Evaluation of Fossil Amber Birefringence and Inclusions Using Terahertz Time-Domain Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Internal Stress/Birefringence of Amber
2.2. Amber Samples
2.3. Terahertz Instrumentation
3. Results
3.1. Experimental Determination of Pulse Amplitudes and Time Shifts
3.2. Birefringence of Amber—Visible Measurements
3.3. Birefringence of Amber—Terahertz Measurements
3.4. Detection of Inclusions Using Polarized Terahertz Radiation
3.5. Terahertz-Computed Tomography Imaging of Inclusions
3.6. Detection of Termite Inclusions and Air Bubbles Using Polarized Terahertz Radiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Rahani, E.K.; Kundu, T. Terahertz Radiation for Nondestructive Evaluation. In Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications; Kundu, T., Ed.; CRC Press: New York, NY, USA, 2016; pp. 771–813. [Google Scholar]
- Wang, B.; Zhong, S.; Lee, T.-L.; Fancey, K.S.; Mi, J. Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv. Mech. Eng. 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.; Nemati, J.; Bolton, C.; Warholak, N.; Adriazola, J.; Gatley, I.; Gatley, S.; Federici, J.F. Terahertz Non-Destructive Evaluation of Additively Manufactured and Multilayered Structures. In Encyclopedia of Condensed Matter Physics, 2nd ed.; Chakraborty, T., Ed.; Elsevier: Rome, Italy, 2023. [Google Scholar]
- Wang, K.; Sun, D.W.; Pu, H. Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry. Trends Food Sci. Technol. 2017, 67, 93–105. [Google Scholar] [CrossRef]
- Teti, A.J.; Rodriguez, D.E.; Federici, J.F.; Brisson, C. Non-Destructive Measurement of Water Diffusion in Natural Cork Enclosures Using Terahertz Spectroscopy and Imaging. J. Infrared Milli. Terahz. Waves 2011, 32, 513–527. [Google Scholar] [CrossRef]
- Hor, Y.L.; Federici, J.F.; Wample, R.L. Nondestructive evaluation of cork enclosures using terahertz/millimeter wave spectroscopy and imaging. Appl. Opt. 2008, 47, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Ulmschneider, M. Terahertz Imaging of Drug Products. In Infrared and Raman Spectroscopic Imaging, 2nd ed.; Salzer, R., Siesler, H.W., Eds.; Wiley-VCH: Weinheim, Germany, 2014; pp. 445–476. [Google Scholar]
- Federici, J.F. Review of Moisture and Liquid Detection and Mapping using Terahertz Spectroscopy and Imaging. IEEE Trans. Terahertz Sci. Technol. 2012, 33, 97–126. [Google Scholar]
- Hirota, Y.; Hattori, R.; Tani, M.; Hangyo, M. Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna. Opt. Express 2006, 14, 4486–4493. [Google Scholar] [CrossRef]
- Castro-Camus, E. Polarization-Resolved Terahertz Time-Domain Spectroscopy. J. Infrared Milli Terahz Waves 2012, 33, 418–430. [Google Scholar] [CrossRef]
- van der Valk, N.C.J.; van der Marel, W.A.M.; Planken, P.C.M. Terahertz polarization imaging. Opt. Lett. 2005, 30, 2802–2804. [Google Scholar] [CrossRef] [Green Version]
- Castro-Camus, E.; Lloyd-Hughes, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Johnston, M.B. An ion-implanted InP receiver for polarization resolved terahertz spectroscopy. Opt. Express 2007, 15, 7047–7057. [Google Scholar] [CrossRef]
- Scheller, M.; Jördens, C.; Koch, M. Terahertz form birefringence. Opt. Express 2010, 18, 10137–10142. [Google Scholar] [CrossRef]
- Nakanishi, A.; Hayashi, S.; Satozono, H.; Fujita, K. Polarization imaging of liquid crystal polymer using terahertz difference-frequency generation source. Appl. Sci. 2021, 11, 10260. [Google Scholar] [CrossRef]
- Zhai, M.; Ahmed Mohamed, E.T.; Locquet, A.; Schneider, G.; Kalmar, R.; Fendler, M.; Declercq, N.F.; Citrin, D.S. Diagnosis of Injection-Molded Weld Line in Thermoplastic Polymer by Terahertz Reflective Imaging and Scanning Acoustic Microscopy. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Cancun, Mexico, 27 August 2017. [Google Scholar]
