A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment
Abstract
:1. Introduction
2. Functional Properties of Hydrothermal Modified Starch and Flour
3. Morphological Properties of Hydrothermal Modified Starch and Flour Granules
4. Pasting Properties of Hydrothermal Modified Starch and Flour
5. The Crystallinity of Hydrothermal Modified Starch and Flour
6. Thermal Properties of Hydrothermal Modified Starch and Flour
7. Applications of Hydrothermal Treated Starch and Flour
8. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maniglia, B.C.; Castanha, N.; Le-Bail, P.; Le-Bail, A.; Augusto, P.E.D. Starch Modification through Environmentally Friendly Alternatives: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2482–2505. [Google Scholar] [CrossRef] [PubMed]
- Mathobo, V.M.; Silungwe, H.; Ramashia, S.E.; Anyasi, T.A. Effects of Heat-Moisture Treatment on the Thermal, Functional Properties and Composition of Cereal, Legume and Tuber Starches—A Review. J. Food Sci. Technol. 2021, 58, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Zia-ud-Din; Xiong, H.; Fei, P. Physical and Chemical Modification of Starches: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. [Google Scholar] [CrossRef] [PubMed]
- Subroto, E.; Filianty, F.; Indiarto, R.; Andita Shafira, A. Physicochemical and Functional Properties of Modified Adlay Starch (Coix Lacryma-Jobi) by Microwave and Ozonation. Int. J. Food Prop. 2022, 25, 1622–1634. [Google Scholar] [CrossRef]
- Aprianita, A.; Purwandari, U.; Watson, B.; Vasiljevic, T. Physico-Chemical Properties of Flours and Starches from Selected Commercial Tubers Available in Australia. Int. Food Res. J. 2009, 16, 507–520. [Google Scholar]
- Nurmilah, S.; Subroto, E. Chemical Modification of Starch for the Production of Resistant Starch Type-4 (Rs4): A Review. Int. J. Eng. Trends Technol. 2021, 69, 45–50. [Google Scholar] [CrossRef]
- Yuliana, N.; Nurdjanah, S.; Sugiharto, R.; Amethy, D. Effect of Spontaneous Lactic Acid Fermentation on Physico-Chemical Properties of Sweet Potato Flour. Microbiol. Indones. 2014, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Subroto, E.; Indiarto, R.; Djali, M.; Rosyida, H.D. Production and Application of Crosslinking- Modified Starch as Fat Replacer: A Review. Int. J. Eng. Trends Technol. 2020, 68, 26–30. [Google Scholar] [CrossRef]
- Deka, D.; Sit, N. Dual Modification of Taro Starch by Microwave and Other Heat Moisture Treatments. Int. J. Biol. Macromol. 2016, 92, 416–422. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Olu-owolabi, B.I.; Olayinka, O.O.; Olayide, S. Effect of Heat Moisture Treatment and Annealing on Physicochemical Properties of Red Sorghum Starch. Afr. J. Biotechnol. 2005, 4, 928–933. [Google Scholar]
- Adiyanti, T.; Subroto, E. Modifications Of Banana Starch And Its Characteristics: A Review. Int. J. Sci. Technol. Res. 2020, 9, 3–6. [Google Scholar]
- Ashogbon, A.O.; Akintayo, E.T. Recent Trend in the Physical and Chemical Modification of Starches from Different Botanical Sources: A Review. Starch Staerke 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Fonseca, L.M.; EL Halal, S.L.M.; Dias, A.R.G.; Zavareze, E.d.R. Physical Modification of Starch by Heat-Moisture Treatment and Annealing and Their Applications: A Review. Carbohydr. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef]
- Zavareze, E.D.R.; Dias, A.R.G. Impact of Heat-Moisture Treatment and Annealing in Starches: A Review. Carbohydr. Polym. 2011, 83, 317–328. [Google Scholar] [CrossRef]
- Chakraborty, I.; Govindaraju, I.; Rongpipi, S.; Mahato, K.K.; Mazumder, N. Effects of Hydrothermal Treatments on Physicochemical Properties and In Vitro Digestion of Starch. Food Biophys. 2021, 16, 544–554. [Google Scholar] [CrossRef]
- Liu, J.-L.; Tsai, P.-C.; Lai, L.-S. Impacts of Hydrothermal Treatments on the Morphology, Structural Characteristics, and In Vitro Digestibility of Water Caltrop Starch. Molecules 2021, 26, 4974. [Google Scholar] [CrossRef] [PubMed]
- Molavi, H.; Razavi, S.M.A.; Farhoosh, R. Impact of Hydrothermal Modifications on the Physicochemical, Morphology, Crystallinity, Pasting and Thermal Properties of Acorn Starch. Food Chem. 2018, 245, 385–393. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, F.; Kong, F.; Gao, Q.; Yu, S. Physicochemical Properties and Digestibility of Hydrothermally Treated Waxy Rice Starch. Food Chem. 2015, 172, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.; Lai, L.-S. Effect of Single and Dual Hydrothermal Treatments on the Resistant Starch Content and Physicochemical Properties of Lotus Rhizome Starches. Molecules 2021, 26, 4339. [Google Scholar] [CrossRef] [PubMed]
- Piecyk, M.; Drużyńska, B.; Ołtarzewska, A.; Wołosiak, R.; Worobiej, E.; Ostrowska-Ligęza, E. Effect of Hydrothermal Modifications on Properties and Digestibility of Grass Pea Starch. Int. J. Biol. Macromol. 2018, 118, 2113–2120. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Bintang, S.; Soeherman, G.P.; Djali, M. Physicochemical and Pasting Properties of Corn Starch as Affected by Hydrothermal Modification by Various Methods. Int. J. Food Prop. 2022, 25, 792–812. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. A Review of the Hydrothermal Treatments Impact on Starch Based Systems Properties. Crit. Rev. Food Sci. Nutr. 2020, 60, 3890–3915. [Google Scholar] [CrossRef] [PubMed]
