Flame-Retardant Performance Evaluation of Functional Coatings Filled with Mg(OH)2 and Al(OH)3
Abstract
:1. Introduction
1050 J/g | [15] | (1) | |
1389 J/g | [16] | (2) |
2. Materials and Methods
2.1. Materials
2.2. Coating Preparation
2.3. Coating Characterization
2.4. Flame-Retardant Property Measurement
3. Results and Discussion
3.1. Structural and Morphological Analysis
3.2. Thermal Oxidation Decomposition Behavior
3.3. Flame-Retardant Performances
4. Conclusions
- The coatings have been thermally characterized and the addition of the fillers decreases the activation temperature of the combustion process (~345 °C vs. ~354 °C for the filled specimens and the unfilled one, respectively).
- The presence of larger-sized particles disadvantages the flame resistance, highlighting a wider area affected by the combustion. In such a context, the AH-L sample has a similar behavior to the unfilled TS one. The degree of thermal insulation is higher for samples with small-sized fillers, particularly at 30 s of fire exposition.
- The order of flame protection can be identified as: MH-S > MH-L > AH-S > AH-L > TS. In particular, MH-S exhibited a back temperature of ~85 °C vs. ~120 °C for the TS sample and 130 °C for the non-flame-retardant coating (STD).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giudice, C.; Canosa, G. New Technologies in Protective Coatings; InTech: Rijeka, Croatia, 2017; ISBN 978-953-51-3492-3. [Google Scholar]
- Giúdice, C.A.; Benítez, J.C. Zinc borates as flame-retardant pigments in chlorine-containing coatings. Prog. Org. Coat. 2001, 42, 82–88. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Wang, X. Influence of nano-silica on the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog. Org. Coat. 2017, 112, 319–329. [Google Scholar] [CrossRef]
- Shi, X.; Yang, P.; Peng, X.; Huang, C.; Qian, Q.; Wang, B.; He, J.; Liu, X.; Li, Y.; Kuang, T. Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: Smoke suppression and thermal stability of flexible polyurethane foams. Polymer 2019, 170, 65–75. [Google Scholar] [CrossRef]
- Janas, D.; Rdest, M.; Koziol, K.K.K. Flame-retardant carbon nanotube films. Appl. Surf. Sci. 2017, 411, 177–181. [Google Scholar] [CrossRef]
- Imiela, M.; Anyszka, R.; Bieliński, D.M.; Lipińska, M.; Rybiński, P.; Syrek, B. Synergistic Effect of Mica, Glass Frit, and Melamine Cyanurate for Improving Fire Resistance of Styrene-Butadiene Rubber Composites Destined for Ceramizable Coatings. Coatings 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Jiao, C.; Wang, H.; Chen, X. An efficient flame-retardant and smoke-suppressant agent by coated hollow glass microspheres with ammonium molybdophosphate for thermoplastic polyurethane. J. Therm. Anal. Calorim. 2019, 137, 1579–1589. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, Y.; Liu, H.; Xie, D.; Wan, C.; Pan, H.; Jiang, S. Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin. J. Colloid Interface Sci. 2018, 530, 163–170. [Google Scholar] [CrossRef]
- Liang, S.; Neisius, N.M.; Gaan, S. Recent developments in flame retardant polymeric coatings. Prog. Org. Coat. 2013, 76, 1642–1665. [Google Scholar] [CrossRef]
- Weil, E.D. Fire-Protective and Flame-Retardant Coatings—A State-of-the-Art Review. J. Fire Sci. 2011, 29, 259–296. [Google Scholar] [CrossRef]
