Carbon-Nano Fibers Yield Improvement with Iodinated Electrospun PVA/Silver Nanoparticle as Precursor via One-Step Synthesis at Low Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of 13% PVA and 13% PVA/0.2% AgNO3 Solutions
2.2.2. Fabrication of Electro-Spun the 13% PVA and 13% PVA/0.2% AgNO3 Fibers
2.2.3. Iodination Treatment in 13% PVA and 13% PVA/0.2% AgNO3
2.2.4. Carbon Fiber Synthesis from Iodinated PVA and PVA/AgNO3
2.3. Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.K.; Lai, K.; Liu, W.; Yao, M.; Sun, R.J. Preparation of carbon nanofibres through electrospinning and thermal treatment. Polym. Int. 2009, 58, 1341–1349. [Google Scholar] [CrossRef]
- Ijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 353, 412–414. [Google Scholar] [CrossRef]
- Liu, W.; Adanur, S. Properties of Electrospun Polyacrylonitrile Membranes and Chemically-activated Carbon Nanofibers. Text. Res. J. 2010, 80, 124–134. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kim, C.H.; Yang, C.-M.; Ahn, S.; Kim, Y.H.; Hong, S.K.; Kim, K.S.; Hwang, J.Y.; Choi, G.B.; Kim, Y.A.; et al. Deriving structural perfection in the structure of polyacrylonitrile based electrospun carbon nanofiber. Carbon 2019, 147, 612–615. [Google Scholar] [CrossRef]
- Pophali, A.; Lee, K.-M.; Zhang, L.; Chuang, Y.-C.; Ehm, L.; Cuiffo, M.A.; Halada, G.P.; Rafailovich, M.; Verma, N.; Kim, T. First synthesis of poly(furfuryl) alcohol precursor-based porous carbon beads as an efficient adsorbent for volatile organic com-pounds. Chem. Eng. J. 2019, 373, 365–374. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Q.; Liu, J.; Du, C.; Li, B. Improved interfacial properties for largely enhanced thermal conductivity of poly(vi-nylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes. Appl. Surf. Sci. 2019, 487, 379–388. [Google Scholar] [CrossRef]
- Xia, G.; Zhang, L.; Fang, F.; Sun, D.; Guo, Z.; Liu, H. General Synthesis of Transition Metal Oxide Ultrafine Nanoparticles Em-bedded in Hierarchically Porous Carbon Nanofibers as Advanced Electrodes for Lithium Storage. Adv. Funct. Mater. 2016, 26, 6188–6196. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chiu, Y.; Chang, C.; He, H.; Tu, Y.; Lin, K.; Lin, Y.; Kao, T.; Hsu, H.; Tseng, H.; et al. Fabrication and Thermal Dissipation Properties of Carbon Nanofibers Derived from Electrospun Poly(Amic Acid) Carboxylate Salt Nanofibers. Macromol. Mater. Eng. 2019, 1900519, 1–6. [Google Scholar] [CrossRef]
- Taylor, I.M.; Patel, N.A.; Freedman, N.C.; Castagnola, E.; Cui, X.T. Direct in vivo electrochemical detection of resting dopamine using Poly(3,4-ethylenedioxythiophene)/carbon nanotube functionalized microelectrodes. Anal. Chem. 2019, 91, 12917–12927. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Cao, E.; Li, J.; Fan, Q.; Wu, L.; Song, Y.; Shi, J. Synthesis of mesoporous ribbon-shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes. Electrochim. Acta 2018, 292, 364–373. [Google Scholar] [CrossRef]
- Zhang, B.; Kang, F.; Tarascon, J.; Kim, J. Progress in Materials Science Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 2016, 76, 319–380. [Google Scholar] [CrossRef]
- Ramakrishna, M.S.; Kotaki, R.I. Systematic parameter study for nano-fiber fabrication via electrospinning process. Bulg. Chem. Commun. 2014, 46, 545. [Google Scholar]
- Fong, H.; Chun, I.; Reneker, D.H. Beaded nanofibers formed during electrospinning. Polymer 1999, 40, 4585–4592. [Google Scholar] [CrossRef]
- Fatema, U.K.; Uddin, A.J.; Uemura, K.; Gotoh, Y. Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers. Text. Res. J. 2011, 81, 659–672. [Google Scholar] [CrossRef]