- Majzoobi, M.; Pesaran, Y.; Mesbahi, G.; Farahnaky, A. Evaluation of the Effects of Hydrothermal Treatment on Rice Flour and Its Related Starch. Int. J. Food Prop. 2016, 19, 2135–2145. [Google Scholar] [CrossRef]
- Subroto, E.; Indiarto, R.; Marta, H.; Shalihah, S. Effect of Heat—Moisture Treatment on Functional and Pasting Properties of Potato (Solanum tuberosum L. Var. Granola) Starch. Food Res. 2019, 3, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Trung, P.T.B.; Ngoc, L.B.B.; Hoa, P.N.; Tien, N.N.T.; Hung, P. Van Impact of Heat-Moisture and Annealing Treatments on Physicochemical Properties and Digestibility of Starches from Different Colored Sweet Potato Varieties. Int. J. Biol. Macromol. 2017, 105, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Zhou, D.N.; Jin, Z.Y.; Xu, X.M.; Chen, H.Q. Effect of Repeated Heat-Moisture Treatments on Digestibility, Physicochemical and Structural Properties of Sweet Potato Starch. Food Hydrocoll. 2016, 54, 202–210. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, H.; Gou, M.; Xu, M.; Liu, Y.; Jing, L.; Zhao, K.; Jiang, H.; Li, W. The Comparison of Structural, Physicochemical, and Digestibility Properties of Repeatedly and Continuously Annealed Sweet Potato Starch. J. Food Sci. 2019, 84, 2050–2058. [Google Scholar] [CrossRef]
- Da Rosa Zavareze, E.; Storck, C.R.; de Castro, L.A.S.; Schirmer, M.A.; Dias, A.R.G. Effect of Heat-Moisture Treatment on Rice Starch of Varying Amylose Content. Food Chem. 2010, 121, 358–365. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M.; Pramafisi, G. The Properties, Modification, and Application of Banana Starch. Polymers 2022, 14, 3092. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Arifin, H.R.; Khairani, L. Comparing the Effect of Four Different Thermal Modifications on Physicochemical and Pasting Properties of Breadfruit (Artocarpus Altilis) Starch. Int. Food Res. J. 2019, 26, 269–276. [Google Scholar]
- Jayakody, L.; Hoover, R. Effect of Annealing on the Molecular Structure and Physicochemical Properties of Starches from Different Botanical Origins—A Review. Carbohydr. Polym. 2008, 74, 691–703. [Google Scholar] [CrossRef]
- Dias, A.R.G.; da Rosa Zavareze, E.; Spier, F.; de Castro, L.A.S.; Gutkoski, L.C. Effects of Annealing on the Physicochemical Properties and Enzymatic Susceptibility of Rice Starches with Different Amylose Contents. Food Chem. 2010, 123, 711–719. [Google Scholar] [CrossRef]
- Tester, R.F.; Debon, S.J.J. Annealing of Starch—A Review. Int. J. Biol. Macromol. 2000, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Xu, M.; Wang, R.; Li, W. Structural and Physicochemical Properties of Mung Bean Starch as Affected by Repeated and Continuous Annealing and Their in Vitro Digestibility. Int. J. Food Prop. 2019, 22, 898–910. [Google Scholar] [CrossRef]
- Xu, M.; Saleh, A.S.M.; Gong, B.; Li, B.; Jing, L.; Gou, M.; Jiang, H.; Li, W. The Effect of Repeated versus Continuous Annealing on Structural, Physicochemical, and Digestive Properties of Potato Starch. Food Res. Int. 2018, 111, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.; Pinto, V.Z.; Vanier, N.L.; Zavareze, E.D.R.; Colussi, R.; Do Evangelho, J.A.; Gutkoski, L.C.; Dias, A.R.G. Effect of Single and Dual Heat-Moisture Treatments on Properties of Rice, Cassava, and Pinhao Starches. Carbohydr. Polym. 2013, 98, 1578–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, H.; Delcour, J.A. Hydrothermal Modifications of Granular Starch, with Retention of the Granular Structure: A Review. Agric. Food Chem. 1998, 46, 2895–2905. [Google Scholar] [CrossRef]
- Subroto, E.; Indiarto, R.; Marta, H.; Shalihah, S. Application of Heat-Moisture Treatment Potato Starch to Improve the Heat Stability of Tomato Sauce. IOP Conf. Ser. Earth Environ. Sci. 2020, 443, 012076. [Google Scholar] [CrossRef]
- Kim, M.J.; Oh, S.G.; Chung, H.J. Impact of Heat-Moisture Treatment Applied to Brown Rice Flour on the Quality and Digestibility Characteristics of Korean Rice Cake. Food Sci. Biotechnol. 2017, 26, 1579–1586. [Google Scholar] [CrossRef]
- Chung, H.J.; Liu, Q.; Hoover, R. Impact of Annealing and Heat-Moisture Treatment on Rapidly Digestible, Slowly Digestible and Resistant Starch Levels in Native and Gelatinized Corn, Pea and Lentil Starches. Carbohydr. Polym. 2009, 75, 436–447. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Observations on the Impact of Amylopectin and Amylose Structure on the Swelling of Starch Granules. Food Hydrocoll. 2020, 103, 105663. [Google Scholar] [CrossRef]
- Marta, H.; Tensiska, T. Functional and Amylographic Properties of Physically-Modified Sweet Potato Starch. KnE Life Sci. 2018, 2, 689. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Oberoi, D.P.S.; Sogi, D.S.; Gill, B.S. Physicochemical, Morphological and Pasting Properties of Acid Treated Starches from Different Botanical Sources. J. Food Sci. Technol. 2011, 48, 460–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Han, Z.; Wang, L.; Xiong, L. Physicochemical Differences between Sorghum Starch and Sorghum Flour Modified by Heat-Moisture Treatment. Food Chem. 2014, 145, 756–764. [Google Scholar] [CrossRef]
