wang, X. Degradable poly(lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind. Eng. Chem. Res. 2017, 56, 3887–3894. [Google Scholar] [CrossRef]
- Nabipour, H.; Nie, S.; Wang, X.; Song, L.; Hu, Y. Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105720. [Google Scholar] [CrossRef]
- Zhao, S.; Yin, L.; Zhou, Q.; Liu, C.; Zhou, K. In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: Towards for highly efficient oil spill cleanup and fire safety. Appl. Surf. Sci. 2020, 506, 144700. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Meng, D.; Sun, J.; Fei, B.; Li, H.; Gu, X.; Zhang, S. Surface integration of polyelectrolyte and zeolitic imidazolate framework-67 for multifunctional poly (lactic acid) non-woven fabrics. Appl. Surf. Sci. 2021, 569, 151039. [Google Scholar] [CrossRef]
- Zheng, Y.; Lu, Y.S.; Zhou, K.Q. A novel exploration of metal-organic frameworks in flame-retardant epoxy composites. J. Therm. Anal. Calorim. 2019, 138, 905–914. [Google Scholar] [CrossRef]
- Cheng, J.; Ma, D.; Li, S.; Qu, W.; Wang, D. Preparation of zeolitic imidazolate frameworks and their application as flame retardant and smoke suppression agent for rigid polyurethane foams. Polymers 2020, 12, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramezanzadeh, M.; Tati, A.; Bahlakeh, G.; Ramezanzadeh, B. Construction of an epoxy composite coating with exceptional thermo-mechanical properties using Zr-based NH2-UiO-66 metal-organic framework (MOF): Experimental and DFT-D theoretical explorations. Chem. Eng. J. 2021, 408, 127366. [Google Scholar] [CrossRef]
- Hou, Y.; Xu, Z.; Yuan, Y.; Liu, L.; Ma, S.; Wang, W.; Hu, Y.; Hu, W.; Gui, Z. Nanosized bimetal-organic frameworks as robust coating for multi-functional flexible polyurethane foam: Rapid oil-absorption and excellent fire safety. Compos. Sci. Technol. 2019, 177, 66–72. [Google Scholar] [CrossRef]
- Sai, T.; Ran, S.; Guo, Z.; Fang, Z. A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos. B Eng. 2019, 176, 107198. [Google Scholar] [CrossRef]
- Chen, W.L.; Jiang, Y.; Qiu, R.; Xu, W.; Hou, Y.B. Investigation of UiO-66 as flame retardant and its application in improving fire safety of polystyrene. Macromol. Res. 2020, 28, 42–50. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Tikhani, F.; Shabanian, M.; Movahedi, F.; Moghari, S.; Akbari, V.; Gabrion, X.; Laheurte, P.; Vahabi, H.; Saeb, M.R. Synthesis, characterization, and high potential of 3D metal-organic framework (MOF) nanoparticles for curing with epoxy. J. Alloys Compd. 2020, 829, 154547. [Google Scholar] [CrossRef]
- Dai, Y.; Tang, Q.; Zhang, Z.; Yu, C.; Li, H.; Xu, L.; Zhang, S.; Zou, Z. Enhanced mechanical, thermal, and UV-shielding properties of poly(vinyl alcohol)/metal–organic framework nanocomposites. RSC Adv. 2018, 8, 38681–38688. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.T.; Yang, L.Q.; Zhang, Y.N.; Zhang, M.J. A Mo-based metal-organic framework toward improving flame retardancy and smoke suppression of epoxy resin. Polym. Adv. Technol. 2021, 32, 3266–3277. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, J.; Yu, X.; Jia, P.; Tang, G.; Zhou, X.; Lu, T.; Guo, L.; Wang, B.; Song, L.; et al. Construction of a core-shell structure compound: Ammonium polyphosphate wrapped by rare earth compound to achieve superior smoke and toxic gases suppression for flame retardant flexible polyurethane foam composites. Compos. Commun. 2021, 28, 100939. [Google Scholar] [CrossRef]
- Sai, T.; Su, Y.K.; Shen, H.F.; Ran, S.Y.; Huo, S.Q.; Guo, Z.H.; Fang, Z.P. Fabrication and mechanism study of cerium-based P, N-containing complexes for reducing fire hazards of polycarbonate with superior thermostability and toughness. ACS Appl. Mater. Interfaces 2021, 13, 30061–30075. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, F.; Zhang, M.; Zhou, X.; Zhang, H. Comparative study on the flame retardancy and retarding mechanism of rare earth (La, Ce, and Y)-based organic frameworks on epoxy resin. ACS Omega 2021, 6, 35548–35558. [Google Scholar] [CrossRef]
- Cheng, F.Y.; He, J.L.; Li, C.; Lu, Y.; Zhang, Y.N.; Qu, J. Photo-induced degradation and toxicity change of decabromobiphenyl ethers (BDE-209) in water: Effects of dissolved organic matter and halide ions. J. Hazard. Mater. 2021, 416, 125842. [Google Scholar] [CrossRef]