- Awad, S.A.; Khalaf, E.M. Evaluation of the photostabilizing efficiency of polyvinyl alcohol-zinc chloride composites. J. Thermo-plast. Compos. Mater. 2018, 2020, 69–84. [Google Scholar] [CrossRef]
- Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.-Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. [Google Scholar] [CrossRef]
- Nagarkar, R.; Patel, J. Polyvinyl Alcohol: A Comprehensive Study. Acta Sci. Pharm. Sci. 2019, 3, 34–44. [Google Scholar]
- Lee, J.-Y.; Jung, J.-M.; Kim, D.-Y.; Lee, Y.S.; Jung, C.-H.; Shin, K.; Choi, J.-H. Preparation of conductive carbon films from Polyvi-nyl Alcohol by chemical pre-treatment and pyrolysis. J. Nanosci. Nanotechnol. 2017, 17, 5481–5484. [Google Scholar] [CrossRef]
- Kim, Y.A.; Hayashi, T.; Endo, M.; Dresselhaus, M.S. Carbon Nano; Springer: Berlin/Heidelberg, Germany, 2013; pp. 233–262. [Google Scholar] [CrossRef]
- Rao, V.K.; Radhakrishnan, T.P. Hollow bimetallic nanoparticles generated in situ inside a polymer thin film: Fabrication and catalytic application of silver–palladium–poly (vinyl alcohol). J. Mater. Chem. A 2013, 1, 13612–13618. [Google Scholar] [CrossRef]
- Yahyaei, B.; Manafi, S.; Fahimi, B.; Arabzadeh, S.; Pourali, P. Production of electrospun polyvinyl alcohol / microbial synthe-sized silver nanoparticles scaffold for the treatment of fungating wounds. Appl. Nanosci. 2018, 8, 417–426. [Google Scholar] [CrossRef]
- Gupta, A.; Dhakate, S.R.; Pal, P.; Dey, A.; Iyer, P.K.; Singh, D.K. Effect of graphitization temperature on structure and electrical conductivity of poly-acrylonitrile based carbon fibers. Diam. Relat. Mater. 2017, 78, 31–38. [Google Scholar] [CrossRef]
- Widiyastuti, W. Formation of Carbon Fibres From Polymer Poly ( vinyl alcohol )/ Acetylene Black using Electrospinning Method Formation of Carbon Fibres From Polymer Poly ( vinyl alcohol )/ Acetylene Black using Electrospinning Method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 543, 012030. [Google Scholar] [CrossRef] [Green Version]
- Robertsam, A.; Jaya, N.V. Fabrication of a Low-Coercivity, Large-Magnetoresistance PVA/Fe/Co/Ni Nanofiber Composite Using an Electrospinning Technique and Its Characterization. J. Nanosci. Nanotechnol. 2020, 20, 3504–3511. [Google Scholar] [CrossRef]
- Ramakrishna, S.; Fujihara, K.; Teo, W.E.; Lim, T.C.; Ma, Z. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005. [Google Scholar] [CrossRef]
- Liu, R. Ultra-Flexibility, Robust Waterproof and Breathability of Polyvinylidene Fluoride Membrane Blended Silver Nitrate for Electronic Skin Substrate. J. Phys. D Appl. Phys. 2020, 53, 195403. [Google Scholar] [CrossRef]
- Lee, B.; Jung, J.; Hwang, I.; Shin, J.; Hong, S. Applied Surface Science Fabrication and electric heating behavior of carbon thin fi lms from water- soluble poly ( vinyl alcohol ) via simple dry and ambient stabilization and carbonization. Appl. Surf. Sci. 2018, 456, 561–567. [Google Scholar] [CrossRef]
- Khan, M.S.J.; Khan, S.B.; Kamal, T.; Asiri, A.M. Agarose biopolymer coating on polyurethane sponge as host for catalytic silver metal nanoparticles. Polym. Test. 2019, 78, 105983. [Google Scholar] [CrossRef]
- Ju, J.; Kang, W.; Deng, N.; Li, L.; Zhao, Y.; Ma, X.; Fan, L.; Cheng, B. Preparation and characterization of PVA-based carbon nanofibers with honeycomb-like porous structure via electro-blown spinning method. Microporous Mesoporous Mater. 2017, 239, 416–425. [Google Scholar] [CrossRef]
- Abdel-Mohsen, A.M.; Pavliňák, D.; Čileková, M.; Lepcio, P.; Abdel-Rahman, R.M.; Jančář, J. Electrospinning of hyaluronan/po-lyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2019, 139, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret ftir spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Ceran, Ö.B.; Şimşek, B.; Şara, O.N. Preparation and characterization novel dioctyl terephthalate blended polyvinyl alcohol-composite films incorporated with the graphene oxide and silver nanoparticles. Polym. Test. 2020, 82, 106315. [Google Scholar] [CrossRef]
