Influence of Air Flow on Luminescence Quenching in Polymer Films towards Explosives Detection Using Drones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Fabrication
2.2. PL Quenching Set-Up
3. Results and Discussion
3.1. Spectral Analysis
3.2. PL Quenching Results
3.3. Flow Dependence of PL Quenching
3.4. Light Illumination Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shanmugaraju, S.; Joshi, S.A.; Mukherjee, P.S. Fluorescence and visual sensing of nitroaromatic explosives using electron rich discrete fluorophores. J. Mater. Chem. 2011, 21, 9130. [Google Scholar] [CrossRef]
- Räupke, A.; Palma-Cando, A.; Shkura, E.; Teckhausen, P.; Polywka, A.; Görrn, P.; Scherf, U.; Riedl, T. Highly sensitive gas-phase explosive detection by luminescent microporous polymer networks. Sci. Rep. 2016, 6, 29118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hara, M. Detection of IED Emplacement in Urban Environments. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2008. [Google Scholar]
- Holthoff, E.L.; Stratis-Cullum, D.N.; Hankus, M.E. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering. Sensors 2011, 11, 2700–2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martelo, L.M.; Marques, L.F.; Burrows, H.D.; Berberan-Santos, M.N. Explosives Detection: From Sensing to Response. In Fluorescence in Industry; Pedras, B., Ed.; Springer Series on Fluorescence (Methods and Applications); Springer: Cham, Switzerland, 2019; Volume 18. [Google Scholar]
- Chang, C.-P.; Chao, C.-Y.; Huang, J.H.; Li, A.-K.; Hsu, C.-S.; Lin, M.-S.; Hsieh, B.R.; Su, A.-C. Fluorescent conjugated polymer films as TNT chemosensors. Synth. Met. 2004, 144, 297–301. [Google Scholar] [CrossRef]
- Budget-in-Brief, Fiscal Year 2021, Homeland Security. Available online: www.dhs.gov (accessed on 31 August 2021).
- Germain, M.E.; Knapp, M.J. Optical explosives detection: From color changes to fluorescence turn-on. Chem. Soc. Rev. 2009, 38, 2543–2555. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061. [Google Scholar] [CrossRef] [Green Version]
- Caygill, J.S.; Davis, F.; Higson, S.P. Higson, Current trends in explosive detection techniques. Talanta 2012, 88, 14–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, S.; Ampadu, E.K.; Kim, M.; Noh, D.; Oh, E.; Lee, D. Detection of Explosives by SERS Platform Using Metal Nanogap Substrates. Sensors 2021, 21, 5567. [Google Scholar] [CrossRef]
- Mi, H.-Y.; Liu, J.-L.; Guan, M.-M.; Liu, Q.-W.; Zhang, Z.-Q.; Feng, G.-D. Fluorescence chemical sensor for determining trace levels of nitroaromatic explosives in water based on conjugated polymer with guanidinium side groups. Talanta 2018, 187, 314–320. [Google Scholar] [CrossRef]
- Shaw, P.E.; Burn, P.L. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: What are the key processes? Phys. Chem. Chem. Phys. 2017, 19, 29714. [Google Scholar] [CrossRef]
- Xin, Y.; He, G.; Wang, Q.; Fang, Y. A portable fluorescence detector for fast ultra trace detection of explosive vapors. Rev. Sci. Instrum. 2011, 82, 103102. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-S.; Swager, T.M. Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120, 11864–11873. [Google Scholar] [CrossRef]
- Zhao, D.; Swager, T.M. Sensory Responses in Solution vs Solid State: A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s. Macromolecules 2005, 38, 9377–9384. [Google Scholar] [CrossRef]
- Nie, H.; Sun, G.; Zhang, M.; Baumgarten, M.; Mullen, K. Fluorescent conjugated polycarbazoles for explosives detection: Side chain effects on TNT sensor sensitivity. J. Mater. Chem. 2012, 22, 2129. [Google Scholar] [CrossRef]
- Wang, Y.; La, A.; Ding, Y.; Liu, Y.; Lei, Y. Novel Signal-Amplifying Fluorescent Nanofibers for Naked-Eye-Based Ultrasensitive Detection of Buried Explosives and Explosive Vapors. Adv. Funct. Mater. 2012, 22, 3547–3555. [Google Scholar] [CrossRef]
- Prata, J.V.; Costa, A.I.; Teixeira, C.M. A Solid-State Fluorescence Sensor for Nitroaromatics and Nitroanilines Based on a Conjugated Calix[4] arene Polymer. J. Fluoresc. 2020, 30, 41–50. [Google Scholar] [CrossRef]
- Deng, C.; He, Q.; Cheng, J.; Zhu, D.; He, C.; Lin, T. Unusual spectroscopic properties of PPE/TiO2 composite and its sensor response to TNT. Synth. Met. 2009, 159, 320–324. [Google Scholar] [CrossRef]
- Ali, M.A.; Geng, Y.; Cavaye, H.; Burn, P.L.; Gentle, I.R.; Meredith, P.; Shaw, P.E. Molecular versus exciton diffusion in fluorescence-based explosive vapour sensors. Chem. Comm. 2015, 51, 17406–17409. [Google Scholar] [CrossRef]
- Gillanders, R.N.; Glackin, J.M.; Filipi, J.; Kezic, N.; Samuel, I.D.; Turnbull, G.A. Turnbull, Preconcentration techniques for trace explosive sensing. Sci. Total Environ. 2019, 658, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Clavaguera, S.; Montméat, P.; Parret, F.; Pasquinet, E.; Lère-Porte, J.-P.; Hairault, L. Hairault, Comparison of fluorescence and QCM technologies: Example of explosives detection with a π-conjugated thin film. Talanta 2010, 82, 1397–1402. [Google Scholar] [CrossRef]