- Wang, P.; Chen, L.; Xiao, H.; Zhan, T.H. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin. Polym. Degrad. Stab. 2020, 171, 109023. [Google Scholar] [CrossRef]
- Feng, J.B.; Sun, Y.Q.; Song, P.G.; Lei, W.W.; Wu, Q.; Liu, L.N.; Yu, Y.M.; Wang, H. Fire-resistant, strong, and green polymer nanocomposites based on poly(lactic acid) and core-shell nanofibrous flame retardants. ACS Sustain. Chem. Eng. 2017, 5, 7894–7904. [Google Scholar] [CrossRef]
- Liu, H.T.; Guo, Y.; Tian, H.F.; Yao, Y.N.; Liu, Q.; Xiang, A.M.; Zhou, H.F. Fabrication of polyimide foams with superior mechanical and flame resistance properties utilizing the graft copolymerization between red phosphorus and graphene oxide. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2022, 275, 115498. [Google Scholar] [CrossRef]
- Qiu, X.Q.; Li, Z.W.; Li, X.H.; Zhang, Z.J. Flame retardant coatings prepared using layer by layer assembly: A review. Chem. Eng. J. 2018, 334, 108–122. [Google Scholar] [CrossRef]
- Hu, X.C.; Sun, Z.; Sun, Z.Q. Synthesis of a novel macromolecular carbon-nitrogen-phosphorous intumescent flame retardant. Adv. Powder Technol. 2021, 32, 1341–1349. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Wang, G.Y.; Nie, Z.B. Synthesis of a novel phosphorus-containing epoxy curing agent and the thermal, mechanical and flame-retardant properties of the cured products. Polym. Degrad. Stab. 2016, 130, 143–154. [Google Scholar] [CrossRef]
- Panapitiya, N.P.; Wijenayake, S.N.; Huang, Y.; Bushdiecker, D.; Nguyen, D.; Ratanawanate, C.; Kalaw, G.J.; Gilpin, C.J.; Musselman, I.H.; Balkus, K.J.; et al. Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs). Polymer 2014, 55, 2028–2034. [Google Scholar] [CrossRef]
- Lv, X.Y.; Zeng, W.; Yang, Z.W.; Yang, Y.X.; Wang, Y.; Lei, Z.Q.; Liu, J.L.; Chen, D.L. Fabrication of ZIF-8@Polyphosphazene core-shell structure and its efficient synergism with ammonium polyphosphate in flame-retarding epoxy resin. Polym. Adv. Technol. 2020, 31, 997–1006. [Google Scholar] [CrossRef]
- Chen, X.L.; Chen, X.H.; Li, S.X.; Jiao, C.A.M. Copper metal-organic framework toward flame-retardant enhancement of thermoplastic polyurethane elastomer composites based on ammonium polyphosphate. Polym. Adv. Technol. 2021, 32, 2829–2842. [Google Scholar] [CrossRef]
- Wang, J.; Shi, H.; Zhu, P.; Wei, Y.; Hao, J. Ammonium polyphosphate with high specific surface area by assembling zeolite imidazole framework in EVA resin: Significant mechanical properties, migration resistance, and flame retardancy. Polymers 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.G.; Wang, S.H.; Wang, W.J.; Li, H.F.; Liu, X.D.; Gu, X.Y.; Bourbigot, S.; Wang, Z.W.; Sun, J.; Zhang, S. The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups. Compos. B Eng. 2020, 183, 107568. [Google Scholar] [CrossRef]
- Samiee, R.; Montazeri, S.; Ramezanzadeh, B.; Mahdavian, M. Ce-MOF nanorods/aluminum hydroxide (AITH) synergism effect on the fire-retardancy/smoke-release and thermo-mechanical properties of a novel thermoplastic acrylic intumescent composite coating. Chem. Eng. J. 2022, 428, 132533. [Google Scholar] [CrossRef]
- Shao, Z.-B.; Zhang, J.; Jian, R.-K.; Sun, C.-C.; Li, X.-L.; Wang, D.-Y. A strategy to construct multifunctional ammonium polyphosphate for epoxy resin with simultaneously high fire safety and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106529. [Google Scholar] [CrossRef]
- Li, Y.Y.; Li, X.M.; Pan, Y.T.; Xu, X.Y.; Song, Y.Z.; Yang, R.J. Mitigation the release of toxic PH3 and the fire hazard of PA6/AHP composite by MOFs. J. Hazard. Mater. 2020, 395, 122604. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wang, G.S.; Xu, J.Y.; Liu, Y.C.; Chen, R.; Yan, H.Y. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam. J. Hazard. Mater. 2019, 379, 120819. [Google Scholar] [CrossRef] [PubMed]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Organic-inorganic hybridization of isoreticular metal-organic framework-3 with melamine for efficiently reducing the fire risk of epoxy resin. Compos. B Eng. 2021, 211, 108606. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Zhu, Z.M.; Yin, X.Z.; Wang, L.X.; Weng, Y.X.; Wang, X.Y. A novel DOPO-based flame retardant containing benzimidazolone structure with high charring ability towards low flammability and smoke epoxy resins. Polym. Degrad. Stab. 2021, 183, 109426. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Yu, B.; Zheng, Y.Y.; Yang, J.; Duan, Z.P.; Hu, Y. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J. Colloid Interface Sci. 2018, 521, 160–171. [Google Scholar] [CrossRef]
