A Review of Electromagnetic Shielding Fabric, Wave-Absorbing Fabric and Wave-Transparent Fabric
Abstract
:1. Introduction
2. EM Shielding Fabrics
2.1. Theoretical Calculation of EM Shielding Fabrics
2.2. The Experiment to Investigate EM Shielding Fabrics
3. Wave-Absorbing Fabrics
3.1. The Mechanism of Wave-Absorbing Fabrics
3.2. Researches of Wave-Absorbing Fabrics Preparation
4. Wave-Transparent Fabrics
4.1. The Mechanism of Wave-Transparent Fabrics
4.2. Researches of Wave-Transparent Fabrics Preparation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acharya, S.; Datar, S. Wideband (8–18 GHz) Microwave Absorption Dominated Electromagnetic Interference (EMI) Shielding Composite Using Copper Aluminum Ferrite and Reduced Graphene Oxide in Polymer Matrix. J. Appl. Phys. 2020, 128, 104902. [Google Scholar] [CrossRef]
- Ziegelberger, G.; van Rongen, E.; Croft, R.; Feychting, M.; Green, A.C.; Hirata, A.; d’Inzeo, G.; Marino, C.; Miller, S.; Oftedal, G.; et al. Principles for Non-Ionizing Radiation Protection. Health Phys. 2020, 118, 477–482. [Google Scholar]
- Duncan, J.R.; Lieber, M.R.; Adachi, N.; Wahl, R.L. DNA Repair After Exposure to Ionizing Radiation Is Not Error-Free. J. Nucl. Med. 2017, 59, 348. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.-K.; Kim, H.-G.; Kim, K.-B.; Kim, H.R. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol. Ther. 2019, 27, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ameli, A.; Nofar, M.; Park, C.; Pötschke, P.; Rizvi, G. Polypropylene/Carbon Nanotube Nano/Microcellular Structures with High Dielectric Permittivity, Low Dielectric Loss, and Low Percolation Threshold. Carbon 2014, 71, 206–217. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. A Review of Vapor Grown Carbon Nanofiber/Polymer Conductive Composites. Carbon 2009, 47, 2–22. [Google Scholar] [CrossRef]
- Millenbaugh, N.J.; Kiel, J.L.; Ryan, K.L.; Blystone, R.V.; Kalns, J.E.; Brott, B.J.; Cerna, C.Z.; Lawrence, W.S.; Soza, L.L.; Mason, P.A. Comparison of Blood Pressure and Thermal Responses in Rats Exposed to Millimeter Wave Energy or Environmental Heat. Shock 2006, 25, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kravtsov, Y.A.; Bieg, B. Propagation of Electromagnetic Waves in Weakly Anisotropic Media: Theory and Applications. Opt. Appl. 2010, 40, 975–989. [Google Scholar]
- Lv, H.; Guo, Y.; Yang, Z.; Cheng, Y.; Wang, L.P.; Zhang, B.; Zhao, Y.; Xu, Z.J.; Ji, G. A Brief Introduction to the Fabrication and Synthesis of Graphene Based Composites for the Realization of Electromagnetic Absorbing Materials. J. Mater. Chem. C 2017, 5, 491–512. [Google Scholar] [CrossRef]
- Cao, M.-S.; Cai, Y.-Z.; He, P.; Shu, J.-C.; Cao, W.-Q.; Yuan, J. 2D MXenes: Electromagnetic Property for Microwave Absorption and Electromagnetic Interference Shielding. Chem. Eng. J. 2019, 359, 1265–1302. [Google Scholar] [CrossRef]
- Lin, H.; Wang, C. Influences of Electromagnetic Radiation Distribution on Chaotic Dynamics of a Neural Network. Appl. Math. Comput. 2020, 369, 124840. [Google Scholar] [CrossRef]