- Ahmed Mohamed, E.T.; Zhai, M.; Schneider, G.; Kalmar, R.; Fendler, M.; Locquet, A.; Citrin, D.S.; Declercq, N.F. Scanning acoustic microscopy investigation of weld lines in injection-molded parts manufactured from industrial thermoplastic polymer. Micron 2020, 138, 102925. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, H.; Nakamura, M.; Komatsubara, N.; Okano, M.; Nakasako, M.; Sato, H.; Watanabe, S. Controlled Terahertz Birefringence in Stretched Poly(lactic acid) Films Investigated by Terahertz Time-Domain Spectroscopy and Wide-Angle X-ray Scattering. J. Phys. Chem. B 2017, 121, 6951–6957. [Google Scholar] [CrossRef] [PubMed]
- Langenheim, J.H. Biology of Amber-Producing Trees: Focus on Case Studies of Hymenaea and Agathis. In Amber, Resinite, and Fossil Resins; Anderson, K.B., Crelling, J.C., Eds.; American Chemical Society: Washington, DC, USA, 1996; pp. 1–31. [Google Scholar]
- Rieppel, O. Green anole in dominican amber. Nature 1980, 286, 486–487. [Google Scholar] [CrossRef]
- Wier, A.; Dolan, M.; Grimaldi, D.; Guerrero, R.; Wagensberg, J.; Margulis, L. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in miocene amber. Proc. Natl. Acad. Sci. USA 2002, 99, 1410–1413. [Google Scholar] [CrossRef] [Green Version]
- Buchberger, W.; Falk, H.; Katzmayr, M.U.; Richter, A.E. On the Chemistry of Baltic Amber Inclusion Droplets. Mon. Fur Chem. 1997, 128, 177–181. [Google Scholar] [CrossRef]
- Landis, G.P.; Berner, R.A.; Planavsky, N. Analysis of gases in fossil amber. Am. J. Sci. 2018, 318, 590–601. [Google Scholar] [CrossRef]
- Sargent Bray, P.; Anderson, K.B. Identification of carboniferous (320 million years old) class Ic amber. Science 2009, 326, 132–134. [Google Scholar] [CrossRef]
- Schmidt, A.R.; Jancke, S.; Lindquist, E.E.; Ragazzi, E.; Roghi, G.; Nascimbene, P.C.; Schmidt, K.; Wappler, T.; Grimald, D.A. Arthropods in amber from the Triassic Period. Proc. Natl. Acad. Sci. USA 2012, 109, 14796–14801. [Google Scholar] [CrossRef] [Green Version]
- Seyfullah, L.J.; Beimforde, C.; Dal Corso, J.; Perrichot, V.; Rikkinen, J.; Schmidt, A.R. Production and preservation of resins—past and present. Biol. Rev. 2018, 93, 1684–1714. [Google Scholar] [CrossRef]
- Speranza, M.; Wierzchos, J.; Alonso, J.; Bettucci, L.; Martín-González, A.; Ascaso, C. Traditional and new microscopy techniques applied to the study of microscopic fungi included in amber. Microsc. Sci. Technol. Appl. Educ. 2010, 2, 1135–1145. [Google Scholar]
- Wagner-Wysiecka, E. Mid-infrared spectroscopy for characterization of Baltic amber (succinite). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Abduriyim, A.; Kimura, H.; Yokoyama, Y.; Nakazono, H.; Wakatsuki, M.; Shimizu, T.; Tansho, M.; Ohki, S. Characterization of “green Amber” with infrared and nuclear magnetic resonance spectroscopy. Gems Gemol. 2009, 45, 158–177. [Google Scholar] [CrossRef] [Green Version]
- Dierick, M.; Cnudde, V.; Masschaele, B.; Vlassenbroeck, J.; Van Hoorebeke, L.; Jacobs, P. Micro-CT of fossils preserved in amber. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 580, 641–643. [Google Scholar] [CrossRef]
- Sasaki, T.; Hashimoto, Y.; Mori, T.; Kojima, S. Broadband Terahertz Time-Domain Spectroscopy of Archaeological Baltic Amber. Int. Lett. Chem. Phys. Astron 2015, 62, 29. [Google Scholar] [CrossRef]
- Barden, P.; Sosiak, C.E.; Grajales, J.; Hawkins, J.; Rizzo, L.; Clark, A.; Gatley, S.; Gatley, I.; Federici, J. Non-destructive comparative evaluation of fossil amber using terahertz time-domain spectroscopy. PLoS ONE 2022, 17. [Google Scholar] [CrossRef]
- Brody, R.H.; Edwards, H.G.; Pollard, A.M. A study of amber and copal samples using FT-Raman spectroscopy. Spectrochim. Acta A 2001, 57, 1325–1338. [Google Scholar] [CrossRef]
- Sadowski, E.M.; Schmidt, A.R.; Seyfullah, L.J.; Solórzano-Kraemer, M.M.; Neumann, C.; Perrichot, V.; Hamann, C.; Milke, R.; Nascimbene, P.C. Conservation, preparation and imaging of diverse ambers and their inclusions. Earth Sci. Rev. 2021, 220. [Google Scholar] [CrossRef]