- Chi, Z.Y.; Guo, Z.W.; Xu, Z.C.; Zhang, M.J.; Li, M.; Shang, L.; Ao, Y.H. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism. Polym. Degrad. Stab. 2020, 176, 109151. [Google Scholar] [CrossRef]
- Yang, S.; Hu, Y.F.; Zhang, Q.X. Synthesis of a phosphorus-nitrogen-containing flame retardant and its application in epoxy resin. High Perform. Polym. 2019, 31, 186–196. [Google Scholar] [CrossRef]
- Shen, D.; Xu, Y.J.; Long, J.W.; Shi, X.H.; Chen, L.; Wang, Y.Z. Epoxy resin flame-retarded via a novel melamine-organophosphinic acid salt: Thermal stability, flame retardance and pyrolysis behavior. J. Anal. Appl. Pyrolysis 2017, 128, 54–63. [Google Scholar] [CrossRef]
- Wang, X.; Wu, T.; Hong, J.; Dai, J.; Lu, Z.; Yang, C.; Yuan, C.; Dai, L. Organophosphorus modified hollow bimetallic organic frameworks: Effective adsorption and catalytic charring of pyrolytic volatiles. Chem. Eng. J. 2021, 421, 129697. [Google Scholar] [CrossRef]
- Liu, D.; Cui, Y.; Zhang, T.; Zhao, W.; Ji, P. Improving the flame retardancy and smoke suppression of epoxy resins by introducing of DOPO derivative functionalized ZIF-8. Polym. Degrad. Stab. 2021, 194, 109749. [Google Scholar] [CrossRef]
- Cai, L.Y.; Xin, F.; Zhai, C.C.; Chen, Y.; Xu, B.; Li, X.M. The effects of DOPO modified Co-based metalorganic framework on flame retardancy, stiffness and thermal stability of epoxy resin. RSC Advs. 2021, 11, 6781–6790. [Google Scholar] [CrossRef]
- Hou, Y.B.; Liu, L.X.; Qiu, S.L.; Zhou, X.; Gui, Z.; Hu, Y. DOPO-modified two-dimensional Co-based metal-organic framework: Preparation and application for enhancing fire safety of poly(lactic acid). ACS Appl. Mater. Interfaces 2018, 10, 8274–8286. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, A.; Chen, Y.; Wang, L.; Li, M.; Yang, H.; Hou, Y. Surface modification of core–shell structured ZIF-67@cobalt coordination compound to improve the fire safety of biomass aerogel insulation materials. Chem. Eng. J. 2022, 430, 132809. [Google Scholar] [CrossRef]
- Qiu, S.L.; Ma, C.; Wang, X.; Zhou, X.; Feng, X.M.; Yuen, R.K.K.; Hu, Y. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: A novel multifunctional organic-inorganic hybrid flame retardant. J. Hazard. Mater. 2018, 344, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Qiu, S.; Mu, X.; Zhou, M.; Cai, W.; Song, L.; Xing, W.; Hu, Y. Polyphosphazenes-based flame retardants: A review. Compos. B Eng. 2020, 202, 108397. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, Z.; Pan, Y.-T.; Li, D.; Wang, D.Y.; Yang, R. Dry synthesis of mesoporous nanosheet assembly constructed by cyclomatrix polyphosphazene frameworks and its application in flame retardant polypropylene. Chem. Eng. J. 2020, 395, 125076. [Google Scholar] [CrossRef]
- Rothemund, S.; Teasdale, I. Preparation of polyphosphazenes: A tutorial review. Chem. Soc. Rev. 2016, 45, 5200–5215. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Huo, S.; Zheng, Y.; Yang, C.; Yan, H.; Ran, S.; Fang, Z. A novel synergistic flame retardant of hexaphenoxycyclotriphosphazene for epoxy resin. Polymers 2021, 13, 3648. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Wu, H.; Li, J.; Zhou, Z.; Meng, W.; Liu, L.; Qu, H.; Xu, J. Phosphor nitrile functionalized UiO-66-NU2/graphene hybrid flame retardants for fire safety of epoxy. Colloids Surf. A 2022, 635, 128093. [Google Scholar] [CrossRef]
- Xu, Z.M.; Xing, W.Y.; Hou, Y.B.; Zou, B.; Han, L.F.; Hu, W.Z.; Hu, Y. The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite. Combust. Flame 2021, 226, 108–116. [Google Scholar] [CrossRef]
- Sang, L.; Cheng, Y.M.; Yang, R.; Li, J.; Kong, Q.H.; Zhang, J.H. Polyphosphazene-wrapped Fe-MOF for improving flame retardancy and smoke suppression of epoxy resins. J. Therm. Anal. Calorim. 2021, 144, 51–59. [Google Scholar] [CrossRef]
- Meng, W.; Wu, H.; Bi, X.; Huo, Z.; Wu, J.; Jiao, Y.; Xu, J.; Wang, M.; Qu, H. Synthesis of ZIF-8 with encapsulated hexachlorocyclotriphosphazene and its quenching mechanism for flame-retardant epoxy resin. Microporous Mesoporous Mater. 2021, 314, 110885. [Google Scholar] [CrossRef]