- Huang, L.; Chen, C.; Li, Z.; Zhang, Y.; Zhang, H.; Lu, J.; Ruan, S.; Zeng, Y.-J. Challenges and Future Perspectives on Microwave Absorption Based on Two-Dimensional Materials and Structures. Nanotechnology 2019, 31, 162001. [Google Scholar] [CrossRef]
- Yan, J.; Huang, Y.; Liu, X.; Zhao, X.; Li, T.; Zhao, Y.; Liu, P. Polypyrrole-Based Composite Materials for Electromagnetic Wave Absorption. Polym. Rev. 2021, 61, 646–687. [Google Scholar] [CrossRef]
- Hasan, K.M.F.; Horváth, P.G.; Alpár, T. Potential Fabric-Reinforced Composites: A Comprehensive Review. J. Mater. Sci. 2021, 56, 14381–14415. [Google Scholar] [CrossRef]
- Kang, Y.-A.; Oh, S.-H.; Park, J.S. Properties of UHMWPE Fabric Reinforced Epoxy Composite Prepared by Vacuum-Assisted Resin Transfer Molding. Fibers Polym. 2015, 16, 1343–1348. [Google Scholar] [CrossRef]
- Bilisik, K.; Yolacan, G. Experimental Determination of Bending Behavior of Multilayered and Multidirectionally-Stitched E-Glass Fabric Structures for Composites. Text. Res. J. 2012, 82, 1038–1049. [Google Scholar] [CrossRef]
- Rajesh, M.; Pitchaimani, J. Dynamic Mechanical and Free Vibration Behavior of Natural Fiber Braided Fabric Composite: Comparison with Conventional and Knitted Fabric Composites. Polym. Compos. 2018, 39, 2479–2489. [Google Scholar] [CrossRef]
- Abounaim; Cherif, C. Flat-knitted Innovative Three-Dimensional Spacer Fabrics: A Competitive Solution for Lightweight Composite Applications. Text. Res. J. 2011, 82, 288–298. [Google Scholar] [CrossRef]
- Nguyen, Q.; Vidal-Sallé, E.; Boisse, P.; Park, C.H.; Saouab, A.; Bréard, J.; Hivet, G. Mesoscopic Scale Analyses of Textile Composite Reinforcement Compaction. Compos. Part B Eng. 2013, 44, 231–241. [Google Scholar] [CrossRef]
- Ma, W.; Ma, Z.; Zhu, J. Meso-Structure and Processing of Three-Dimensional Braided Material Based on Space Group P4 Symmetry. Text. Res. J. 2017, 87, 1765–1771. [Google Scholar] [CrossRef]
- Kurbak, A. Geometrical Models for Weft-Knitted Spacer Fabrics. Text. Res. J. 2016, 87, 409–423. [Google Scholar] [CrossRef]
- Molina, J.; Zille, A.; Fernández, J.; Souto, A.; Bonastre, J.; Cases, F. Conducting Fabrics of Polyester Coated with Polypyrrole and Doped with Graphene Oxide. Synth. Met. 2015, 204, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Shao, F.; Bian, S.-W.; Zhu, Q.; Guo, M.-X.; Liu, S.; Peng, Y.-H. Fabrication of Polyaniline/Graphene/Polyester Textile Electrode Materials for Flexible Supercapacitors with High Capacitance and Cycling Stability. Chem.—Asian, J. 2016, 11, 1906–1912. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Liu, K.; Fan, W.; Huang, Z.; Yin, J. 3D Angle-Interlock Woven Fabric Based on Plain Group P4mm Symmetry. Compos. Struct. 2020, 231, 111539. [Google Scholar] [CrossRef]
- Nurazzi, N.; Asyraf, M.; Khalina, A.; Abdullah, N.; Aisyah, H.; Rafiqah, S.; Sabaruddin, F.; Kamarudin, S.; Norrrahim, M.; Ilyas, R.; et al. A Review on Natural Fiber Reinforced Polymer Composite for Bullet Proof and Ballistic Applications. Polymers 2021, 13, 646. [Google Scholar] [CrossRef]
- Gao, Y.-N.; Wang, Y.; Yue, T.-N.; Weng, Y.-X.; Wang, M. Multifunctional Cotton Non-Woven Fabrics Coated with Silver Nanoparticles and Polymers for Antibacterial, Superhydrophobic and High Performance Microwave Shielding. J. Colloid Interface Sci. 2021, 582, 112–123. [Google Scholar] [CrossRef]