- Hecht, E. Optics, 5th ed.; Pearson: New York, NY, USA, 2017. [Google Scholar]
- Sidorchuk, E.A.; Norton, R.A. The fossil mite family Archaeorchestidae (Acari, Oribatida) I: Redescription of Strieremaeus illibatus and synonymy of Strieremaeus with Archaeorchestes. Zootaxa 2011, 2993, 34–58. [Google Scholar] [CrossRef]
- Mukherjee, S.; Federici, J.; Lopes, P.; Cabral, M. Elimination of Fresnel Reflection Boundary Effects and Beam Steering in Pulsed Terahertz Computed Tomography. J. Infrared Millim. Terahertz Waves 2013, 34, 539–555. [Google Scholar] [CrossRef]
- Perraud, J.B.; Sleiman, J.B.; Simoens, F.; Mounaix, P. Immersion in Refractive Index Matching Liquid for 2D and 3D Terahertz Imaging. In Proceedings of the 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015; p. 1-1. [Google Scholar]
- Perraud, J.B.; Sleiman, J.B.; Recur, B.; Balacey, H.; Simoens, F.; Guillet, J.P.; Mounaix, P. Liquid Index Matching for 2D and 3D Terahertz Imaging. Appl. Opt. 2016, 55, 9185–9192. [Google Scholar] [CrossRef] [PubMed]
- Mavrona, E.; Appugliese, F.; Andberger, J.; Keller, J.; Franckié, M.; Scalari, G.; Faist, J. Terahertz Refractive Index Matching Solution. Opt. Express 2019, 27, 14536–14544. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.; Schmuttenmaer, C.A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 2018, 124, 231101. [Google Scholar] [CrossRef] [Green Version]
- Mittleman, D. Sensing with Terahertz Radiation. In Sensing with Terahertz Radiation; Mittleman, D., Ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Kang, K.; Du, Y.; Wang, S.; An Li, L.; Wang, Z.; Li, C. Full-field stress measuring method based on terahertz time-domain spectroscopy. Opt. Express 2021, 29, 40205–40213. [Google Scholar] [CrossRef] [PubMed]
- Clark, A. Nondestructive Evaluation of 3D Printed, Extruded, and Natural Polymer Structures using Terahertz Spectroscopy and Imaging. Ph.D. Thesis, New Jersey Institute of Technology, Newark, NJ, USA, May 2022. [Google Scholar]
- Barthel, K. Volume Viewer—ImageJ. Version (V2.01). (3 December 2012). In Vol. Viewer. Available online: https://imagej.nih.gov/ij/plugins/volume-viewer.html (accessed on 30 November 2022).
- Barden, P.; Herhold, H.W.; Grimaldi, D.A. A new genus of hell ants from the Cretaceous (Hymenoptera: Formicidae: Haidomyrmecini) with a novel head structure. Syst. Entomol. 2017, 42, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Cribb, B.W.; Stewart, A.; Huang, H.; Truss, R.; Noller, B.; Rasch, R.; Zalucki, M.P. Insect mandibles—Comparative mechanical properties and links with metal incorporation. Naturwissenschaften 2008, 95, 17–23. [Google Scholar] [CrossRef]
Waveform | Deconvoluted Amplitude (Arb. Units) | Deconvoluted Pulse Time (ps) |
---|---|---|
0.4127 ± 0.0006 | 21.94 ± 0.003 | |
(1.200 ± 0.012) × 10−2 | ||
−(0.3545 ± 0.012) × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clark, A.T.; D’Anna, S.; Nemati, J.; Barden, P.; Gatley, I.; Federici, J. Evaluation of Fossil Amber Birefringence and Inclusions Using Terahertz Time-Domain Spectroscopy. Polymers 2022, 14, 5506. https://doi.org/10.3390/polym14245506
Clark AT, D’Anna S, Nemati J, Barden P, Gatley I, Federici J. Evaluation of Fossil Amber Birefringence and Inclusions Using Terahertz Time-Domain Spectroscopy. Polymers. 2022; 14(24):5506. https://doi.org/10.3390/polym14245506
Chicago/Turabian StyleClark, Alexander T., Sophia D’Anna, Jessy Nemati, Phillip Barden, Ian Gatley, and John Federici. 2022. "Evaluation of Fossil Amber Birefringence and Inclusions Using Terahertz Time-Domain Spectroscopy" Polymers 14, no. 24: 5506. https://doi.org/10.3390/polym14245506
APA StyleClark, A. T., D’Anna, S., Nemati, J., Barden, P., Gatley, I., & Federici, J. (2022). Evaluation of Fossil Amber Birefringence and Inclusions Using Terahertz Time-Domain Spectroscopy. Polymers, 14(24), 5506. https://doi.org/10.3390/polym14245506