- He, T.; Guo, J.; Qi, C.; Feng, R.; Yang, B.; Zhou, Y.; Tian, L.; Cui, J. Core–shell structure flame retardant Salen-PZN-Cu@Ni-MOF microspheres enhancing fire safety of epoxy resin through the synergistic effect. J. Polym. Res. 2021, 29, 27. [Google Scholar] [CrossRef]
- Wang, R.Z.; Chen, Y.; Liu, Y.Y.; Ma, M.L.; Tong, Z.Y.; Chen, X.L.; Bi, Y.X.; Huang, W.B.; Liao, Z.J.; Chen, S.L.; et al. Metal-organic frameworks derived ZnO@MOF@PZS flame retardant for reducing fire hazards of polyurea nanocomposites. Polym. Adv. Technol. 2021, 32, 4700–4709. [Google Scholar] [CrossRef]
- Hou, B.; Song, K.; Ur Rehman, Z.; Song, T.; Lin, T.; Zhang, W.; Pan, Y.T.; Yang, R. Precise control of a yolk-double shell metal-organic framework-based nanostructure provides enhanced fire safety for epoxy nanocomposites. ACS Appl. Mater. Interfaces 2022, 14, 14805–14816. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhou, D.D.; Zhang, J.; Hu, S.; Haranczyk, M.; Wang, D.Y. Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl. Mater. Interfaces 2019, 11, 20325–20332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.L.; Xu, W.Z.; Liu, Y.C.; Chen, R.; Li, W.; Wu, Y.; Yang, Z.T. Surface modification of -zirconium phosphate by zeolitic imidazolate frameworks-8 and its effect on improving the fire safety of polyurethane elastomer. Polym. Adv. Technol. 2018, 29, 2816–2826. [Google Scholar] [CrossRef]
- Ma, S.C.; Hou, Y.B.; Xiao, Y.L.; Chu, F.K.; Cai, T.M.; Hu, W.Z.; Hu, Y. Metal-organic framework@polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin. Mater. Chem. Phys. 2020, 247, 122875. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.S.; Guo, X.Y.; Qu, H.Q.; Chang, R.; Ma, J. Efficient adsorption of dyes using polyethyleneimine-modified NH2-MIL-101(Al) and its sustainable application as a flame retardant for an epoxy resin. Acs Omega 2020, 5, 32286–32294. [Google Scholar] [CrossRef]
- Huang, R.; Guo, X.Y.; Ma, S.Y.; Xie, J.X.; Xu, J.Z.; Ma, J. Novel phosphorus-nitrogen-containing ionic liquid modified metal-organic framework as an effective flame retardant for epoxy resin. Polymers 2020, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Sai, T.; Ran, S.Y.; Guo, Z.H.; Yan, H.Q.; Zhang, Y.; Song, P.G.; Zhang, T.; Wang, H.; Fang, Z.P. Deposition growth of Zr-based mofs on cerium phenylphosphonate lamella towards enhanced thermal stability and fire safety of polycarbonate. Compos. B Eng. 2020, 197, 108064. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Peng, F.; Zhu, Y.; Wang, G. Co-based metal-organic framework with phosphonate and triazole structures for enhancing fire retardancy of epoxy resin. Polym. Degrad. Stab. 2021, 193, 109721. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Shao, Z.B.; Zhang, L.; Wang, D.Y. Hierarchically tailored hybrids via interfacial-engineering of self-assembled UiO-66 and prussian blue analogue: Novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression. Chem. Eng. J. 2020, 400, 125942. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Z.Y.; Liao, Z.J.; Liu, Y.Y.; Ma, M.L.; Bi, Y.X.; Huang, W.B.; Ma, Y.; Qiao, M.T.; Wu, G.L. Hierarchical Fe3O4/Fe@C@MoS2 core-shell nanofibers for efficient microwave absorption. Carbon 2021, 179, 646–654. [Google Scholar] [CrossRef]
- Bi, Y.X.; Ma, M.L.; Liao, Z.J.; Tong, Z.Y.; Chen, Y.; Wang, R.Z.; Ma, Y.; Wu, G.L. One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 605, 483–492. [Google Scholar] [CrossRef]
- Liao, Z.J.; Ma, M.L.; Tong, Z.Y.; Bi, Y.X.; Chung, K.L.; Qiao, M.T.; Ma, Y.; Ma, A.J.; Wu, G.L.; Zhong, X.; et al. Fabrication of one-dimensional CoFe2/C@MoS2 composites as efficient electromagnetic wave absorption materials. Dalton Trans. 2021, 50, 11640–11649. [Google Scholar] [CrossRef]
- Islam, M.; Lantada, A.D.; Mager, D.; Korvink, J.G. Carbon-based materials for articular tissue engineering: From innovative scaffolding materials toward engineered living carbon. Adv. Healthc. Mater. 2022, 11, 2101834. [Google Scholar] [CrossRef]
- Li, Z.H.; Xu, K.; Pan, Y.S. Recent development of supercapacitor electrode based on carbon materials. Nanotechnol. Rev. 2019, 8, 35–49. [Google Scholar] [CrossRef]