- Gao, J.; Luo, J.; Wang, L.; Huang, X.; Wang, H.; Song, X.; Hu, M.; Tang, L.-C.; Xue, H. Flexible, Superhydrophobic and Highly Conductive Composite Based on Non-Woven Polypropylene Fabric for Electromagnetic Interference Shielding. Chem. Eng. J. 2019, 364, 493–502. [Google Scholar] [CrossRef]
- Ghosh, S.; Remanan, S.; Mondal, S.; Ganguly, S.; Das, P.; Singha, N.; Das, N.C. An Approach to Prepare Mechanically Robust Full IPN Strengthened Conductive Cotton Fabric for High Strain Tolerant Electromagnetic Interference Shielding. Chem. Eng. J. 2018, 344, 138–154. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Smirnova, D.; Nori, F. Quantum Spin Hall Effect of Light. Science 2015, 348, 1448–1451. [Google Scholar] [CrossRef] [Green Version]
- Cornacchia, S.; La Tegola, L.; Maldera, A.; Pierpaoli, E.; Tupputi, U.; Ricatti, G.; Eusebi, L.; Salerno, S.; Guglielmi, G. Radiation Protection in Non-Ionizing and Ionizing Body Composition Assessment Procedures. Quant. Imaging Med. Surg. 2020, 10, 1723–1738. [Google Scholar] [CrossRef]
- Yang, L.; Jie, R.; Hai-Tao, J.; Yong, S.; Hong, C. Quantum Spin Hall Effect in Metamaterials. Acta Phys. Sin. 2017, 66, 227803. [Google Scholar] [CrossRef]
- Wang, K.-J.; Wang, G.-D. Periodic Solution of the (2 + 1)-Dimensional Nonlinear Electrical Transmission Line Equation Via Variational Method. Results Phys. 2021, 20, 103666. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Peng, H. A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Okuma, N.; Kawabata, K.; Shiozaki, K.; Sato, M. Topological Origin of Non-Hermitian Skin Effects. Phys. Rev. Lett. 2020, 124, 086801. [Google Scholar] [CrossRef] [Green Version]
- Van Mechelen, T.; Jacob, Z. Universal Spin-Momentum Locking of Evanescent Waves. Optics 2016, 3, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Green, M.; Chen, X. Recent Progress of Nanomaterials for Microwave Absorption. J. Materiom. 2019, 5, 503–541. [Google Scholar] [CrossRef]
- Zhong, L.; Yu, R.; Hong, X. Review of Carbon-Based Electromagnetic Shielding Materials: Film, Composite, Foam, Textile. Text. Res. J. 2021, 91, 1167–1183. [Google Scholar] [CrossRef]
- Gurusiddesh, M.; Madhu, B.J.; Shankaramurthy, G.J. Structural, Dielectric, Magnetic and Electromagnetic Interference Shielding Investigations of Polyaniline Decorated Co0.5Ni0.5Fe2O4 Nanoferrites. J. Mater. Sci. Mater. Electron. 2017, 29, 3502–3509. [Google Scholar] [CrossRef]
- Li, T.-T.; Chen, A.-P.; Hwang, P.-W.; Pan, Y.-J.; Hsing, W.-H.; Lou, C.-W.; Chen, Y.-S.; Lin, J.-H. Synergistic Effects of Micro-/Nano-Fillers on Conductive and Electromagnetic Shielding Properties of Polypropylene Nanocomposites. Mater. Manuf. Processes 2018, 33, 149–155. [Google Scholar] [CrossRef]
- Zhao, B.; Fan, B.; Shao, G.; Wang, B.; Pian, X.; Li, W.; Zhang, R. Investigation on the Electromagnetic Wave Absorption Properties of Ni Chains Synthesized by a Facile Solvothermal Method. Appl. Surf. Sci. 2014, 307, 293–300. [Google Scholar] [CrossRef]
