Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Solutions, Electrospinning Process, and Mats’ Characterization
2.3. Production and Characterization of CFRPs
3. Results and Discussion
3.1. Morphological Characterization of Nanofibrous Mats
3.2. Thermal Characterization of Nanofibrous Mats
3.3. Mechanical Properties of CFRP Laminates
3.4. Delamination Behavior of CFRP Laminates
- (1)
- A high average load with frequent drops (DCB_PEO and DCB_PEO + G samples);
- (2)
- A medium average load with frequent drops (DCB_NY sample);
- (3)
- A medium average load with rare drops (DCB_PCL);
- (4)
- A low average load with even rarer drops (DCB_Ref and DCB_PCL + G);
- (5)
- A very low average load with very frequent and low drops (DCB_NY + G).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite material recycling technology—State-of-the-art and sustainable development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R.; Gutowski, T.G. Life cycle energy analysis of fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1257–1265. [Google Scholar] [CrossRef]
- Xian, G.; Guo, R.; Li, C.; Wang, Y. Mechanical performance evolution and life prediction of prestressed cfrp plate exposed to hygrothermal and freeze-thaw environments. Compos. Struct. 2022, 293, 115719. [Google Scholar] [CrossRef]
- Jia, Z.; Li, T.; Chiang, F.P.; Wang, L. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2018, 154, 53–63. [Google Scholar] [CrossRef]
- Babu, K.; Rendén, G.; Afriyie Mensah, R.; Kim, N.K.; Jiang, L.; Xu, Q.; Restás, Á.; Esmaeely Neisiany, R.; Hedenqvist, M.S.; Försth, M.; et al. A Review on the Flammability Properties of Carbon-Based Polymeric Composites: State-of-the-Art and Future Trends. Polymers 2020, 12, 1518. [Google Scholar] [CrossRef]
- Raju, I.S.; O’brien, T.K. Fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation and growth criteria. In Delamination Behaviour of Composites; Elsevier: Amsterdam, The Netherlands, 2008; pp. 3–27. [Google Scholar] [CrossRef]
- Al-Mosawi, A.I. Flammability of composites. In Lightweight Composite Structures in Transport; Elsevier: Amsterdam, The Netherlands, 2016; pp. 361–371. [Google Scholar] [CrossRef]
- Bar, M.; Alagirusamy, R.; Das, A. Flame retardant polymer composites. In Fibers Polym; Springer: Berlin/Heidelberg, Germany, 2015; Volume 16, pp. 705–717. [Google Scholar] [CrossRef]
- Bano, S.; Husain, F.M.; Siddique, J.A.; Alharbi, K.H.; Khan, R.A.; Alsalme, A. Role of Copper Oxide on Epoxy Coatings with New Intumescent Polymer-Based Fire Retardant. Molecules 2020, 25, 5978. [Google Scholar] [CrossRef]
- Mazzocchetti, L.; Benelli, T.; Maccaferri, E.; Merighi, S.; Belcari, J.; Zucchelli, A.; Giorgini, L. Poly-m-aramid electrospun nanofibrous mats as high-performance flame retardants for carbon fiber reinforced composites. Compos. Part B Eng. 2018, 145, 252–260. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhu, L. A Short Review of Recent Progress in Improving the Fracture Toughness of FRP Composites Using Short Fibers. Sustainability 2022, 14, 6215. [Google Scholar] [CrossRef]
- Pappa, E.J.; Quinn, J.A.; Murray, J.J.; Davidson, J.R.; Ó Brádaigh, C.M.; McCarthy, E.D. Experimental Study on the Interlaminar Fracture Properties of Carbon Fibre Reinforced Polymer Composites with a Single Embedded Toughened Film. Polymers 2021, 13, 4103. [Google Scholar] [CrossRef]