- Ren, J.C.; Huang, Y.L.; Zhu, H.; Zhang, B.H.; Zhu, H.K.; Shen, S.H.; Tan, G.Q.; Wu, F.; He, H.; Lan, S.; et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2020, 2, 176–202. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.L.; Yang, Y.Y.; Chen, Y.; Jiang, J.B.; Ma, Y.; Wang, Z.F.; Huang, W.B.; Wang, S.S.; Liu, M.Q.; Ma, D.X.; et al. Fabrication of hollow flower-like magnetic Fe3O4/C/MnO2/C3N4 composite with enhanced photocatalytic activity. Sci. Rep. 2021, 11, 2597. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.Y.; Shang, S.; Yuan, B.H.; Wang, S.S.; Chen, X.F.; Chen, G.Q. Carbonization mechanism of polypropylene catalyzed by Co compounds combined with phosphorus-doped graphene to improve its fire safety performance. Mater. Today Commun. 2021, 26, 101792. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Graphene oxide/zeolitic imidazolate frameworks-8 coating for cotton fabrics with highly flame retardant, self-cleaning and efficient oil/water separation performances. Mater. Chem. Phys. 2020, 256, 123656. [Google Scholar] [CrossRef]
- Huang, Y.L.; Yuan, B.H. Reduced graphene oxide/iron-based metal-organic framework nano-coating created on flexible polyurethane foam by layer-by-layer assembly: Enhanced smoke suppression and oil adsorption property. Mater. Lett. 2021, 298, 129974. [Google Scholar] [CrossRef]
- Xu, B.L.; Xu, W.Z.; Wang, G.S.; Liu, L.C.; Xu, J. Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym. Adv. Technol. 2018, 29, 1733–1743. [Google Scholar] [CrossRef]
- Sang, B.; Li, Z.W.; Li, X.H.; Yu, L.G.; Zhang, Z.J. Graphene-based flame retardants: A review. J. Mater. Sci. 2016, 51, 8271–8295. [Google Scholar] [CrossRef]
- Hou, Y.; Qiu, S.; Hu, Y.; Kundu, C.K.; Gui, Z.; Hu, W. Construction of bimetallic ZIF-derived Co-Ni LDHs on the surfaces of GO or CNTs with a recyclable method: Toward reduced toxicity of gaseous thermal decomposition products of unsaturated polyester resin. ACS Appl. Mater. Interfaces 2018, 10, 18359–18371. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, W.; Zhou, X.; Gui, Z.; Hu, Y. Vertically aligned nickel 2-methylimidazole metal–organic framework fabricated from graphene oxides for enhancing fire safety of polystyrene. Ind. Eng. Chem. Res. Res. 2017, 56, 8778–8786. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wang, X.L.; Wu, Y.; Li, W.; Chen, C.Y. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 2019, 363, 138–151. [Google Scholar] [CrossRef]
- Xu, W.Z.; Wang, X.L.; Liu, Y.C.; Li, W.; Chen, R. Improving fire safety of epoxy filled with graphene hybrid incorporated with zeolitic imidazolate framework/layered double hydroxide. Polym. Degrad. Stab. 2018, 154, 27–36. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhang, L.; Molleja, J.G.; Wang, D.Y. Bimetallic metal-organic frameworks and graphene oxide nano-hybrids for enhanced fire retardant epoxy composites: A novel carbonization mechanism. Carbon 2019, 153, 407–416. [Google Scholar] [CrossRef]
- Xu, W.Z.; Cheng, C.M.; Qin, Z.Q.; Zhong, D.; Cheng, Z.H.; Zhang, Q.Q. Improvement of thermoplastic polyurethane’s flame retardancy and thermal conductivity by leaf-shapedcobalt-zeolitic imidazolate framework-modified graphene andintumescent flame retardant. Polym. Adv. Technol. 2021, 32, 228–240. [Google Scholar] [CrossRef]
- Wang, H.; He, Z.; Li, X.; Wang, Y.; Yao, D.; Zheng, Y. Improving the flame retardancy of epoxy resin with ZIF-67@GO-PA nanohybrid as filler. J. Appl. Polym. Sci. 2022, 139, 52211. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Qi, X.L.; Zhang, W.; Wang, D.Y. Size tailored bimetallic metal-organic framework (mof) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Compos. B Eng. 2020, 188, 107881. [Google Scholar] [CrossRef]
- Zhang, M.; Ding, X.; Zhan, Y.; Wang, Y.; Wang, X. Improving the flame retardancy of poly(lactic acid) using an efficient ternary hybrid flame retardant by dual modification of graphene oxide with phenylphosphinic acid and nano mofs. J. Hazard. Mater. 2020, 384, 121260. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, X.; Dai, X.; Huo, C.; Xie, J.; Li, X.; Wang, X. Improving the crystallization and fire resistance of poly(lactic acid) with nano-ZIF-8@GO. J Hazard. Mater. 2018, 53, 7083–7093. [Google Scholar] [CrossRef]
- Shang, S.; Yuan, B.H.; Sun, Y.R.; Chen, G.Q.; Huang, C.Y.; Yu, B.; He, S.; Dai, H.M.; Chen, X.F. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J. Colloid Interface Sci. 2019, 553, 364–371. [Google Scholar] [CrossRef]