- Sankaran, S.; Deshmukh, K.; Ahamed, M.; Pasha, S.K. Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2018, 114, 49–71. [Google Scholar] [CrossRef]
- Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N. Electromagnetic Interference Shielding Polymers and Nanocomposites-A Review. Polym. Rev. 2019, 59, 280–337. [Google Scholar] [CrossRef]
- Chen, C.-C. Transmission of Microwave Through Perforated Flat Plates of Finite Thickness. IEEE Trans. Microw. Theory Tech. 1973, 21, 1–6. [Google Scholar] [CrossRef]
- Lee, S.-W.; Zarrillo, G.; Law, C.-L. Simple Formulas for Transmission through Periodic Metal Grids or Plates. IRE Trans. Antennas Propag. 1982, 30, 904–909. [Google Scholar] [CrossRef]
- Anderson, I. On the Theory of Self-Resonant Grids. Bell Syst. Tech. J. 1975, 54, 1725–1731. [Google Scholar] [CrossRef]
- Casey, K. Electromagnetic Shielding Behavior of Wire-Mesh Screens. IEEE Trans. Electromagn. Compat. 1988, 30, 298–306. [Google Scholar] [CrossRef]
- Xue, W.; Cheng, L.; Li, A.; Jiao, N.N.; Chen, B.W.; Zhang, T.H. Research on Electromagnetic Shielding Effectiveness of Composite Fabrics Made by Stainless Steel Fiber. Adv. Mater. Res. 2013, 821–822, 888–893. [Google Scholar] [CrossRef]
- Schulz, R.B.; Plantz, V.C.; Brush, D.R. Shielding Theory and Practice. IEEE Trans. Electromagn. Compat. 1988, 30, 187–201. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hamano, A.; Hatakeyama, K.; Iwai, T. EM-Wave Transmission Characteristic of Periodically Perforated Metal Plates. In Proceedings of the 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Kaohsiung, Taiwan, 26–29 July 2016; pp. 7–8. [Google Scholar]
- Henn, A.; Cribb, R. Modeling the shielding effectiveness of metallized fabrics. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Anaheim, CA, USA, 17–21 August 1992; pp. 283–286. [Google Scholar]
- Šafářová, V.; Tunakova, V.; Militký, J. Prediction of Hybrid Woven Fabric Electromagnetic Shielding Effectiveness. Text. Res. J. 2015, 85, 673–686. [Google Scholar] [CrossRef]
- Perumalraj, R.; Dasaradan, B.S.; Anbarasu, R.; Arokiaraj, P.; Harish, S.L. Electromagnetic Shielding Effectiveness of Copper Core-Woven Fabrics. J. Text. Inst. 2009, 100, 512–524. [Google Scholar] [CrossRef]
- Roh, J.-S.; Chi, Y.-S.; Kang, T.J.; Nam, S.-W. Electromagnetic Shielding Effectiveness of Multifunctional Metal Composite Fabrics. Text. Res. J. 2008, 78, 825–835. [Google Scholar] [CrossRef]
- Chen, H.Z.; Lee, K.C.; Lin, J.; Koch, M. Fabrication of Conductive Woven Fabric and Analysis of Electromagnetic Shielding Via Measurement and Empirical Equation. J. Mater. Process. Technol. 2007, 184, 124–130. [Google Scholar] [CrossRef]
- Cai, J.; Xuan, Z.; Liu, H. The Testing and Equivalent Calculation of Electromagnetic Shielding Effectiveness of Metal Fiber Blended Fabrics. In Proceedings of the 2nd International Conference on Measurement, Information and Control, Harbin, China, 16–18 August 2013; Volume 2, pp. 1464–1467. [Google Scholar]
- Rybicki, T.; Brzezinski, S.; Lao, M.; Krawczynska, I. Modeling Protective Properties of Textile Shielding Grids Against Electromagnetic Radiation. Fibres Text. East. Eur. 2013, 21, 78–82. [Google Scholar]