- Di Boon, Y.; Joshi, S.C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites. Mater. Today Commun. 2020, 22, 100830. [Google Scholar] [CrossRef]
- Kishi, H.; Kuwata, M.; Matsuda, S.; Asami, T.; Murakami, A. Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Compos. Sci. Technol. 2004, 64, 2517–2523. [Google Scholar] [CrossRef]
- Bagheri, R.; Marouf, B.T.; Pearson, R.A. Rubber-toughened epoxies: A critical review. Polym. Rev. 2009, 49, 201–225. [Google Scholar] [CrossRef]
- Povolo, M.; Maccaferri, E.; Cocchi, D.; Brugo, T.M.; Mazzocchetti, L.; Giorgini, L.; Zucchelli, A. Damping and mechanical behaviour of composite laminates interleaved with rubbery nanofibers. Compos. Struct. 2021, 272, 114228. [Google Scholar] [CrossRef]
- Maccaferri, E.; Mazzocchetti, L.; Benelli, T.; Brugo, T.M.; Zucchelli, A.; Giorgini, L. Rubbery-Modified CFRPs with Improved Mode I Fracture Toughness: Effect of Nanofibrous Mat Grammage and Positioning on Tanδ Behaviour. Polymers 2021, 13, 1918. [Google Scholar] [CrossRef] [PubMed]
- Podgórski, A.; Bałazy, A.; Gradoń, L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 2006, 61, 6804–6815. [Google Scholar] [CrossRef]
- Yun, K.M.; Suryamas, A.B.; Iskandar, F.; Bao, L.; Niinuma, H.; Okuyama, K. Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Sep. Purif. Technol. 2010, 75, 340–345. [Google Scholar] [CrossRef]
- Sensini, A.; Cristofolini, L. Biofabrication of Electrospun Scaffolds for the Regeneration of Tendons and Ligaments. Materials 2018, 11, 1963. [Google Scholar] [CrossRef]
- Barnes, C.P.; Sell, S.A.; Boland, E.D.; Simpson, D.G.; Bowlin, G.L. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 2007, 59, 1413–1433. [Google Scholar] [CrossRef]
- Rasouli, R.; Barhoum, A.; Bechelany, M.; Dufresne, A. Nanofibers for Biomedical and Healthcare Applications. Macromol. Biosci. 2019, 19, 1800256. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, D.; Grolli, F.; Selleri, G.; Speranza, M.; Brugo, T.M.; Maccaferri, E.; Cocchi, D.; Zucchelli, A. Nanofibrous piezoelectric structures for composite materials to be used in electrical and electronic components. Proc. Nord. Insul. Symp. 2019, 26, 1–5. [Google Scholar] [CrossRef]
- Li, Y.; Abedalwafa, M.A.; Tang, L.; Li, D.; Wang, L. Electrospun Nanofibers for Sensors. In Electrospinning: Nanofabrication and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 571–601. [Google Scholar] [CrossRef]
- Halicka, K.; Cabaj, J. Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. Int. J. Mol. Sci. 2021, 22, 6357. [Google Scholar] [CrossRef]
- Ogunlaja, A.S.; Kleyi, P.E.; Walmsley, R.S.; Tshentu, Z.R. Nanofiber-supported metal-based catalysts. Catalysis 2016, 28, 144–174. [Google Scholar] [CrossRef]
- Bonincontro, D.; Fraschetti, F.; Squarzoni, C.; Mazzocchetti, L.; Maccaferri, E.; Giorgini, L.; Zucchelli, A.; Gualandi, C.; Focarete, M.L.; Albonetti, S. Pd/Au Based Catalyst Immobilization in Polymeric Nanofibrous Membranes via Electrospinning for the Selective Oxidation of 5-Hydroxymethylfurfural. Processes 2020, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Malara, A.; Paone, E.; Bonaccorsi, L.; Mauriello, F.; Macario, A.; Frontera, P. Pd/Fe3O4 Nanofibers for the Catalytic Conversion of Lignin-Derived Benzyl Phenyl Ether under Transfer Hydrogenolysis Conditions. Catalysts 2019, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Palazzetti, R.; Zucchelli, A. Electrospun nanofibers as reinforcement for composite laminates materials—A review. Compos. Struct. 2017, 182, 711–727. [Google Scholar] [CrossRef] [Green Version]