- Li, J.; Wu, W.; Meng, W.; Zhang, W.; Zhou, Z.; Wang, T.; Xu, J.; Qu, H. Nickel ammonium phosphate nanowires modified g-C3N4 for improving the fire safety of epoxy resin. Fibers Polym. 2021, 22, 2664–2672. [Google Scholar] [CrossRef]
- Chen, Z.W.; Chen, T.T.; Yu, Y.; Zhang, Q.W.; Chen, Z.Q.; Jiang, J.C. Metal-organic framework MIL-53 (Fe)@C/graphite carbon nitride hybrids with enhanced thermal stability, flame retardancy, and smoke suppression for unsaturated polyester resin. Polym. Adv. Technol. 2019, 30, 2458–2467. [Google Scholar] [CrossRef]
- Xu, W.Z.; Yan, H.Y.; Wang, G.S.; Qin, Z.Q.; Fan, L.J.; Yang, Y.X. A silica-coated metal-organic framework/graphite-carbon nitride hybrid for improved fire safety of epoxy resins. Mater. Chem. Phys. 2021, 258, 123810. [Google Scholar] [CrossRef]
- Yin, Z.; Lu, J.; Hong, N.; Cheng, W.; Jia, P.; Wang, H.; Hu, W.; Wang, B.; Song, L.; Hu, Y. Functionalizing Ti3C2Tx for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. J. Colloid Interface Sci. 2022, 607, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Peng, G.; Chen, C.; Zhang, L.; Xie, Y. Synergistic modification of ZIF and silica on carbon spheres to enhance the flame retardancy of composites coatings. Colloids Surf. A. 2022, 642, 128645. [Google Scholar] [CrossRef]
- Wang, G.; Xu, W.; Chen, R.; Li, W.; Liu, Y.; Yang, K. Synergistic effect between zeolitic imidazolate framework-8 and expandable graphite to improve the flame retardancy and smoke suppression of polyurethane elastomer. J. Appl. Polym. Sci. 2019, 137, 48048. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, K.; Zhang, Z.; Cao, X.; Lin, J.; Yang, D.; Li, J.; Zhu, Y.; Wang, X. Preparation of (Fe)MIL-101 on short carbon fibers to improve the flame retardancy, smoke suppression, and mechanical of epoxy resin. Polym. Adv. Technol. 2021, 33, 400–410. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, X.H.; Xu, M.J.; Liu, L.B.; Wang, W.B.; Gao, S.L.; Li, B. Effect of a biomass based waterborne fire retardant coating on the flame retardancy for wood. Polym. Adv. Technol. 2021, 32, 4805–4814. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Yin, G.Z.; Wang, D.Y. Construction of a novel three-in-one biomass based intumescent fire retardant through phosphorus functionalized metal-organic framework and beta-cyclodextrin hybrids in achieving fire safe epoxy. Compos. Commun. 2021, 23, 100594. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Apostolopoulou-Kalkavoura, V.; da Costa, M.V.T.; Bergstrom, L.; Stromme, M.; Xu, C. Elastic aerogels of cellulose nanofibers@metal-organic frameworks for thermal insulation and fire retardancy. Nano-Micro Lett. 2020, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Nabipour, H.; Nie, S.; Wang, X.; Song, L.; Hu, Y. Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants. Cellulose 2019, 27, 2237–2251. [Google Scholar] [CrossRef]
- Yin, L.; Gong, K.; Zhou, K.; Qian, X.; Shi, C.; Gui, Z.; Qian, L. Flame-retardant activity of ternary integrated modified boron nitride nanosheets to epoxy resin. J Colloid Interface Sci. 2022, 608, 853–863. [Google Scholar] [CrossRef]
- Huang, J.; Guo, W.; Wang, X.; Niu, H.; Song, L.; Hu, Y. Combination of cardanol-derived flame retardant with SiO2@MOF particles for simultaneously enhancing the toughness, anti-flammability and smoke suppression of epoxy thermosets. Compos. Commun. 2021, 27, 100904. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhang, L.; Yang, Y.X.; Wang, D.Y. Green synthesis of biomass phytic acid-functionalized UiO-66-NH2 hierarchical hybrids toward fire safety of epoxy resin. ACS Sustain. Chem. Eng. 2020, 8, 994–1003. [Google Scholar] [CrossRef]
- Xie, J.; Shi, X.; Zhang, M.; Dai, X.; Wang, X. Improving the flame retardancy of polypropylene by nano metal–organic frameworks and bioethanol coproduct. Fire Mater. 2019, 43, 373–380. [Google Scholar] [CrossRef]
- Kaneti, Y.V.; Tang, J.; Salunkhe, R.R.; Jiang, X.C.; Yu, A.B.; Wu, K.C.W.; Yamauchi, Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017, 29, 1604898. [Google Scholar] [CrossRef]