- Putri, A.A.; Anggreini, R.A. Effect of Heat-Moisture Treatment on Structural Characteristics and Physico-Chemical Properties of Corn Starch-Hydrocolloid: A Review. NST Proc. 2022, 2022, 348–355. [Google Scholar] [CrossRef]
- Waduge, R.N.; Hoover, R.; Vasanthan, T.; Gao, J.; Li, J. Effect of Annealing on the Structure and Physicochemical Properties of Barley Starches of Varying Amylose Content. Food Res. Int. 2006, 39, 59–77. [Google Scholar] [CrossRef]
- Gunaratne, A.; Hoover, R. Effect of Heat-Moisture Treatment on the Structure and Physicochemical Properties of Tuber and Root Starches. Carbohydr. Polym. 2002, 49, 425–437. [Google Scholar] [CrossRef]
- Li, S.; Ward, R.; Gao, Q. Effect of Heat-Moisture Treatment on the Formation and Physicochemical Properties of Resistant Starch from Mung Bean (Phaseolus Radiatus) Starch. Food Hydrocoll. 2011, 25, 1702–1709. [Google Scholar] [CrossRef]
- Ahn, J.H.; Baek, H.R.; Kim, K.M.; Han, G.J.; Choi, J.B.; Kim, Y.; Moon, T.W. Slowly Digestible Sweetpotato Flour: Preparation by Heat-Moisture Treatment and Characterization of Physicochemical Properties. Food Sci. Biotechnol. 2013, 22, 383–391. [Google Scholar] [CrossRef]
- Kim, J.Y.; Huber, K.C. Heat-Moisture Treatment under Mildly Acidic Conditions Alters Potato Starch Physicochemical Properties and Digestibility. Carbohydr. Polym. 2013, 98, 1245–1255. [Google Scholar] [CrossRef]
- Puncha-Arnon, S.; Uttapap, D. Rice Starch vs. Rice Flour: Differences in Their Properties When Modified by Heat-Moisture Treatment. Carbohydr. Polym. 2013, 91, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lv, M.; Peng, Q.; Shan, F.; Wang, M. Physicochemical and Textural Properties of Tartary Buckwheat Starch after Heat-Moisture Treatment at Different Moisture Levels. Starch Staerke 2015, 67, 276–284. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Liu, X.; Tang, X.; Zhang, J. The Impact of Heat-Moisture Treatment on Physicochemical Properties and Retrogradation Behavior of Sweet Potato Starch. Int. J. Food Eng. 2017, 13, 5. [Google Scholar] [CrossRef]
- Pérez, I.C.; Mu, T.H.; Zhang, M.; Ji, L.L. Effect of Heat Treatment to Sweet Potato Flour on Dough Properties and Characteristics of Sweet Potato-Wheat Bread. Food Sci. Technol. Int. 2017, 23, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.; Devi, A.; Khatkar, B.S. Physicochemical, Thermal and Structural Properties of Heat Moisture Treated Common Buckwheat Starches. J. Food Sci. Technol. 2019, 56, 2480–2489. [Google Scholar] [CrossRef]
- Gong, B.; Xu, M.; Li, B.; Wu, H.; Liu, Y.; Zhang, G.; Ouyang, S.; Li, W. Repeated Heat-Moisture Treatment Exhibits Superiorities in Modification of Structural, Physicochemical and Digestibility Properties of Red Adzuki Bean Starch Compared to Continuous Heat-Moisture Way. Food Res. Int. 2017, 102, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhang, B.; Su, C.; Gong, B.; Zheng, J.; Jiang, H.; Zhang, G.; Li, W. Repeated Heat-Moisture Treatment: A More EffectiveWay for Structural and Physicochemical Modification of Mung Bean Starch Compared with Continuous Way. Food Bioprocess Technol. 2020, 13, 452–461. [Google Scholar] [CrossRef]
- Bhattacharjya, B.; Dutta, H.; Patwari, K.; Mahanta, C.L. Properties of Annealed Jackfruit (Artocarpus Heterophyllus Lam.) Seed Starch. Acta Aliment. 2015, 44, 501–510. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Saleh, A.S.M.; Liu, Y.; Jing, L.; Zhao, K.; Wu, H.; Zhang, G.; Yang, S.O.; Li, W. The Changes in Structural, Physicochemical, and Digestive Properties of Red Adzuki Bean Starch after Repeated and Continuous Annealing Treatments. Starch Staerke 2018, 70, 1700322. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Afolabi, T.A.; Olu-Owolabi, B.I. Hydrothermal Treatments of Finger Millet (Eleusine Coracana) Starch. Food Hydrocoll. 2005, 19, 974–983. [Google Scholar] [CrossRef]
- Lawal, O.S. Studies on the Hydrothermal Modifications of New Cocoyam (Xanthosoma Sagittifolium) Starch. Int. J. Biol. Macromol. 2005, 37, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, X.; Li, W.; Wang, X.; Lv, M.; Peng, Q.; Wang, M. Changes in Physicochemical Properties and in Vitro Digestibility of Common Buckwheat Starch by Heat-Moisture Treatment and Annealing. Carbohydr. Polym. 2015, 132, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Cahyana, Y.; Wijaya, E.; Halimah, T.S.; Marta, H.; Suryadi, E.; Kurniati, D. The Effect of Different Thermal Modifications on Slowly Digestible Starch and Physicochemical Properties of Green Banana Flour (Musa Acuminata Colla). Food Chem. 2019, 274, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wu, Z.Z.; Li, M.Y.; Yin, F.; Ren, K.X.; Tao, H. The Combined Effects of Extrusion and Heat-Moisture Treatment on the Physicochemical Properties and Digestibility of Corn Starch. Int. J. Biol. Macromol. 2019, 134, 1108–1112. [Google Scholar] [CrossRef]