- Montanari, U.; Cocchi, D.; Brugo, T.M.; Pollicino, A.; Taresco, V.; Romero Fernandez, M.; Moore, J.C.; Sagnelli, D.; Paradisi, F.; Zucchelli, A.; et al. Functionalisable Epoxy-rich Electrospun Fibres Based on Renewable Terpene for Multi-Purpose Applications. Polymers 2021, 13, 1804. [Google Scholar] [CrossRef] [PubMed]
- Reneker, D.; Dzenis, Y. Delamination Resistant Composites Prepared by Small Diameter Fiber Reinfrocement at Ply Interfaces. U.S. Patent 6,265,333 B1, 24 July 2001. [Google Scholar]
- Gholizadeh, A.; Mansouri, H.; Nikbakht, A.; Saghafi, H.; Fotouhi, M. Applying Acoustic Emission Technique for Detecting Various Damages Occurred in PCL Nanomodified Composite Laminates. Polymers 2021, 13, 3680. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, E.; Ortolani, J.; Mazzocchetti, L.; Benelli, T.; Brugo, T.M.; Zucchelli, A.; Giorgini, L. New Application Field of Polyethylene Oxide: PEO Nanofibers as Epoxy Toughener for Effective CFRP Delamination Resistance Improvement. ACS Omega 2022, 7, 23189–23200. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, E.; Mazzocchetti, L.; Benelli, T.; Brugo, T.M.; Zucchelli, A.; Giorgini, L. Rubbery nanofibrous interleaves enhance fracture toughness and damping of CFRP laminates. Mater. Des. 2020, 195, 109049. [Google Scholar] [CrossRef]
- Maccaferri, E.; Mazzocchetti, L.; Benelli, T.; Brugo, T.M.; Zucchelli, A.; Giorgini, L. Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs. ACS Appl. Mater. Interfaces 2022, 14, 1885–1899. [Google Scholar] [CrossRef]
- Wu, J.; Li, C.; Hailatihan, B.; Mi, L.; Baheti, Y.; Yan, Y. Effect of the Addition of Thermoplastic Resin and Composite on Mechanical and Thermal Properties of Epoxy Resin. Polymers 2022, 14, 1087. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Colonna, S.; Battegazzore, D.; Eleuteri, M.; Arrigo, R.; Fina, A. Properties of Graphene-Related Materials Controlling the Thermal Conductivity of Their Polymer Nanocomposites. Nanomaterials 2020, 10, 2167. [Google Scholar] [CrossRef]
- Valorosi, F.; De Meo, E.; Blanco-Varela, T.; Martorana, B.; Veca, A.; Pugno, N.; Kinloch, I.A.; Anagnostopoulos, G.; Galiotis, C.; Bertocchi, F.; et al. Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits. Compos. Sci. Technol. 2020, 185, 107848. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Noruzi, E.B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M.G.; Hashemi, S.M.; Javanshir, S.; Cohan, R.A.; et al. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Jiang, Q.; Ren, Y.; Yang, Y.; Wang, L.; Dai, L.; He, Z. Recent advances in carbon-based electrocatalysts for vanadium redox flow battery: Mechanisms, properties, and perspectives. Compos. Part B Eng. 2022, 242, 110094. [Google Scholar] [CrossRef]
- Casadei, R.; Venturi, D.; Giacinti Baschetti, M.; Giorgini, L.; Maccaferri, E.; Ligi, S. Polyvinylamine Membranes Containing Graphene-Based Nanofillers for Carbon Capture Applications. Membranes 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Qu, K.; Yang, M.; Li, G.; Ren, Y.; Cui, W. Impregnation assisted graphene oxide/polyimide nanofiber composites with improved thermal conductivity and breakdown strength. J. Polym. Res. 2022, 29, 216. [Google Scholar] [CrossRef]