- Sarto, M.S.; Greco, S.; Tamburrano, A. Shielding Effectiveness of Protective Metallic Wire Meshes: EM Modeling and Validation. IEEE Trans. Electromagn. Compat. 2014, 56, 615–621. [Google Scholar] [CrossRef]
- Liang, R.; Cheng, W.; Xiao, H.; Shi, M.; Tang, Z.; Wang, N. A Calculating Method for the Electromagnetic Shielding Effectiveness of Metal Fiber Blended Fabric. Text. Res. J. 2018, 88, 973–986. [Google Scholar] [CrossRef]
- Yin, J.; Ma, W.; Huang, Z.; Liu, K.; Leng, Z. A Model for Predicting Electromagnetic Shielding Effectiveness of Conductive Fiber Plain Fabric. J. Ind. Text. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Pan, Z.; Su, Y.; Liu, Z.; Duan, J.; Li, Y. Analysis of Shielding Effectiveness in Different Kinds of Electromagnetic Shielding Fabrics under Different Test Conditions. Text. Res. J. 2019, 89, 375–388. [Google Scholar] [CrossRef]
- Duan, J.J.; Wang, X.; Li, Y.; Liu, Z. Effect of Double-Layer Composite Absorbing Coating on Shielding Effectiveness of Electromagnetic Shielding Fabric. Mater. Res. Express 2019, 6, 086109. [Google Scholar] [CrossRef]
- Cheng, K.B.; Cheng, T.W.; Nadaraj, R.N.; Dev, V.R.G.; Neelakandan, R. Electromagnetic Shielding Effectiveness of the Twill Copper Woven Fabrics. J. Reinf. Plast. Compos. 2006, 25, 699–709. [Google Scholar] [CrossRef]
- Liu, Q.; Yi, C.; Chen, J.; Xia, M.; Lu, Y.; Wang, Y.; Liu, X.; Li, M.; Liu, K.; Wang, D. Flexible, Breathable, and Highly Environmental-Stable Ni/PPy/PET Conductive Fabrics for Efficient Electromagnetic Interference Shielding and Wearable Textile Antennas. Compos. Part B Eng. 2021, 215, 108752. [Google Scholar] [CrossRef]
- Lopez, A.; Vojtech, L.; Neruda, M. Comparison among Models to Estimate the Shielding Effectiveness Applied to Conductive Textiles. Adv. Electr. Electron. Eng. 2013, 11, 387–391. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X. Influence of Fabric Weave Type on the Effectiveness of Electromagnetic Shielding Woven Fabric. J. Electromagn. Waves Appl. 2012, 26, 1848–1856. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Zhang, Y.; Zhou, Z. Analysis of Surface Metal Fiber Arrangement of Electromagnetic Shielding Fabric and Its Influence on Shielding Effectiveness. Int. J. Cloth. Sci. Technol. 2016, 28, 191–200. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Liu, Z.; Wang, Z. A New Study on the Influencing Factors and Mechanism of Shielding Effectiveness of Woven Fabrics Containing Stainless Steel Fibers. J. Ind. Text. 2021, 50, 830–846. [Google Scholar] [CrossRef]
- Kong, L.B.; Li, Z.W.; Liu, L.; Huang, R.; Abshinova, M.; Yang, Z.; Tang, C.B.; Tan, P.K.; Deng, C.R.; Matitsine, S. Recent Progress in Some Composite Materials and Structures for Specific Electromagnetic Applications. Int. Mater. Rev. 2013, 58, 203–259. [Google Scholar] [CrossRef]
- Cui, X.; Liang, X.; Liu, W.; Gu, W.; Ji, G.; Du, Y. Stable Microwave Absorber Derived from 1D Customized Heterogeneous Structures of Fe3N@C. Chem. Eng. J. 2020, 381, 122589. [Google Scholar] [CrossRef]