- Hormdok, R.; Noomhorm, A. Hydrothermal Treatments of Rice Starch for Improvement of Rice Noodle Quality. LWT Food Sci. Technol. 2007, 40, 1723–1731. [Google Scholar] [CrossRef]
- Liao, L.; Liu, H.; Gan, Z.; Wu, W. Structural Properties of Sweet Potato Starch and Its Vermicelli Quality as Affected by Heat-Moisture Treatment. Int. J. Food Prop. 2019, 22, 1122–1133. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Zhao, K.; Zhang, B.; Liu, Y.; Jing, L.; Wu, H.; Gou, M.; Jiang, H.; Zhang, G.; Li, W. The Molecular Mechanism for Morphological, Crystal, Physicochemical and Digestible Property Modification of Wheat Starch after Repeated versus Continuous Heat-Moisture Treatment. LWT 2020, 129, 109399. [Google Scholar] [CrossRef]
- Li, W.; Shu, C.; Zhang, P.; Shen, Q. Properties of Starch Separated From Ten Mung Bean Varieties and Seeds Processing Characteristics. Food Bioprocess Technol. 2011, 4, 814–821. [Google Scholar] [CrossRef]
- Yang, S.; Dhital, S.; Zhang, M.-N.; Wang, J.; Chen, Z.-G. Structural, Gelatinization, and Rheological Properties of Heat-Moisture Treated Potato Starch with Added Salt and Its Application in Potato Starch Noodles. Food Hydrocoll. 2022, 131, 107802. [Google Scholar] [CrossRef]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical Properties, Modifications and Applications of Starches from Different Botanical Sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Liu, Y.; Li, D.; Wang, L.; Adhikari, B. Heat-Moisture Treatment and Acid Hydrolysis of Corn Starch in Different Sequences. LWT Food Sci. Technol. 2017, 79, 11–20. [Google Scholar] [CrossRef]
- Olayinka, O.O.; Adebowale, K.O.; Olu-Owolabi, B.I. Effect of Heat-Moisture Treatment on Physicochemical Properties of White Sorghum Starch. Food Hydrocoll. 2008, 22, 225–230. [Google Scholar] [CrossRef]
- Pranoto, Y.; Rahmayuni; Haryadi; Rakshit, S.K. Physicochemical Properties of Heat Moisture Treated Sweet Potato Starches of Selected Indonesian Varieties. Int. Food Res. J. 2014, 21, 2031–2038. [Google Scholar]
- Khawas, P.; Deka, S.C. Effect of Modified Resistant Starch of Culinary Banana on Physicochemical, Functional, Morphological, Diffraction, and Thermal Properties. Int. J. Food Prop. 2017, 20, 133–150. [Google Scholar] [CrossRef] [Green Version]
- Faridah, D.N.; Silitonga, R.F.; Indrasti, D.; Afandi, F.A.; Jayanegara, A.; Anugerah, M.P. Verification of Autoclaving-Cooling Treatment to Increase the Resistant Starch Contents in Food Starches Based on Meta-Analysis Result. Front. Nutr. 2022, 9, 904700. [Google Scholar] [CrossRef]
- Cordeiro, M.J.M.; Veloso, C.M.; Santos, L.S.; Bonomo, R.C.F.; Caliari, M.; da Costa Ilhéu Fontan, R. The Impact of Heat-Moisture Treatment on the Properties of Musa paradisiaca L. Starch and Optimization of Process Variables. Food Technol. Biotechnol. 2018, 56, 506–515. [Google Scholar] [CrossRef]
- Chung, K.M.; Tae Wha, M.; Chun, J.K. Influence of Annealing on Gel Properties of Mung Bean Starch. Cereal Chem. 2000, 77, 567–571. [Google Scholar] [CrossRef]
- Li, X.; Peng, H.; Niu, S.; Liu, X.; Li, Y. Effect of High-Temperature Hydrothermal Treatment on Chemical, Mechanical, Physical, and Surface Properties of Moso Bamboo. Forests 2022, 13, 712. [Google Scholar] [CrossRef]
- Yadav, B.S.; Guleria, P.; Yadav, R.B. Hydrothermal Modification of Indian Water Chestnut Starch: Influence of Heat-Moisture Treatment and Annealing on the Physicochemical, Gelatinization and Pasting Characteristics. LWT Food Sci. Technol. 2013, 53, 211–217. [Google Scholar] [CrossRef]
- Vieira, F.C.; Sarmento, S.B.S. Heat-Moisture Treatment and Enzymatic Digestibility of Peruvian Carrot, Sweet Potato and Ginger Starches. Starch Staerke 2008, 60, 223–232. [Google Scholar] [CrossRef]
- Jiranuntakul, W.; Puttanlek, C.; Rungsardthong, V.; Puncha-Arnon, S.; Uttapap, D. Microstructural and Physicochemical Properties of Heat-Moisture Treated Waxy and Normal Starches. J. Food Eng. 2011, 104, 246–258. [Google Scholar] [CrossRef]
- Zanella Pinto, V.; Goncalves Deon, V.; Moomand, K.; Levien Vanier, N.; Pilatti-Riccio, D.; da Rosa Zavareze, E.; Lim, L.T.; Guerra Dias, A.R. Characteristics of Modified Carioca Bean Starch upon Single and Dual Annealing, Heat-Moisture-Treatment, and Sonication. Starch Staerke 2019, 71, 1800173. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y.-R. Clean Label Starch: Production, Physicochemical Characteristics, and Industrial Applications. Food Sci. Biotechnol. 2021, 30, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Lu, Y.; Pan, L.; Fan, X.; Li, Q.; Huang, L.; Zhao, D.; Zhang, C.; Liu, Q. The Underlying Physicochemical Properties and Starch Structures of Indica Rice Grains with Translucent Endosperms under Low-Moisture Conditions. Foods 2022, 11, 1378. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, J.H.; Xu, J.H.; Mao, D.Z.; Yang, Y.J.; Wang, Z.W. The Impact of Heat-Moisture Treatment on the Molecular Structure and Physicochemical Properties of Coix Seed Starches. Starch Staerke 2016, 68, 662–674. [Google Scholar] [CrossRef]
- Liu, H.; Lv, M.; Wang, L.; Li, Y.; Fan, H.; Wang, M. Comparative Study: How Annealing and Heat-Moisture Treatment Affect the Digestibility, Textural, and Physicochemical Properties of Maize Starch. Starch Staerke 2016, 68, 1158–1168. [Google Scholar] [CrossRef]