- Marsden, A.J.; Papageorgiou, D.G.; Valles, C.; Liscio, A.; Palermo, V.; Bissett, M.A.; Young, R.J.; Kinloch, I.A. Electrical percolation in graphene–polymer composites. 2D Mater. 2018, 5, 032003. [Google Scholar] [CrossRef] [Green Version]
- Maccaferri, E.; Mazzocchetti, L.; Benelli, T.; Zucchelli, A.; Giorgini, L. Morphology, thermal, mechanical properties and ageing of nylon 6,6/graphene nanofibers as Nano2 materials. Compos. Part B Eng. 2019, 166, 120–129. [Google Scholar] [CrossRef]
- Fredi, G.; Karimi Jafari, M.; Dorigato, A.; Bikiaris, D.N.; Pegoretti, A. Improving the Thermomechanical Properties of Poly (lactic acid) via Reduced Graphene Oxide and Bioderived Poly (decamethylene 2,5-furandicarboxylate). Materials 2022, 15, 1316. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yin, Q.; Wang, J.; Jia, H.; Yuan, G.; Wang, J. Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers. Chem. Eng. J. 2022, 443, 136468. [Google Scholar] [CrossRef]
- Miao, Y.; Li, P.; Cheng, S.; Zhou, Q.; Cao, M.; Yi, J.; Zhang, H. Preparation of multi-axial compressible 3D PVDF nanofibre/graphene wearable composites sensor sponge and application of integrated sensor. Sensors Actuators A Phys. 2022, 342, 113648. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Zhou, B.; He, H.; Zhou, Y.; Jiang, L.; Zhou, F.L.; Chen, S. A flexible strain sensor based on conductive TPU/CNTs-Gr composites. J. Appl. Polym. Sci. 2022, 139, e52475. [Google Scholar] [CrossRef]
- Chu, Q.; Lin, H.; Ma, M.; Chen, S.; Shi, Y.; He, H.; Wang, X. Cellulose Nanofiber/Graphene Nanoplatelet/MXene Nanocomposites for Enhanced Electromagnetic Shielding and High In-Plane Thermal Conductivity. ACS Appl. Nano Mater. 2022, 5, 7217–7227. [Google Scholar] [CrossRef]
- Yan, C.; Jia, S.; Wei, J.; Shao, Z. Construction of hierarchical porous derived from the cellulose nanofiber / graphene / Zn/Co ZIF 3D conductive carbon aerogels for high-performance supercapacitors. J. Alloys Compd. 2022, 920, 165868. [Google Scholar] [CrossRef]
- Sahrayi, H.; Hosseini, E.; Ramazani Saadatabadi, A.; Atyabi, S.M.; Bakhshandeh, H.; Mohamadali, M.; Aidun, A.; Farasati Far, B. Cold atmospheric plasma modification and electrical conductivity induction in gelatin/polyvinylidene fluoride nanofibers for neural tissue engineering. Artif. Organs. 2022, 46, 1504–1521. [Google Scholar] [CrossRef]
- Asgari, S.; Ziarani, G.M.; Badiei, A.; Setayeshmehr, M.; Kiani, M.; Pourjavadi, A. Pourjavadi, Electrospun Ag-decorated reduced GO-graft-chitosan composite nanofibers with visible light photocatalytic activity for antibacterial performance. Chemosphere 2022, 299, 134436. [Google Scholar] [CrossRef]
- Xu, M.; Wu, L.; Zhu, M.; Wang, Z.; Huang, Z.H.; Wang, M.X. Self-supporting nitrogen-doped reduced graphene oxide@carbon nanofiber hybrid membranes as high-performance integrated air cathodes in microbial fuel cells. Carbon 2022, 193, 242–257. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, Y.; Wu, J. Graphene/Polyimide Nanofibrous Mat for High-Efficiency Filtratio. AATCC J. Res. 2022, 9, 176–181. [Google Scholar] [CrossRef]
- Lu, W.; Shi, X.; Zhou, H.; Luo, W.; Wang, L.; He, H. Tailoring and properties of a novel solar energy-triggered regenerative bionic fiber adsorbent for CO2 capture. Chem. Eng. J. 2022, 449, 137885. [Google Scholar] [CrossRef]