- Dang, S.; Zhu, Q.L.; Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2018, 3, 17075. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Kaneti, Y.V.; Yamauchi, Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects. ACS Nano 2017, 11, 5293–5308. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Kaneti, Y.V.; Kim, J.; Kim, J.H.; Yamauchi, Y. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 2016, 49, 2796–2806. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Zhang, R.; Jiao, L.; Jiang, H.L. Metal-organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1–23. [Google Scholar] [CrossRef]
- Yu, J.F.; Wang, Q.; O’Hare, D.; Sun, L.Y. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950–5974. [Google Scholar] [CrossRef]
- Li, A.J.; Xu, W.Z.; Chen, R.; Liu, Y.C.; Li, W. Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos. Part A Appl. Sci. Manuf. 2018, 112, 558–571. [Google Scholar] [CrossRef]
- Zhang, J.T.; Hu, H.; Li, Z.; Lou, X.W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2016, 55, 3982–3986. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, Y.; Wang, Z.; He, X.; Wang, C.; Lin, H.; Deng, Y. MOFs-derived self-sacrificing template strategy to double-shelled metal oxides nanocages as hierarchical interfacial catalyst for suppressing smoke and toxic gases releases of epoxy resin. Chem. Eng. J. 2022, 432, 134328. [Google Scholar] [CrossRef]
- Pan, Y.T.; Wan, J.T.; Zhao, X.L.; Li, C.; Wang, D.Y. Interfacial growth of MOF-derived layered double hydroxide nanosheets on graphene slab towards fabrication of multifunctional epoxy nanocomposites. Chem. Eng. J. 2017, 330, 1222–1231. [Google Scholar] [CrossRef]
- Guo, H.L.; Wang, Y.F.; Li, C.F.; Zhou, K.Q. Construction of sandwich-structured coal-layered double hydroxide@zeolitic imidazolate framework-67 (CoAl-LDH@ZIF-67) hybrids: Towards enhancing the fire safety of epoxy resins. RSC Adv. 2018, 8, 36114–36122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, J.; Wang, D.Y. Hierarchical layered double hydroxide nanosheets/phosphorus-containing organosilane functionalized hollow glass microsphere towards high performance epoxy composite: Enhanced interfacial adhesion and bottom-up charring behavior. Polymer 2020, 210, 123018. [Google Scholar] [CrossRef]
- Zhou, Y.; Qiu, S.; Chu, F.; Yang, W.; Qiu, Y.; Qian, L.; Hu, W.; Song, L. High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTEs structure: Enhanced adsorption, mechanical and fire safety properties. J Colloid Interface Sci. 2022, 609, 794–806. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Qin, J.Y.; Zhang, W.C.; Pan, Y.T.; Wang, D.Y.; Yang, R.J. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem. Eng. J. 2020, 381, 122777. [Google Scholar] [CrossRef]
- Zhou, X.; Mu, X.W.; Cai, W.; Wang, J.L.; Chu, F.K.; Xu, Z.M.; Song, L.; Xing, W.Y.; Hu, Y. Design of hierarchical NiCo-LDH@PZS hollow dodecahedron architecture and application in high-performance epoxy resin with excellent fire safety. ACS Appl. Mater. Interfaces 2019, 11, 41736–41749. [Google Scholar] [CrossRef]
- Zhou, Y.; Chu, F.; Ding, L.; Yang, W.; Zhang, S.; Xu, Z.; Qiu, S.; Hu, W. Mof-derived 3D petal-like CoNi-LDH array cooperates with MXene to effectively inhibit fire and toxic smoke hazards of fpuf. Chemosphere 2022, 297, 134134. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Y.; Liu, Y.; Ma, M.; Hou, Y.; Chen, X.; Ma, Y.; Huang, W. Synthesis of sugar gourd-like metal organic framework-derived hollow nanocages nickel molybdate@cobalt-nickel layered double hydroxide for flame retardant polyurea. J. Colloid. Interface Sci. 2022, 616, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.D.; Li, X.L.; Yuan, Y.S.; Pan, Y.T.; Wang, D.Y.; Yang, R.J. Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxide nanocapsules and its application in flame-retardant epoxy nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 40951–40960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, S.Q.; Pan, Y.T.; Zhang, S.D.; Nie, S.B.; Wei, P.; Zhang, X.Q.; Wang, R.; Wang, D.Y. Nickel metal-organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustain. Chem. Eng. 2019, 7, 9272–9280. [Google Scholar] [CrossRef]
- Zhou, Y.; Chu, F.; Yang, W.; Qiu, S.; Hu, Y. Mof-derived strategy to obtain CuCoOx functionalized HO-BN: A novel design to enhance the toughness, fire safety and heat resistance of bismaleimide resin. Chem. Eng. J. 2022, 431, 134013. [Google Scholar] [CrossRef]
- Xu, Z.; Chu, F.; Luo, X.; Jiang, X.; Cheng, L.; Song, L.; Hou, Y.; Hu, W. Magnetic Fe3O4 nanoparticle/ZIF-8 composites for contaminant removal from water and enhanced flame retardancy of flexible polyurethane foams. ACS Appl. Nano Mater. 2022, 5, 3491–3501. [Google Scholar] [CrossRef]