- Chakraborty, I.; Pooja, N.; Mal, S.S.; Paul, U.C.; Rahman, M.H.; Mazumder, N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A Review. Food Bioprocess Technol. 2022, 15, 1195–1223. [Google Scholar] [CrossRef]
- Ayuningtyas, L.P.; Benita, A.M.; Triastuti, D. Crystalline and Digestive Characteristics of Heat Moisture Treated and Annealed Lesser Yam (Dioscorea Esculenta) Starch. J. Pangan Agroindustri 2022, 10, 1–8. [Google Scholar] [CrossRef]
- Sharma, M.; Yadav, D.N.; Singh, A.K.; Tomar, S.K. Rheological and Functional Properties of Heat Moisture Treated Pearl Millet Starch. J. Food Sci. Technol. 2015, 52, 6502–6510. [Google Scholar] [CrossRef] [Green Version]
- Kiseleva, V.I.; Krivandin, A.V.; Fornal, J.; Błaszczak, W.; Jeliński, T.; Yuryev, V.P. Annealing of Normal and Mutant Wheat Starches. LM, SEM, DSC, and SAXS Studies. Carbohydr. Res. 2005, 340, 75–83. [Google Scholar] [CrossRef]
- Ariyantoro, A.R.; Fitriyani, A.; Affandi, D.R.; Muhammad, D.R.A.; Yulviatun, A.; Nishizu, T. The Effect of Dual Modification with Annealing and Heat Moisture Treatment (HMT) on Physicochemical Properties of Jack Bean Starch (Canavalia Ensiformis). Food Res. 2022, 6, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Jyothi, A.N.; Sajeev, M.S.; Sreekumar, J.N. Hydrothermal Modifications of Tropical Tuber Starches. 1. Effect of Heat-Moisture Treatment on the Physicochemical, Rheological and Gelatinization Characteristics. Starch Stärke 2010, 62, 28–40. [Google Scholar] [CrossRef]
- Lewandowicz, J.; Le Thanh-Blicharz, J.; Szwengiel, A. The Effect of Chemical Modification on the Rheological Properties and Structure of Food Grade Modified Starches. Process 2022, 10, 938. [Google Scholar] [CrossRef]
- Sangseethong, K.; Lertphanich, S.; Sriroth, K. Physicochemical Properties of Oxidized Cassava Starch Prepared under Various Alkalinity Levels. Starch Stärke 2009, 61, 92–100. [Google Scholar] [CrossRef]
- Subroto, E.; Sitha, N.; Filianty, F.; Indiarto, R.; Sukri, N. Freeze Moisture Treatment and Ozonation of Adlay Starch (Coix Lacryma-Jobi): Effect on Functional, Pasting, and Physicochemical Properties. Polymers 2022, 14, 3854. [Google Scholar] [CrossRef]
- Gomand, S.V.; Lamberts, L.; Gommes, C.J.; Visser, R.G.F.; Delcour, J.A.; Goderis, B. Molecular and Morphological Aspects of Annealing-Induced Stabilization of Starch Crystallites. Biomacromolecules 2012, 13, 1361–1370. [Google Scholar] [CrossRef]
- Lim, S.; Chang, E.; Chung, H. Thermal Transition Characteristics of Heat Moisture Treated Corn and Potato Starches. Carbohydr. Polym. 2001, 46, 107–115. [Google Scholar] [CrossRef]
- Aaliya, B.; Sunooj, K.V.; Rajkumar, C.B.; Navaf, M.; Akhila, P.P.; Sudheesh, C.; George, J.; Lackner, M. Effect of Thermal Pretreatments on Phosphorylation of Corypha umbraculifera L. Stem Pith Starch: A Comparative Study Using Dry-Heat, Heat-Moisture and Autoclave Treatments. Polymers 2021, 13, 3855. [Google Scholar] [CrossRef]
- Nakamura, S.; Okumura, H.; Sugawara, M.; Noro, W.; Homma, N.; Ohtsubo, K. Effects of Different Heat–Moisture Treatments on the Physicochemical Properties of Brown Rice Flour. Biosci. Biotechnol. Biochem. 2017, 81, 2370–2385. [Google Scholar] [CrossRef] [Green Version]
- Subroto, E.; Jeanette, G.; Meiyanasari, Y.; Luwinsky, I.; Baraddiaz, S. Review on the Analysis Methods of Starch, Amylose, Amylopectinin Food and Agricultural Products. Int. J. Emerg. Trends Eng. Res. 2020, 8, 3519–3529. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A Novel Approach for Calculating Starch Crystallinity and Its Correlation with Double Helix Content: A Combined XRD and NMR Study. Biopolymers 2008, 89, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Buléon, A.; Colonna, P.; Planchot, V.; Ball, S. Starch Granules: Structure and Biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeylen, R.; Goderis, B.; Delcour, J.A. An X-ray Study of Hydrothermally Treated Potato Starch. Carbohydr. Polym. 2006, 64, 364–375. [Google Scholar] [CrossRef]
- Cheetham, N.W.H.; Tao, L. Variation in Crystalline Type with Amylose Content in Maize Starch Granules: An X-Ray Powder Diffraction Study. Carbohydr. Polym. 1998, 36, 277–284. [Google Scholar] [CrossRef]
- Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the Structural Order of Native Starch Granules Using Combined FTIR and XRD Analysis. J. Polym. Res. 2018, 25, 266. [Google Scholar] [CrossRef]
- Chung, H.J.; Liu, Q.; Hoover, R. Effect of Single and Dual Hydrothermal Treatments on the Crystalline Structure, Thermal Properties, and Nutritional Fractions of Pea, Lentil, and Navy Bean Starches. Food Res. Int. 2010, 43, 501–508. [Google Scholar] [CrossRef]
- Mendes, M.P.; Demiate, I.M.; Monteiro, A.R.G. Effect of Individual and Combined Physical Treatments on the Properties of Corn Starch. Acta Sci. Technol. 2018, 40, 35118. [Google Scholar] [CrossRef]
- Shi, Y.C. Two- and Multi-Step Annealing of Cereal Starches in Relation to Gelatinization. J. Agric. Food Chem. 2008, 56, 1097–1104. [Google Scholar] [CrossRef]