- Moyo, S.; Gumbi, N.N.; De Kock, L.A.; Nxumalo, E.N. A mini-review of nanocellulose-based nanofiber membranes incorporating carbon nanomaterials for dye wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100714. [Google Scholar] [CrossRef]
- He, Y.; Tian, H.; Xiang, A.; Ma, S.; Yin, D.; Varada Rajulu, A. Fabrication of PVA/GO Nanofiber Films by Electrospinning: Application for the Adsorption of Cu2+ and Organic Dyes. J. Polym. Environ. 2022, 30, 2964–2975. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Nabavi, S.R.; Omrani, A. Fabrication of hydrophilic special sandwich structure of PAN/GO/SiO2 electrospun membrane decorated with SiO2 nanoparticles for oil/water separation. J. Water Process. Eng. 2022, 48, 102926. [Google Scholar] [CrossRef]
- Selatile, K.; Ray, S.S.; Ojijo, V.; Sadiku, R.E. Morphological, Thermal, and Mechanical Properties of Electrospun Recycled Poly(ethylene terephthalate)/Graphene Oxide Composite Nanofiber Membranes. ACS Omega 2021, 6, 21005–21015. [Google Scholar] [CrossRef]
- Kim, H.C.; Panicker, P.S.; Kim, D.; Adil, S.; Kim, J. High-Strength cellulose nanofiber/graphene oxide hybrid filament made by continuous processing and its humidity monitoring. Sci. Rep. 2021, 11, 13611. [Google Scholar] [CrossRef]
- Abdel-Mottaleb, M.M.; Mohamed, A.; Karim, S.A.; Osman, T.A.; Khattab, A. Preparation, characterization, and mechanical properties of polyacrylonitrile (PAN)/graphene oxide (GO) nanofibers. Mech. Adv. Mater. Struct. 2020, 27, 346–351. [Google Scholar] [CrossRef]
- Schifino, G.; Gasparini, C.; Drudi, S.; Giannelli, M.; Sotgiu, G.; Posati, T.; Zamboni, R.; Treossi, E.; Maccaferri, E.; Giorgini, L.; et al. Keratin/Polylactic acid/graphene oxide composite nanofibers for drug delivery. Int. J. Pharm. 2022, 623, 121888. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, H.Y.; Gao, J.; Mai, Y.W. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves. Compos. Part B Eng. 2019, 171, 320–328. [Google Scholar] [CrossRef]
- Maccaferri, E.; Dalle Donne, M.; Mazzocchetti, L.; Benelli, T.; Brugo, T.M.; Zucchelli, A.; Giorgini, L. Rubber-enhanced polyamide nanofibers for a significant improvement of CFRP interlaminar fracture toughness. Sci. Rep. 2022, 12, 21426. [Google Scholar] [CrossRef]
- Qiu, Z.; Ikehara, T.; Nishi, T. Miscibility and crystallization in crystalline/crystalline blends of poly(butylene succinate)/poly(ethylene oxide). Polymer 2003, 44, 2799–2806. [Google Scholar] [CrossRef]
- Zhao, L.I.; Kai, W.; He, Y.; Zhu, B.O.; Inoue, Y. Effect of aging on fractional crystallization of poly (ethylene oxide) component in poly (ethylene oxide)/poly (3-hydroxybutyrate) blends. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 2665–2676. [Google Scholar] [CrossRef]
- Gupta, B.; Ray, A.R. Preparation of Poly (e-caprolactone)/Poly (e-caprolactone-co- lactide) (PCL/PLCL) Blend Filament by Melt Spinning Bhuvanesh. Polymer 2012, 123, 1944–1950. [Google Scholar]
- Inoue, M. Studies on Crystallization of High Polymers by Differential Thermal Analysis. J. Polym. Sci. Part A. 1963, 1, 2697–2709. [Google Scholar] [CrossRef]
- ASTM D5528-13; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. American Society for Testing and Materials: West Conshohocken, PA, USA, 2013. [CrossRef]
- BS EN 6034: 2015; Aerospace series—Carbon fibre reinforced plastics—Test method—Determination of interlaminar fracture toughness energy—Mode II—GIIC. BSI Standards Publication: London, UK, 2015.