Samples | THR | pHRR | TSP | pSPR * | Residues | Reference |
---|---|---|---|---|---|---|
MJ/m2 | kW/m2 | m2 | m2/s | % | ||
TPU | 78 | 1359 | 10.3 | 0.11 | 0.1 | [23] |
TPU/6.0APP | 65 | 268 | 8 | 0.06 | 11.0 | |
TPU/4.5APP/1.5Co-MOF | 63 | 257 | 7.1 | 0.04 | 15.2 | |
TPU | 138.9 | 909.6 | - | - | 1.74 | [55] |
TPU/APP | 117.0 | 270.7 | - | - | 24.16 | |
TPU/APP/Cu0.0625 | 42.6 | 218.7 | - | - | 28.19 | |
PLA | 81.7 | 450.8 | 2.6 | - | 0.1 | [57] |
PLA-5.0APP | 70.6 | 396.6 | 2.4 | - | 4.1 | |
PLA-3.3APP/1.7Ni-MOF | 65.9 | 329.6 | 1.3 | - | 5.4 | |
Blank | 100.82 | 1925 | 52.11 | 0.56 | - | [58] |
Intu/Neat | 41.72 | 738 | 43.69 | 0.44 | - | |
Intu/MOF | 31.92 | 522 | 35.33 | 0.35 | - | |
EP | 105 | 1254 | 31 | 0.38 | 8.0 | [59] |
5APP/EP | 103 | 924 | 31 | 0.26 | 17.4 | |
(ZIF-67+APP)/EP | 74 | 495 | 27 | 0.16 | 23.8 |
Samples | THR | pHRR | TSP | pSPR | Residues | Reference |
---|---|---|---|---|---|---|
MJ/m2 | kW/m2 | m2 | m2/s | % | ||
EP | 88.85 | 1631.2 | - | 0.347 | - | [54] |
EP/ZIF-8@PZN-3 | 48.53 | 819.2 | - | 0.319 | - | |
EP | 92.5 | 1073 | 24.83 | 0.334 | 16.2 | [80] |
EP/3 Fe-MOF@PZS | 58.4 | 749 | 14.55 | 0.212 | 28.5 | |
EP | 116.7 | 1408.9 | 36.7 | 0.43 | 2.7 | [81] |
EP/ZIF-8@HCCP-ZP-50 | 100.7 | 745.3 | 28.7 | 0.26 | 15.87 | |
EP | 106.65 | 1601 | 30.94 | - | 0.52 | [82] |
3% Salen-PZN-Cu@Ni-MOF/EP | 95.17 | 1114 | 28.84 | - | 3.55 | |
PUA | 108.37 | 935.4 | - | - | 1.13 | [83] |
PUA/ZnO@MOF@PZS 3.0 | 87.13 | 670.6 | - | - | 5.99 | |
EP | 88.1 | 1127 | 35.6 | - | 1.8 | [84] |
EP/ZIF@PZS | 75.5 | 913 | 28.1 | - | 8.7 |
Samples | THR | pHRR | TSP | SPR | Residues | Reference |
---|---|---|---|---|---|---|
MJ/m2 | kW/m2 | m2 | m2/s | % | ||
EP | 41.2 | 940 | 63.0 | 0.82 | - | [106] |
RGO/EP | 31.9 | 473 | 56.4 | 0.72 | - | |
ZIF-8/RGO/EP | 27.3 | 332 | 36.8 | 0.53 | - | |
EP | 57.2 | 1212 | 59 | 0.86 | 9.9 | [110] |
EP/RGO-2 | 54.5 | 830 | 49.4 | 0.64 | 12.7 | |
EP/ZIF-67/RGO-B-2 | 33.5 | 423 | 32.7 | 0.37 | 20.7 | |
EP | 58.6 | 1355 | 59.0 | 0.78 | 10.0 | [111] |
EP/RGO-LDH | 43.3 | 580 | 34.3 | 0.52 | 15.7 | |
EP/RGO-LDH/ZIF-67 | 37.9 | 464 | 29.9 | 0.38 | 17.9 | |
EP | - | 992 | 36.9 | - | 16.6 | [112] |
EP/0.5GO-9.5IFR | - | 812 | 23.3 | - | - | |
EP/[email protected] | - | 532 | 18.3 | - | 33.1 | |
TPU | 192.7 | 1573 | 16.0 | - | 9.2 | [113] |
TPU/IFR/RGO | 87.8 | 422 | 10.4 | - | 18 | |
TPU/IFR/Co-ZIF-L/RGO | 57.6 | 245 | 6.0 | - | 18.4 | |
EP | 96.9 | 1133 | - | - | 17.9 | [114] |
EP/GO | 91.1 | 919 | - | - | 20.2 | |
EP/ZIF@GO | 75.4 | 507 | - | - | 24.0 |
Samples | THR | pHRR | TSP | TS * | Residues | Reference |
---|---|---|---|---|---|---|
MJ/m2 | kW/m2 | m2 | MPa | % | ||
EP | 96 | 961 | 30 | 39.7 | 11.9 | [144] |
EP/2% rGO@LDH | 80 | 327 | 21 | 45.3 | 21.6 | |
EP | 88.9 | 1235 | 24.1 | 59.6 | - | [146] |
EP/HGM@LDH@DOPO | 76.7 | 539 | 22.9 | 48.4 | - | |
EP | 72.9 | 1361 | 26.4 | ANE ** | 4.9 | [148] |
EP/2.5% MgAl@NiCo | 44.7 | 455 | 19.8 | 10.9 | ||
EP | 44.6 | 426.9 | - | - | 7.1 | [149] |
EP-4.0 | 39.6 | 294.9 | - | - | 11.2 | |
FPUF | 33.8 | - | 1.74 | 71.2 | - | [150] |
6 wt% Ti3C2Tx@MOF-LDH | 29.5 | - | 1.46 | 77.1 | - | |
PUA | 108.4 | 935.4 | 14.1 | 23.72 | 6.9 | [151] |
PUA/NiMoO4@Co-Ni LDH3.0 | 94.6 | 613.5 | 11 | 25.63 | 13.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, P.; Hou, Y.; Hu, J.; Liu, Y.; Zhao, L.; Feng, C.; Ma, Y.; Wang, Q.; Zhang, R.; Huang, W.; et al. Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers 2022, 14, 5279. https://doi.org/10.3390/polym14235279
Lyu P, Hou Y, Hu J, Liu Y, Zhao L, Feng C, Ma Y, Wang Q, Zhang R, Huang W, et al. Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers. 2022; 14(23):5279. https://doi.org/10.3390/polym14235279
Chicago/Turabian StyleLyu, Ping, Yongbo Hou, Jinhu Hu, Yanyan Liu, Lingling Zhao, Chao Feng, Yong Ma, Qin Wang, Rui Zhang, Weibo Huang, and et al. 2022. "Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants" Polymers 14, no. 23: 5279. https://doi.org/10.3390/polym14235279
APA StyleLyu, P., Hou, Y., Hu, J., Liu, Y., Zhao, L., Feng, C., Ma, Y., Wang, Q., Zhang, R., Huang, W., & Ma, M. (2022). Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers, 14(23), 5279. https://doi.org/10.3390/polym14235279