- Langfeld, K.; Wilke, A.; Sut, A.; Greiser, S.; Ulmer, B.; Andrievici, V.; Limbach, P.; Bastian, M.; Schartel, B. Halogen-free fire retardant styrene–ethylene–butylene–styrene-based thermoplastic elastomers using synergistic aluminum diethylphosphinate–based combinations. J. Fire Sci. 2015, 33, 157–177. [Google Scholar] [CrossRef]
- Elbasuney, S. Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 2017, 305, 538–545. [Google Scholar] [CrossRef]
- Brostow, W.; Lohse, S.; Lu, X.; Osmanson, A.T. Nano-Al (OH)3 and Mg (OH)2 as flame retardants for polypropylene used on wires and cables. Emergent Mater. 2019, 2, 23–34. [Google Scholar] [CrossRef]
- White, S. Smoke suppressants. In Plastics Additives; Polymer Science and Technology Series; Springer: Berlin, Germany, 1998; pp. 576–583. [Google Scholar] [CrossRef]
- Günter Beyer, C.H. Reactive Extrusion: Principles and Applications; Wiley VCH: Weinheim, Germany, 2018. [Google Scholar]
- Piperopoulos, E.; Mastronardo, E.; Fazio, M.; Lanza, M.; Galvagno, S.; Milone, C. Synthetic strategies for the enhancement of Mg(OH)2 thermochemical performances as heat storage material. Energy Procedia 2018, 155, 269–279. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, Y. A study of the flame-retardant properties of polypropylene/Al(OH)3/Mg(OH)2 composites. Polym. Int. 2010, 59, 539–542. [Google Scholar] [CrossRef]
- Liang, J.Z.; Chen, Y.; Jiang, X.H. Flame-Retardant Properties of PP/Al(OH)3/Mg(OH)2/POE/ZB Nanocomposites. Polym.-Plast. Technol. Eng. 2012, 51, 439–445. [Google Scholar] [CrossRef]
- Chen, H.; Wen, X.; Guan, Y.; Min, J.; Wen, Y.; Yang, H.; Chen, X.; Li, Y.; Yang, X.; Tang, T. Effect of particle size on the flame retardancy of poly(butylene succinate)/Mg(OH)2 composites. Fire Mater. 2016, 40, 1090–1096. [Google Scholar] [CrossRef]
- Liang, J.Z.; Feng, J.Q.; Tsui, C.P.; Tang, C.Y.; Liu, D.F.; Zhang, S.D.; Huang, W.F. Mechanical properties and flame-retardant of PP/MRP/Mg(OH)2/Al(OH)3 composites. Compos. Part B Eng. 2015, 71, 74–81. [Google Scholar] [CrossRef]
- Mastronardo, E.; Kato, Y.; Bonaccorsi, L.; Piperopoulos, E.; Milone, C. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH)2 Hybrid Materials. Energies 2017, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Lam, Y.L.; Kan, C.W.; Yuen, C.W.M. Effect of titanium dioxide on the flame-retardant finishing of cotton fabric. J. Appl. Polym. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef]
- Ersoy, O.; Fidan, S.; Köse, H.; Güler, D.; Özdöver, Ö. Effect of Calcium Carbonate Particle Size on the Scratch Resistance of Rapid Alkyd-Based Wood Coatings. Coatings 2021, 11, 340. [Google Scholar] [CrossRef]
- Berman, A.; DiLoreto, E.; Moon, R.J.; Kalaitzidou, K. Hollow glass spheres in sheet molding compound composites: Limitations and potential. Polym. Compos. 2021, 42, 1279–1291. [Google Scholar] [CrossRef]
- Catarina, G.A.S.; Borsoi, C.; Romanzini, D.; Piazza, D.; Kunst, S.R.; Scienza, L.C.; Zattera, A.J. Development of acrylic-based powder coatings with incorporation of montmorillonite clays. J. Appl. Polym. Sci. 2017, 134, 45031. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, L.; Liu, F.; Zhang, S.; Feng, J.; Jiang, Y.; Feng, J. Compressible, Flame-Resistant and Thermally Insulating Fiber-Reinforced Polybenzoxazine Aerogel Composites. Materials 2020, 13, 2809. [Google Scholar] [CrossRef]