- Daelemans, L.; van der Heijden, S.; De Baere, I.; Rahier, H.; Van Paepegem, W.; De Clerck, K. Damage-Resistant Composites Using Electrospun Nanofibers: A Multiscale Analysis of the Toughening Mechanisms. ACS Appl. Mater. Interfaces 2016, 8, 11806–11818. [Google Scholar] [CrossRef] [PubMed]
- Daelemans, L.; Kizildag, N.; Van Paepegem, W.; D’hooge, D.R.; De Clerck, K. Interdiffusing core-shell nanofiber interleaved composites for excellent Mode I and Mode II delamination resistance. Compos. Sci. Technol. 2019, 175, 143–150. [Google Scholar] [CrossRef]
Solution | Polymer Type and Concentration | Graphene * | Solvent System |
---|---|---|---|
s-PEO | PEO 12% wt | - | CHCl3/acetone 60:40 wt |
s-PEO + G | PEO 12% wt | 5% wt | CHCl3/acetone 60:40 wt |
s-PCL | PCL 10% wt | - | CHCl3/DMF 50:50 wt |
s-PCL + G | PCL 10% wt | 5% wt | CHCl3/DMF 50:50 wt |
s-NY | Nylon 66 13% wt | - | CHCl3/formic acid 50:50 wt |
s-NY + G | Nylon 66 13% wt | 5% wt | CHCl3/formic acid 50:50 wt |
Nanofibrous mat | Electrospun Solution | Flow Rate (mL/h) | Electric Potential (kV) | Distance (cm) | Nanofiber Diameter (nm) |
---|---|---|---|---|---|
n-PEO | s-PEO | 0.60 | 19.0 | 11 | 810 ± 231 |
n-PEO + G | s-PEO + G | 0.60 | 18.0 | 15 | 302 ± 156 |
n-PCL | s-PCL | 0.70 | 17.0 | 11 | 528 ± 142 |
n-PCL + G | s-PCL + G | 0.60 | 17.0 | 11 | 419 ± 189 |
n-NY | s-NY | 0.35 | 23.5 | 10 | 424 ± 119 |
n-NY + G | s-NY + G | 0.30 | 23.0 | 8 | 475 ± 197 |
Test Type | Specimen Code | Nanofibrous Mat | Specimen Width (mm) | Specimen Length (mm) | Initial Delamination Length (a0) (mm) | Span (L) (mm) |
---|---|---|---|---|---|---|
DCB | DCB_Ref | - | 20 | 130 | 45 | - |
DCB_PEO | n-PEO | |||||
DCB_PEO + G | n-PEO + G | |||||
DCB_PCL | n-PCL | |||||
DCB_PCL + G | n-PCL + G | |||||
DCB_NY | n-NY | |||||
DCB_NY + G | n-NY + G | |||||
ENF | ENF_Ref | - | 20 | 160 | 30 | - |
ENF_PEO | n-PEO | |||||
ENF _PEO + G | n-PEO + G | |||||
ENF_PCL | n-PCL | |||||
ENF_PCL + G | n-PCL + G | |||||
ENF_NY | n-NY | |||||
ENF_NY + G | n-NY + G | |||||
3PB | 3PB_Ref | - | 15 | 110 | - | 85 |
3PB_PEO | n-PEO | |||||
3PB_PEO + G | n-PEO + G | |||||
3PB_PCL | n-PCL | |||||
3PB_PCL + G | n-PCL + G | |||||
3PB_NY | n-NY | |||||
3PB_NY + G | n-NY + G |