- Huang, T.; Wang, Y.; Wang, G. Review of the Mechanical Properties of a 3D Woven Composite and Its Applications. Polym. Technol. Eng. 2017, 57, 740–756. [Google Scholar] [CrossRef]
- Wang, H.; Long, J.; Wang, Y.; Liang, Y.; Hu, J.; Jiang, H. The Influence of Carbon Fiber Diameter and Content on the Dielectric Properties of Wet-Laid Nonwoven Fabric. Text. Res. J. 2018, 89, 2542–2552. [Google Scholar] [CrossRef]
- Brekhovskikh, L. Waves in Layered Media. SIAM Rev. 1982, 24, 239–241. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.A. Scattering of Electromagnetic Waves from Random Media with Strong Permittivity Fluctuations. Radio Sci. 1981, 16, 303–320. [Google Scholar] [CrossRef]
- Peng, Z.-H.; Cao, M.-S.; Yuan, J.; Xiao, G. Strong Fluctuation Theory for Effective Electromagnetic Parameters of Fiber Fabric Radar Absorbing Materials. Mater. Des. 2004, 25, 379–384. [Google Scholar] [CrossRef]
- Yin, J.; Ma, W.; Gao, Z.; Jia, C.; Lei, X. A Model for Predicting Electromagnetic Wave Absorption of 3D Bidirectional Angle-Interlock Woven Fabric. Polym. Test. 2021, 100, 107272. [Google Scholar]
- Xie, S.; Ji, Z.; Shui, Z.; Li, B.; Hou, G.; Wang, J. Effect of 3D Woven Fabrics on the Microwave Absorbing and Mechanical Properties of Gypsum Composites Using Carbon Black as an Absorbent. Mater. Res. Express 2017, 4, 085606. [Google Scholar] [CrossRef]
- Zou, L.; Shen, J.; Xu, Z.; Ruan, F.; Qiu, Y.; Liu, Z. Electromagnetic Wave Absorbing Properties of Cotton Fabric with Carbon Nanotubes Coating. Fibres Text. East. Eur. 2020, 28, 82–90. [Google Scholar]
- Simayee, M.; Montazer, M. A Protective Polyester Fabric with Magnetic Properties Using Mixture of Carbonyl Iron and Nano Carbon Black along with Aluminium Sputtering. J. Ind. Text. 2016, 47, 674–685. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Zhao, X. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide Double Coated Polyester Woven Fabric. J. Text. Inst. 2018, 109, 106–112. [Google Scholar] [CrossRef]
- Ayan, M.Ç.; Kiriş, S.; Yapici, A.; Karaaslan, M.; Akgöl, O.; Altıntaş, O.; Ünal, E. Investigation of Cotton Fabric Composites as a Natural Radar-Absorbing Material. Aircr. Eng. Aerosp. Technol. 2020, 92, 1275–1280. [Google Scholar] [CrossRef]
- Fan, W.; Li, D.-D.; Li, J.-L.; Li, J.-Z.; Yuan, L.-J.; Xue, L.-L.; Sun, R.-J.; Meng, J.-G. Electromagnetic Properties of Three-Dimensional Woven Carbon Fiber Fabric/Epoxy Composite. Text. Res. J. 2018, 88, 2353–2361. [Google Scholar] [CrossRef]
- Fan, W.; Yuan, L.; D’Souza, N.; Xu, B.; Dang, W.; Xue, L.; Li, J.; Tonoy, C.; Sun, R. Enhanced Mechanical and Radar Absorbing Properties of Carbon/Glass Fiber Hybrid Composites with Unique 3D Orthogonal Structure. Polym. Test. 2018, 69, 71–79. [Google Scholar] [CrossRef]
- Xue, L.; Fan, W.; Wu, F.; Zhang, Y.; Guo, K.; Li, J.; Yuan, L.; Dang, W.; Sun, R. The Influence of Thermo-Oxidative Aging on the Electromagnetic Absorbing Properties of 3D Quasi-Isotropic Braided Carbon/Glass Bismaleimide Composite. Polym. Degrad. Stab. 2019, 168, 168. [Google Scholar] [CrossRef]
- Tak, J.; Choi, J. A Wearable Metamaterial Microwave Absorber. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 784–787. [Google Scholar] [CrossRef]