- Romanzini, D.; Cuttica, F.; Frache, A.; Zattera, A.J.; Amico, S.C. Thermal and fire retardancy studies of clay-modified unsaturated polyester/glass fiber composites. Polym. Compos. 2017, 38, 2743–2752. [Google Scholar] [CrossRef]
- Bai, Z.; Song, L.; Hu, Y.; Gong, X.; Yuen, R.K.K. Investigation on flame retardancy, combustion and pyrolysis behavior of flame retarded unsaturated polyester resin with a star-shaped phosphorus-containing compound. J. Anal. Appl. Pyrolysis 2014, 105, 317–326. [Google Scholar] [CrossRef]
- Živković, Ž.D.; Dobovišek, B. Kinetics of aluminium hydroxide dehydration. J. Therm. Anal. Calorim. 2005, 12, 207–215. [Google Scholar] [CrossRef]
- Mastronardo, E.; Bonaccorsi, L.; Kato, Y.; Piperopoulos, E.; Milone, C. Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps. Appl. Energy 2016, 162, 31–39. [Google Scholar] [CrossRef]
- Khosa, A.A.; Zhao, C.Y. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica. Sol. Energy 2019, 188, 619–630. [Google Scholar] [CrossRef]
- Przekop, R.E.; Marciniak, P.; Sztorch, B.; Czapik, A.; Stodolny, M.; Martyła, A. New method for the synthesis of Al2O3–CaO and Al2O3–CaO–CaCO3 systems from a metallic precursor by the sol–gel route. J. Aust. Ceram. Soc. 2018, 54, 679–690. [Google Scholar] [CrossRef] [Green Version]
- El Hage, R.; Viretto, A.; Sonnier, R.; Ferry, L.; Lopez-Cuesta, J.-M. Flame retardancy of ethylene vinyl acetate (EVA) using new aluminum-based fillers. Polym. Degrad. Stab. 2014, 108, 56–67. [Google Scholar] [CrossRef]
Code | FR Compound | TR Specifications | |
---|---|---|---|
Type | Content (wt%) | ||
STD | // | // | // |
TS | // | // | // |
MH-S | Mg(OH)2 | 2 | Acros Organics—USA |
MH-L | Mg(OH)2 | 2 | Kisuma Chemicals BV—The Netherlands |
AH-S | Al(OH)3 | 2 | Sigma-Aldrich—USA |
AH-L | Al(OH)3 | 2 | Synthesized by precipitation |
Code | TS | MH-S | MH-L | AH-S | AH-L |
---|---|---|---|---|---|
Pull-off strength (MPa) | 4.82 ± 0.65 | 4.43 ± 0.56 | 4.66 ± 0.29 | 3.89 ± 0.28 | 3.97 ± 0.54 |
Code | T1 (°C) | Weight Loss at 530 °C (%) | T2 (°C) | Weight Loss at 750 °C (%) |
---|---|---|---|---|
TS | 354.79 | 34.71 | 691.80 | 44.07 |
MH-S | 348.63 | 35.00 | 686.78 | 43.77 |
MH-L | 343.96 | 35.08 | 687.89 | 43.75 |
AH-S | 345.74 | 35.84 | 681.73 | 44.62 |
AH-L | 343.65 | 35.40 | 686.13 | 44.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piperopoulos, E.; Scionti, G.; Atria, M.; Calabrese, L.; Proverbio, E. Flame-Retardant Performance Evaluation of Functional Coatings Filled with Mg(OH)2 and Al(OH)3. Polymers 2022, 14, 372. https://doi.org/10.3390/polym14030372
Piperopoulos E, Scionti G, Atria M, Calabrese L, Proverbio E. Flame-Retardant Performance Evaluation of Functional Coatings Filled with Mg(OH)2 and Al(OH)3. Polymers. 2022; 14(3):372. https://doi.org/10.3390/polym14030372
Chicago/Turabian StylePiperopoulos, Elpida, Giuseppe Scionti, Mario Atria, Luigi Calabrese, and Edoardo Proverbio. 2022. "Flame-Retardant Performance Evaluation of Functional Coatings Filled with Mg(OH)2 and Al(OH)3" Polymers 14, no. 3: 372. https://doi.org/10.3390/polym14030372
APA StylePiperopoulos, E., Scionti, G., Atria, M., Calabrese, L., & Proverbio, E. (2022). Flame-Retardant Performance Evaluation of Functional Coatings Filled with Mg(OH)2 and Al(OH)3. Polymers, 14(3), 372. https://doi.org/10.3390/polym14030372