- Yashini, M.; Khushbu, S.; Madhurima, N.; Sunil, C.K.; Mahendran, R.; Venkatachalapathy, N. Thermal Properties of Different Types of Starch: A Review. Crit. Rev. Food Sci. Nutr. 2022, 1–24, Online ahead of print.. [Google Scholar] [CrossRef]
- Marboh, V.; Gayary, M.A.; Gautam, G.; Mahanta, C.L. Comparative Study of Heat-Moisture Treatment and Annealing on Morphology, Crystallinity, Pasting, and Thermal Properties of Sohphlang (Flemingia Vestita) Starch. Starch Stärke 2022, 74, 2100294. [Google Scholar] [CrossRef]
- Gomes, A.M.M.; Mendes Da Silva, C.E.; Ricardo, N.M.P.S.; Sasaki, J.M.; Germani, R. Impact of Annealing on the Physicochemical Properties of Unfermented Cassava Starch (“polvilho Doce”). Starch Staerke 2004, 56, 419–423. [Google Scholar] [CrossRef]
- Ye, J.; Luo, S.; Huang, A.; Chen, J.; Liu, C.; McClements, D.J. Synthesis and Characterization of Citric Acid Esterified Rice Starch by Reactive Extrusion: A New Method of Producing Resistant Starch. Food Hydrocoll. 2019, 92, 135–142. [Google Scholar] [CrossRef]
- Dewi, A.M.; Santoso, U.; Pranoto, Y.; Marseno, D.W. Dual Modification of Sago Starch via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity. Polymers 2022, 14, 1086. [Google Scholar] [CrossRef] [PubMed]
- Ismailoglu, S.O.; Basman, A. Effects of Infrared Heat-Moisture Treatment on Physicochemical Properties of Corn Starch. Starc Stärke 2015, 67, 528–539. [Google Scholar] [CrossRef]
- Schafranski, K.; Ito, V.C.; Lacerda, L.G. Impacts and Potential Applications: A Review of the Modification of Starches by Heat-Moisture Treatment (HMT). Food Hydrocoll. 2021, 117, 106690. [Google Scholar] [CrossRef]
- Hoover, R. The Impact of Heat-Moisture Treatment on Molecular Structures and Properties of Starches Isolated from Different Botanical Sources. Crit. Rev. Food Sci. Nutr. 2010, 50, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Chandla, N.K.; Saxena, D.C.; Singh, S. Processing and Evaluation of Heat Moisture Treated (HMT) Amaranth Starch Noodles; An Inclusive Comparison with Corn Starch Noodles. J. Cereal Sci. 2017, 75, 306–313. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Chen, Z.; Wang, X.; Wang, K.; Li, Y.; Wang, R.; Luo, X.; Li, Y.; Li, J. Effect of Annealing on the Physico-Chemical Properties of Rice Starch and the Quality of Rice Noodles. J. Cereal Sci. 2018, 84, 125–131. [Google Scholar] [CrossRef]
- Indrianti, N.; Pranoto, Y.; Abbas, A. Preparation and Characterization of Edible Films Made from Modified Sweet Potato Starch through Heat Moisture Treatment. Indones. J. Chem. 2018, 18, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Da Rosa Zavareze, E.; Pinto, V.Z.; Klein, B.; El Halal, S.L.M.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of Oxidised and Heat–Moisture Treated Potato Starch Film. Food Chem. 2012, 132, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Collar, C.; Armero, E. Impact of Heat Moisture Treatment and Hydration Level of Flours on the Functional and Nutritional Value-Added Wheat-Barley Blended Breads. Food Bioprocess Technol. 2018, 11, 966–978. [Google Scholar] [CrossRef]
- Ji, N.; Ge, S.; Li, M.; Wang, Y.; Xiong, L.; Qiu, L.; Bian, X.; Sun, C.; Sun, Q. Effect of Annealing on the Structural and Physicochemical Properties of Waxy Rice Starch Nanoparticles: Effect of Annealing on the Properties of Starch Nanoparticles. Food Chem. 2019, 286, 17–21. [Google Scholar] [CrossRef] [PubMed]
Modification Types | Source of Starch/Flour | Effect on Functional Properties | References |
---|---|---|---|
HMT (100 °C, 10 h, 30% moisture) | Potato, taro, new cocoyam, true yam, cassava |
| [47] |
HMT (110 °C, 1 h, 15%, 20%, 25% moisture) | Rice |
| [28] |
HMT (120 °C, 12 h, 15%, 20%, 25%, 30%, and 35% moisture) | Mung beans |
| [48] |
HMT (90, 110, 130 °C; 1, 8, 15 h; 18, 23, 28% moisture) | Sweet potato flour |
| [49] |
HMT (120 °C, 3 h, 15, 20, 25% moisture, pH 5.0 or 6.0) | Potato |
| [50] |
HMT (100 °C, 16 h, 20, 25, and 30% moisture) | Rice starch and flour |
| [51] |
HMT (100 °C, 10 h, 20 and 25% moisture) | Sorghum starch and flour |
| [44] |
HMT (110 °C, 16 h, 20, 25, 30, 35% moisture) | Tartary buckwheat starch |
| [52] |
HMT (110 °C, 12 h, 15, 20, 25, 30, 35% moisture) | Sweet potato |
| [53] |
HMT (90, 100, 110, 120 °C, 20 min) | Sweet potato flour |
| [54] |
HMT (85 and 120 °C, 6 h) | Buckwheat |
| [55] |
RHMT (2 cycles, 100 & 120 °C, 2 h) | Rice, cassava, Pinhão bean |
| [36] |
RHMT (5 cycles, 100 °C, 6 h, 30% moisture) | Sweet potato |
| [26] |
RHMT (120 °C, 2 h) and CHMT (120 °C, 4, 6, 8, 10, 12 h) | Red adzuki bean starch |
| [56] |
RHMT (6 cycles) and CHMT | Mung beans |
| [57] |
ANN (50 °C, 72 h) | Barley |
| [46] |
RANN (2 cycles, 45, 50, 55, 60 °C, 72 h) | Jackfruit seed starch |
| [58] |
RANN (55 °C; 12 h, 8 cycles) and CANN (55 °C; 96 h) | Potato |
| [35] |
RANN (55 °C; 12 h, 8 cycles) and CANN (55 °C; 96 h) | Red adzuki bean |
| [59] |
RANN (50 °C; 12 h, 8 cycles) and CANN (50 °C; 96 h) | Mung beans |
| [34] |
RANN (65 °C; 12 h, 8 cycles) and CANN (65 °C; 96 h) | Sweet potato starch |
| [27] |
HMT (100 °C, 16 h, 20%, 25%, 30% moisture). | Finger millet |
| [60] |
ANN (50 °C, 48 h). | |||
HMT (100 °C, 16 h) | New cocoyam |
| [61] |