- Alonso-Gonzalez, L.; Ver-Hoeye, S.; Fernandez-Garcia, M.; Andres, F.L.H. Layer-to-Layer Angle Interlock 3D Woven Bandstop Frequency Selective Surface. Prog. Electromagn. Res. 2018, 162, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Bi, S.; Tang, J.; Wang, D.-j.; Su, Z.-a.; Hou, G.-l.; Li, H.; Li, J. Lightweight Non-Woven Fabric Graphene Aerogel Composite Matrices for Assembling Carbonyl Iron as Flexible Microwave Absorbing Textiles. J. Mater. Sci. Mater. Electron. 2019, 30, 17137–17144. [Google Scholar] [CrossRef]
- Akhtar, M.J.; Thumm, M. Measurement of Complex Permittivity of Cylindrical Objects in the E-Plane of a Rectangular Waveguide. IEEE Trans. Geosci. Remote Sens. 2012, 51, 122–131. [Google Scholar] [CrossRef]
- An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q.; Wang, Z. The Effect of Chitin Nanocrystal on the Structural Transition of Shish-Kebab to Fibrillar Crystals of Ultra-High Molecular Weight Polyethylene/Chitin Nanocrystal Fibers during Hot-Stretching Process. Eur. Polym. J. 2017, 96, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Cech, V.; Knob, A.; Hosein, H.-A.; Babik, A.; Lepcio, P.; Ondreas, F.; Drzal, L. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Compos. Part A Appl. Sci. Manuf. 2014, 58, 84–89. [Google Scholar] [CrossRef]
- Ai, T.; Wang, R.; Zhou, W. Effect of Grafting Alkoxysilane on the Surface Properties of Kevlar fiber. Polym. Compos. 2007, 28, 412–416. [Google Scholar] [CrossRef]
- Asadi, A.; Miller, M.; Moon, R.J.; Kalaitzidou, K. Improving the Interfacial and Mechanical Properties of Short Glass Fiber/Epoxy Composites by Coating the Glass Fibers with Cellulose Nanocrystals. Express Polym. Lett. 2016, 10, 587–597. [Google Scholar] [CrossRef]
- Siddique, A.; Abid, S.; Shafiq, F.; Nawab, Y.; Wang, H.; Shi, B.; Saleemi, S.; Sun, B. Mode I Fracture Toughness of Fiber-Reinforced Polymer Composites: A Review. J. Ind. Text. 2021, 50, 1165–1192. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Tang, Y.; Kong, J.; Liu, T.; Gu, J. Polymer Matrix Wave-Transparent Composites: A Review. J. Mater. Sci. Technol. 2021, 75, 225–251. [Google Scholar] [CrossRef]
- Cho, K.; Wang, G.; Raju, R.; Rajan, G.; Fang, J.; Stenzel, M.H.; Farrar, P.; Prusty, B.G. Influence of Surface Treatment on the Interfacial and Mechanical Properties of Short S-Glass Fiber-Reinforced Dental Composites. ACS Appl. Mater. Interfaces 2019, 11, 32328–32338. [Google Scholar] [CrossRef]
- Choi, I.; Kim, J.G.; Gil Lee, D.; Seo, I.S. Aramid/Epoxy Composites Sandwich Structures for Low-Observable Radomes. Compos. Sci. Technol. 2011, 71, 1632–1638. [Google Scholar] [CrossRef]
- Martellosio, A.; Pasian, M.; Perregrini, L.; Piffer, L.; Riccardi, R.; Concaro, F.; Besso, P. High-Frequency Radomes for Polar Region Ground Stations: The State of the Art and Novel Developments of Radome Technologies. IEEE Antennas Propag. Mag. 2017, 59, 88–101. [Google Scholar] [CrossRef]
- Masai, H.; Iwafuchi, N.; Takahashi, Y.; Fujiwara, T.; Ohara, S.; Kondo, Y.; Sugimoto, N. Preparation of Crystallized Glass for Application in Fiber-Type Devices. J. Mater. Res. 2009, 24, 288–294. [Google Scholar] [CrossRef]