Nanofibrous Mat | Tg (°C) | Tmpeak (°C) | ΔHm (a) (J/g) | χc (%) | Tconset (°C) | Tcpeak (°C) |
---|---|---|---|---|---|---|
n-PEO | n.d. | 63 | 170 | 83.3 | 41 | 35 |
n-PEO + G | n.d. | 64 | 177 | 86.8 | 44 | 39 |
n-PCL | −59.4 | −63 | 78 | 55.9 | 32 | 25 |
n-PCL + G | −61.2 | −61 | 79 | 55.6 | 39 | 34 |
n-NY | 72.1 | 265 | 88 | 44.8 | 236 | 231 |
n-NY + G | 64.6 | 266 | 87 | 44.4 | 247 | 239 |
Sample | Max Load in Mode I (N) | GI,C (J/m2) | GI,R (J/m2) | Max Load in Mode II (N) | GII,C (J/m2) | GII,R (J/m2) |
---|---|---|---|---|---|---|
DCB_Ref | 37.1 ± 4.4 | 425 ± 111 | 350 ± 33 | 595 ± 6 | 1953 ± 178 | 2621 ± 448 |
DCB_PEO | 63.6 ± 5.1 | 868 ± 143 | 1299 ± 210 | 646 ± 6 | 2400 ± 101 | 2945 ± 209 |
DCB_PEO + G | 53.0 ± 2.6 | 537 ± 102 | 1098 ± 213 | 587 ± 34 | 1836 ± 87 | 2400 ± 261 |
DCB_PCL | 52.5 ± 6.8 | 690 ± 142 | 781 ± 74 | 680 ± 28 | 2346 ± 157 | 2752 ± 288 |
DCB_PCL + G | 32.3 ± 1.9 | 286 ± 40 | 331 ± 63 | 568 ± 12 | 1818 ± 176 | 2089 ± 86 |
DCB_NY | 51.5 ± 3.2 | 699 ± 61 | 644 ± 76 | 623 ± 20 | 2036 ± 321 | 2606 ± 337 |
DCB_NY + G | 30.0 ± 3.0 | 234 ± 39 | 249 ± 78 | 639 ± 18 | 2074 ± 248 | 2646 ± 348 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maccaferri, E.; Mazzocchetti, L.; Benelli, T.; Ortolani, J.; Brugo, T.M.; Zucchelli, A.; Giorgini, L. Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates. Polymers 2022, 14, 5565. https://doi.org/10.3390/polym14245565
Maccaferri E, Mazzocchetti L, Benelli T, Ortolani J, Brugo TM, Zucchelli A, Giorgini L. Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates. Polymers. 2022; 14(24):5565. https://doi.org/10.3390/polym14245565
Chicago/Turabian StyleMaccaferri, Emanuele, Laura Mazzocchetti, Tiziana Benelli, Jacopo Ortolani, Tommaso Maria Brugo, Andrea Zucchelli, and Loris Giorgini. 2022. "Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates" Polymers 14, no. 24: 5565. https://doi.org/10.3390/polym14245565
APA StyleMaccaferri, E., Mazzocchetti, L., Benelli, T., Ortolani, J., Brugo, T. M., Zucchelli, A., & Giorgini, L. (2022). Is Graphene Always Effective in Reinforcing Composites? The Case of Highly Graphene-Modified Thermoplastic Nanofibers and Their Unfortunate Application in CFRP Laminates. Polymers, 14(24), 5565. https://doi.org/10.3390/polym14245565