ANN (50 °C, 24 h) | |||
HMT (100 or 120 °C, 2 h) | Corn, peas, and lentils |
| [40] |
ANN (10-15 °C < To, 24 h) | |||
HMT (110 °C, 16 h) | Common buckwheat starch |
| [62] |
ANN (50 °C, 24 h) | |||
HMT (100 °C, 6 h) | Sweet potato (white, yellow, and purple) |
| [25] |
ANN (45 °C, 24 h) | |||
HMT (120 °C, 2 h) | Seeds of grass pea |
| [20] |
ANN (10 °C < To, 24 h) | |||
HMT (100 °C, 8 h) | Banana flour |
| [63] |
ANN (55 °C, 12 h) | |||
DR (100 °C, 30 min, and 4 °C, 48 h) | |||
Extrusion + HMT (EHMT) (100 °C, 6 h) | Corn |
| [64] |
Modification Types | Source of Starch/Flour | Effect on Morphological Properties | References |
---|---|---|---|
HMT (100 °C, 10 h, 30% moisture) | Potato, taro, new cocoyam, true yam, cassava |
| [47] |
HMT (100 °C, 16 h, 27% moisture) | Sweet potatoes, Peruvian carrots |
| [80] |
HMT (110 °C, 1 h, 15%, 20%, 25% moisture) | Rice |
| [28] |
HMT (100 °C, 16 h, 25% moisture) | Rice, corn, potato |
| [81] |
HMT (120 °C, 12 h, 15, 20, 25, 30, and 35% moisture) | Mung bean |
| [48] |
HMT (100 °C, 10 h, 20 and 25% moisture) | Sorghum starch and flour |
| [44] |
HMT (110 °C, 16 h, 20, 25, 30, 35% moisture) | Tartary buckwheat starch (TBS) |
| [52] |
HMT (90, 100, 110, 120 °C, 20 min) | Sweet potato flour |
| [54] |
HMT (85 and 120 °C, 6 h) | Buckwheat |
| [55] |
RHMT (5 cycles, 100 °C, 6 h, 30% moisture) | Sweet potato |
| [26] |
RHMT (120 °C, 2 h) and CHMT (120 °C, 4–12 h) | Red adzuki bean starch |
| [56] |
RHMT (6 cycles) and CHMT | Mung beans |
| [57] |
ANN (45, 50, 55, 60 °C, 72 h, Single-ANN, Double-ANN) | Jackfruit seed starch |
| [58] |
RANN (55 °C; 12 h, 8 cycles) and CANN (55 °C; 96 h) | Potato |
| [35] |
RANN (55 °C; 12 h, 8 cycles) and CANN (55 °C; 96 h) | Red adzuki bean |
| [59] |
RANN (50 °C; 12 h, 8 cycles) and CANN (50 °C; 96 h) | Mung beans |
| [34] |
HMT (100 °C, 16 h) | New cocoyam (talas Belitung) |
| [61] |
ANN (50 °C, 24 h) | |||
HMT (100 or 120 °C, 2 h) | Corn, peas, lentils |
| [40] |
ANN (10-15 °C under To, 24 h) | |||
HMT (110 °C, 16 h) | Common buckwheat starch |
| [62] |
ANN (50 °C, 24 h) | |||
HMT (100 °C, 6 h) | Sweet potato |
| [25] |
ANN (45 °C, 24 h) | |||
HMT (120 °C, 2 h) | Seeds of grass pea |
| [20] |
ANN (10 °C under To, 24 h) | |||
HMT (100 °C, 8 h) | Banana flour |
| [63] |
ANN (55 °C, 12 h) | |||
DR (100 °C, 30 min, and 4 °C, 48 h) | |||
HMT 100 °C, 1 h, 22% moisture) | Carioca bean starch |
| [82] |
ANN (50 °C, 16 h) | |||
SNT (ultrasonic processor) | |||
Extrusion + HMT (EHMT) (100 °C, 6 h) | Corn |
| [64] |
Modification Types | Source of Starch/Flour | Effect on Pasting Properties | References |
---|---|---|---|
HMT (120 °C, 1 h) | Corn and potato |
| [97] |
HMT (100 °C, 16 h, 27% moisture) | Sweet potato, Peruvian carrot, ginger |
| [80] |
HMT (110 °C, 1 h, 15%, 20%, 25% moisture) | Rice |
| [28] |
HMT (100 °C, 16 h, 25% moisture) | Rice, corn, potato |
| [81] |
HMT (90, 110, 130 °C, 1, 8, 15 h, 18, 23, 28% moisture) | Sweet potato flour |
| [49] |
HMT (120 °C, 3 h, 15, 20, 25% moisture, pH 5.0 or 6.0) | Potato |
| [50] |
HMT (100 °C, 16 h, 20, 25, and 30% moisture) | Rice starch and flour |
| [51] |
HMT (100 °C, 10 h, 20 and 25% moisture) | Sorghum starch and flour |
| [44] |
HMT (110 °C, 16 h, 20–35% moisture) | Tartary buckwheat starch |
| [52] |
HMT (110 °C, 12 h, 15–35% moisture) | Sweet potato starch |
| [53] |
HMT (85 and 120 °C, 6 h) | Buckwheat |
| [55] |
HMT (100 °C & 120 °C, 2 h, 2 cycles) | Rice, cassava, Pinhão seeds |
| [36] |
RHMT (5 cycles, 100 °C, 6 h, 30% moisture) | Sweet potato starch |
| [26] |
RHMT (120 °C, 2 h) and CHMT (120 °C, 4–12 h) | Red adzuki bean starch |
| [56] |
RHMT (6 cycles) and CHMT | Mung beans |
| [57] |
ANN (45–60 °C, 72 h, Single-ANN, Double-ANN) | Jackfruit seed starch |
| [58] |
RANN (55 °C; 12 h, 8 cycles) and CANN (55 °C; 96 h) | Potato |
| [35] |
RANN (55 °C; 12 h, 8 cycles) and CANN (55 °C; 96 h) | Red adzuki bean |
| [59] |
RANN (50 °C; 12 h, 8 cycles) and CANN (50 °C; 96 h) | Mung beans |
| [34] |
RANN (65 °C; 12 h, 8 cycles) and CANN (65 °C; 96 h) | Sweet potato starch |
| [27] |
HMT (100 °C, 16 h, 20%, 25%, 30% moisture). | Finger millet |
| [60] |
ANN (50 °C, 48 h) | |||
HMT (100 °C, 16 h) | New cocoyam (talas Belitung) |
| [61] |
ANN (50 °C, 24 h) | |||
HMT (110 °C, 16 h) | Common buckwheat starch |
| [62] |
ANN (50 °C, 24 h) | |||
HMT (100 °C, 6 h) | Sweet potato |
| [25] |
ANN (45 °C, 24 h) | |||
HMT (110 °C, 24 h) | Acorn |
| [17] |
ANN (50 °C, 24 h) | |||
Dual modification (HMT-ANN, ANN-HMT) | |||
HMT (120 °C, 2 h) | Seeds of grass pea |
| [20] |
ANN (10 °C under To, 24 h) | |||
HMT (100 °C, 8 h) | Banana flour |
| [63] |
ANN (55 °C, 12 h) | |||
DR (100 °C, 30 min, and 4 °C, 48 h) | |||
HMT 100 °C, 1 h, 22% moisture) | Carioca bean starch |
| [82] |
ANN (50 °C, 16 h) | |||
SNT (ultrasonic processor) |
Modification Types | Source of Starch/Flour | Effect on Crystallinity | References |
---|---|---|---|
HMT (120 °C, 1 h) | Corn, potato |
| [97] |
HMT (100 °C, 10 h, 30% moisture) | Potato, taro, new cocoyam, true yam, cassava |
| [47] |
HMT (100 °C, 16 h, 27% moisture) | Sweet potato, Peruvian carrot, ginger |
| [80] |