- Ramesh, M.; Palanikumar, K.; Reddy, K.H. Mechanical Property Evaluation of Sisal–Iute–Glass Fiber Reinforced Polyester Composites. Compos. Part B Eng. 2013, 48, 1–9. [Google Scholar] [CrossRef]
- Chen, Q.; Linghu, T.; Gao, Y.; Wang, Z.; Liu, Y.; Du, R.; Zhao, G. Mechanical Properties in Glass Fiber PVC-Foam Sandwich Structures from Different Chopped Fiber interfacial Reinforcement through Vacuum-Assisted Resin Transfer Molding (VARTM) Processing. Compos. Sci. Technol. 2017, 144, 202–207. [Google Scholar] [CrossRef]
- Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and Properties of Cyanate-Based Wave-Transparent Laminated Composites Reinforced by Dopamine/POSS Functionalized Kevlar Cloth. Compos. Sci. Technol. 2019, 169, 120–126. [Google Scholar] [CrossRef]
- Gu, J.; Li, Y.; Liang, C.; Tang, Y.; Tang, L.; Zhang, Y.; Kong, J.; Liu, H.; Guo, Z. Synchronously Improved Dielectric and Mechanical Properties of Wave-Transparent Laminated Composites Combined with Outstanding Thermal Stability by Incorporating Iysozyme/POSS Functionalized PBO Fibers. J. Mater. Chem. C 2018, 6, 7652–7660. [Google Scholar] [CrossRef]
- Zou, C.; Li, B.; Liu, K.; Yang, X.-J.; Li, D. Mechanical Properties and Interfacial Characteristics of 2.5D SiNOf/BN Wave-Transparent Composites. J. Eur. Ceram. Soc. 2019, 39, 3013–3022. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Tang, Y.; Xu, J.; Ma, H.; Kong, J.; Gu, J. Optimization of PBO Fibers/Cyanate Ester Wave-Transparent Laminated Composites Via Incorporation of a Fluoride-Containing Linear Interfacial Compatibilizer. Compos. Sci. Technol. 2021, 210, 108838. [Google Scholar] [CrossRef]
- Su, W.; Wu, N.; Wang, B.; Bao, H.; Wang, Y. Fabrication and Microwave-Transparent Property of Fluffy SiBNO Ultrafine Fibers by Electrospinning. Mater. Lett. 2018, 216, 228–231. [Google Scholar] [CrossRef]
Symbols | The Calculation Formula | Instructions |
---|---|---|
d is the depth of pores, cm; D is the diameter of a circular hole. | ||
Rectangular pores: Circular pores: | ||
f, MHz | ||
r is the distance between shield and field source; a is the area of a single pore, cm2; n is the number of pores per square centimeter | ||
——————————————— |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Ma, W.; Gao, Z.; Lei, X.; Jia, C. A Review of Electromagnetic Shielding Fabric, Wave-Absorbing Fabric and Wave-Transparent Fabric. Polymers 2022, 14, 377. https://doi.org/10.3390/polym14030377
Yin J, Ma W, Gao Z, Lei X, Jia C. A Review of Electromagnetic Shielding Fabric, Wave-Absorbing Fabric and Wave-Transparent Fabric. Polymers. 2022; 14(3):377. https://doi.org/10.3390/polym14030377
Chicago/Turabian StyleYin, Jianjun, Wensuo Ma, Zuobin Gao, Xianqing Lei, and Chenhui Jia. 2022. "A Review of Electromagnetic Shielding Fabric, Wave-Absorbing Fabric and Wave-Transparent Fabric" Polymers 14, no. 3: 377. https://doi.org/10.3390/polym14030377
APA StyleYin, J., Ma, W., Gao, Z., Lei, X., & Jia, C. (2022). A Review of Electromagnetic Shielding Fabric, Wave-Absorbing Fabric and Wave-Transparent Fabric. Polymers, 14(3), 377. https://doi.org/10.3390/polym14030377