- Rachmawati, A.; Shima, E.K.; Taufiq, A. Distribution of Silver (Ag) Nanoparticle in PVA / Ag Nanofiber Fabricated by Electro-spinning Method Distribution of Silver ( Ag ) Nanoparticle in PVA / Ag Nanofiber Fabricated by Electrospinning Method. J. Phys. Conf. Ser. 2018, 1093, 012045. [Google Scholar]
- Gupta, D.; Jassal, M.; Agrawal, A.K. Atypical rheology and spinning behavior of poly(vinyl alcohol) in a nonaqueous solvent. Polym. J. 2019, 51, 883–894. [Google Scholar] [CrossRef]
- ESheha; Khoder, H.; Shanap, T.S.; El-Shaarawy, M.G.; el Mansy, M.K. Structure, dielectric and optical properties of p-type (PVA/CuI) nanocomposite polymer electrolyte for photovoltaic cells. Optik 2012, 123, 1161–1166. [Google Scholar] [CrossRef]
- Nadem, S.; Ziyadi, H.; Hekmati, M.; Baghali, M. Cross-linked poly(vinyl alcohol) nanofibers as drug carrier of clindamycin. Polym. Bull. 2019, 77, 0123456789. [Google Scholar] [CrossRef]
- Sharma, V.; Tiwari, P.; Mobin, S.M. Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 2017, 5, 8904–8924. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Gotoh, Y.; Morikawa, H.; Miura, M.; Fujimori, Y.; Nagura, M. Carbon fiber from natural biopolymer Bombyx mori silk fibroin with iodine treatment. Carbon 2007, 45, 1035–1042. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Pandey, S.K.; Parashar, V.; Mehrotra, G.K.; Pandey, A.C. Ag/PVA nanocomposites: Optical and thermal dimensions. J. Mater. Chem. 2011, 21, 17154–17159. [Google Scholar] [CrossRef]
- Siddaiah, T.; Ojha, P.; Kumar, N.O.G.V.R.; Ramu, C. Structural, optical and thermal characterizations of PVA/MAA:EA Poly-blend films. Mater. Res. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Martin-Gullon, I.; Vera, J.; Conesa, J.A.; González, J.L.; Merino, C. Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon 2006, 44, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
No. | Polymer | Density (Kg/m3) | Viscosity | Conductivity (µs/cm) | |
---|---|---|---|---|---|
(Nm/s2) | Cp | ||||
1 | PVA 13 w/v% | 1.106 | 0.005711 | 5.711 | 166.5 |
2 | PVA 13 w/v%/AgNO3 0.2 w/t% | 1.128 | 0.008072 | 8.072 | 472.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gea, S.; Attaurrazaq, B.; Situmorang, S.A.; Piliang, A.F.R.; Hendrana, S.; Goutianos, S. Carbon-Nano Fibers Yield Improvement with Iodinated Electrospun PVA/Silver Nanoparticle as Precursor via One-Step Synthesis at Low Temperature. Polymers 2022, 14, 446. https://doi.org/10.3390/polym14030446
Gea S, Attaurrazaq B, Situmorang SA, Piliang AFR, Hendrana S, Goutianos S. Carbon-Nano Fibers Yield Improvement with Iodinated Electrospun PVA/Silver Nanoparticle as Precursor via One-Step Synthesis at Low Temperature. Polymers. 2022; 14(3):446. https://doi.org/10.3390/polym14030446
Chicago/Turabian StyleGea, Saharman, Boy Attaurrazaq, Suhut Alexander Situmorang, Averroes Fazlur Rahman Piliang, Sunit Hendrana, and Stergios Goutianos. 2022. "Carbon-Nano Fibers Yield Improvement with Iodinated Electrospun PVA/Silver Nanoparticle as Precursor via One-Step Synthesis at Low Temperature" Polymers 14, no. 3: 446. https://doi.org/10.3390/polym14030446
APA StyleGea, S., Attaurrazaq, B., Situmorang, S. A., Piliang, A. F. R., Hendrana, S., & Goutianos, S. (2022). Carbon-Nano Fibers Yield Improvement with Iodinated Electrospun PVA/Silver Nanoparticle as Precursor via One-Step Synthesis at Low Temperature. Polymers, 14(3), 446. https://doi.org/10.3390/polym14030446