HMT (110 °C, 1 h, 15%, 20%, 25% moisture) | Rice |
| [28] |
HMT (100 °C, 16 h, 25% moisture) | Rice, corn, potato |
| [81] |
HMT (120 °C, 12 h, 15–35% moisture) | Mung beans |
| [48] |
HMT (90, 110, 130 °C, 1, 8, 15 h, 18, 23, 28% moisture) | Sweet potato flour |
| [49] |
HMT (120 °C, 3 h, 15, 20, 25% moisture, pH 5 or 6) | Potato |
| [50] |
HMT (100 °C, 10 h, 20, 25% moisture) | Sorghum starch and flour |
| [44] |
HMT (110 °C, 16 h, 20–35% moisture) | Tartary buckwheat starch |
| [52] |
HMT (85 °C and 120 °C, 6 h) | Buckwheat |
| [55] |
Single HMT (100 °C & 120 °C, 2 h) | Rice, cassava, Pinhão seed |
| [36] |
Double HMT (100 °C & 120 °C, 2 h, 2) | |||
RHMT (100 °C, 6 h, 30% moisture, 5 cycles) | Sweet potato starch |
| [26] |
RHMT (120 °C, 2 h) and CHMT (120 °C, 4, 6, 8, 10 and 12 h) | Red adzuki bean starch |
| [56] |
RHMT (6 cycles) and CHMT | Mung beans |
| [57] |
ANN (50 °C, 72 h) | Barley |
| [46] |
Cycles ANN (45–60 °C, 72 h, Single-ANN, Double-ANN) | Jackfruit seed starch |
| [58] |
Cycles RANN (55 °C; 12 h, 8 cycles) and CANN (55 °C; 96 h) | Potato |
| [35] |
Cycles RANN (55 °C; 12 h, 8 cycles) and CANN (55 °C; 96 h) | Red adzuki bean |
| [59] |
Cycles RANN (50 °C; 12 h, 8 cycles) and CANN (50 °C; 96 h) | Mung beans |
| [34] |
Cycles RANN (65 °C; 12 h, 8 cycles) and CANN (65 °C; 96 h) | Sweet potato starch |
| [27] |
HMT (100 °C, 16 h, 20%, 25%, 30% moisture). ANN (50 °C, 48 h) | Finger millet |
| [60] |
ANN (50 °C, 24 h) | New cocoyam |
| [61] |
HMT (100 °C, 16 h) | |||
HMT (90–130 °C, 24 h, 17, 20, 23, 26% moisture) | Potato |
| [103] |
ANN (50 °C, 24 h) | Common buckwheat starch |
| [62] |
HMT (110 °C, 16 h) | |||
HMT (100 °C, 6 h) | Sweet potato |
| [25] |
ANN (45 °C, 24 h) | |||
ANN (10 °C under To, 24 h) | Seeds of grass pea |
| [20] |
HMT (120 °C, 2 h) | |||
HMT (100 °C, 8 h) | Banana flour |
| [63] |
ANN (55 °C, 12 h) | |||
DR (100 °C, 30 min, and 4 °C, 48 h) | |||
Ekstrusi-HMT (EHMT) (100 °C, 6 h) | Corn |
| [64] |
Treatment | Effect on Thermal Properties | References |
---|---|---|
Single HMT and cycles | Increase in gelatinization temperature | [17,20,26,28,36,40,47,49,51,52,55,56,57,60,62,80,81,82] |
Single ANN and cycles | Increase in gelatinization temperature | [17,40,46,60,62,82,103] |
ANN | Decrease in gelatinization temperature | [20] |
Single HMT and cycles | Decrease in heating enthalpy | [17,26,40,47,49,52,54,55,62,81,82,112] |
ANN | Decrease in heating enthalpy | [40,46,62] |
Single HMT and cycles | Increase in heating enthalpy | [44,61] |
Single ANN and cycles | Increase in heating enthalpy | [27,35,59,61] |
ANN | No significant change in heating enthalpy | [17] |
HMT | Increase in the gelatinization temperature range | [40,52,56,57] |
Single HMT and cycles | Decrease in the gelatinization temperature range | [17,26,49] |
Single ANN and cycles | Decrease in the gelatinization temperature range | [17,27,40,46] |
Starch and Treatment | Product | Result | References |
---|---|---|---|
HMT-amaranth starch | Amaranth noodle | HMT-amaranth starch improved the quality of noodles with minimum cooking time, had a good expansion and firm texture | [117] |
HMT-potato starch | Tomato sauce | The addition of 1.5% HMT-potato starch improves the stability of tomato sauce during heating | [38] |
HMT-wheat and barley flours | Bread | The use of HMT-wheat and barley flours produced the same bread properties and bio-accessibility as untreated flours | [121] |
HMT-sweet potato starch | Edible film | The addition of 1.5% HMT-sweet potato starch improved the physicochemical properties, where the elongation, tensile strength, and thickness increased, but the solubility decreased | [119] |
HMT/oxidized-potato starch | Biofilms | HMT-potato starch increased the tensile strength and decreased the water vapor permeability of potato starch films | [120] |
HMT- and ANN-rice starch | Rice noodle | The substitution of 50% HMT- or ANN-rice starch improved the cooking and texture quality of rice noodle | [65] |
ANN-rice starch | Rice noodle | The substitution of 40% ANN-rice starch improved the cooking quality and sensorial properties of rice noodles | [118] |
ANN-waxy rice starch | Starch nanoparticles | ANN-waxy rice starch nanoparticles had crystallinity and melting temperature higher than untreated starch | [122] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subroto, E.; Mahani; Indiarto, R.; Yarlina, V.P.; Izzati, A.N. A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment. Polymers 2022, 14, 5447. https://doi.org/10.3390/polym14245447
Subroto E, Mahani, Indiarto R, Yarlina VP, Izzati AN. A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment. Polymers. 2022; 14(24):5447. https://doi.org/10.3390/polym14245447
Chicago/Turabian StyleSubroto, Edy, Mahani, Rossi Indiarto, Vira Putri Yarlina, and Afifah Nurul Izzati. 2022. "A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment" Polymers 14, no. 24: 5447. https://doi.org/10.3390/polym14245447
APA StyleSubroto, E., Mahani, Indiarto, R., Yarlina, V. P., & Izzati, A. N. (2022). A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment. Polymers, 14(24), 5447. https://doi.org/10.3390/polym14245447