- Malik, A.H.; Hussain, S.; Kalita, A.; Iyer, P.K. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. ACS Appl. Mater. Interfaces 2015, 7, 26968–26976. [Google Scholar] [CrossRef] [PubMed]
- Gettinger, C.L.; Heeger, A.J.; Drake, J.M.; Pine, D.J. A photoluminescence study of poly(phenylene vinylene) derivatives: The effect of intrinsic persistence length. J. Chem. Phys. 1994, 101, 1673–1678. [Google Scholar] [CrossRef]
- Becker, H.; Lux, A.; Holmes, A.; Friend, R.; Friend, P.L.E.L. Quenching due to Thin Metal Films in Conjugated Polymers and Polymer LEDs. Synth. Met. 1997, 85, 1289–1290. [Google Scholar] [CrossRef]
- Saini, S.; Srinivas, G.; Bagchi, B. Distance and Orientation Dependence of Excitation Energy Transfer: From Molecular System to Metal Nanoparticles. J. Phys. Chem. B 2009, 113, 1817–18132. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, S.; Schanze, K.S. Amplified quenching in metal-organic conjugated polymers. Chem. Commun. 2003, 9, 650–651. [Google Scholar] [CrossRef]
- Hagler, T.W.; Pakbaz, K.; Voss, K.F.; Heeger, A.J. Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. Phys. Rev. B 1991, 44, 8652–8666. [Google Scholar] [CrossRef]
- Samuel, I.; Crystall, B.; Rumbles, G.; Burn, P.; Holmes, A.; Friend, R. The efficiency and time-dependence of luminescence from poly(p-phenylene vinylene) and derivatives. Chem. Phys. Lett. 1993, 213, 472–478. [Google Scholar] [CrossRef]
- Andrew, T.L.; Swager, T.M. Swager, Structure—Property Relationships for Exciton Transfer in Conjugated Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 476–498. [Google Scholar] [CrossRef]
- Roldao, J.C.; Batagin-Neto, A.; Lavarda, F.C.; Sato, F. Effects of Mechanical Stretching on the Properties of Conjugated Polymers: Case Study for MEH-PPV and P3HT Oligomers. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1413–1426. [Google Scholar] [CrossRef]
- Halsey-Moore, C.; Jena, P.; McLesKey, J.T., Jr. Tuning range-separated DFT functionals for modeling the peak absorption of MEH-PPV polymer in various solvents. Comput. Theor. Chem. 2019, 1162, 112506. [Google Scholar] [CrossRef]
- Clark, A.P.-Z.; Cadby, A.J.; Shen, C.K.-F.; Rubin, Y.; Tolbert, S.H. Tolbert, Synthesis and Self-Assembly of an Amphiphilic Poly(phenylene ethynylene) Ionomer. J. Phys. Chem. B 2006, 110, 22088–22096. [Google Scholar] [CrossRef] [PubMed]
- Nesterov, E.E.; Zhu, Z.; Swager, T.M. Conjugation Enhancement of Intramolecular Exciton Migration in Poly(p-phenylene ethynylene)s. J. Am. Chem. Soc. 2005, 127, 10083–10088. [Google Scholar] [CrossRef] [PubMed]
- Esser, B.; Swager, T.M. Detection of Ethylene Gas by Fluorescence Turn-On of a Conjugated Polymer. Angew. Chem. Int. Ed. 2010, 49, 8872–8875. [Google Scholar] [CrossRef] [Green Version]
- Mirzov, O.; Scheblykin, I.G. Photoluminescence spectra of a conjugated polymer: From films and solutions to single molecules. Phys. Chem. Chem. Phys. 2006, 8, 5569–5576. [Google Scholar] [CrossRef]
- Spano, F.C. Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J. Chem. Phys. 2005, 122, 234701. [Google Scholar] [CrossRef]
- Spano, F.C. The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates. Acc. Chem. Res. 2010, 43, 429–439. [Google Scholar] [CrossRef]
- Spano, F.C.; Yamagata, H. Vibronic Coupling in J-Aggregates and Beyond: A Direct Means of Determining the Exciton Coherence Length from the Photoluminescence Spectrum. J. Phys. Chem. B 2011, 115, 5133–5143. [Google Scholar] [CrossRef]
- Urbánek, P.; Kuritka, I.; Danis, S.; Toušková, J.; Tousek, J. Thickness threshold of structural ordering in thin MEH-PPV films. Polymer 2014, 55, 4050–4056. [Google Scholar] [CrossRef]
- Östmark, H.; Wallin, S.; Ang, H.G. Vapor Pressure of Explosives: A Critical Review, Propellants Explos. Pyrotech 2012, 37, 12–23. [Google Scholar] [CrossRef]
- Ewing, R.G.; Waltman, M.J.; Atkinson, D.A.; Grate, J.W.; Hotchkiss, P.J. The vapor pressures of explosives. Trends Analyt Chem. 2013, 42, 35–47. [Google Scholar] [CrossRef]
- Ho, X.L.; White, J.D. Light induced fluorescence enhancement in MEH-PPV thin films. Chem. Phys. Lett. 2019, 735, 136753. [Google Scholar] [CrossRef]
- Botiz, I.; Freyberg, P.; Leordean, C.; Gabudean, A.-M.; Astilean, S.; Yang, A.C.-M.; Stingelin, N. Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing. ACS Appl. Mater. Interfaces 2014, 6, 4974–4979. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-S.; Swager, T.M. Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory Materials. J. Am. Chem. Soc. 1998, 120, 5321–5322. [Google Scholar] [CrossRef]
- Liu, Y.; Mills, R.C.; Boncella, J.M.; Schanze, K.S. Schanze, Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics. ACS Langmuir 2001, 17, 7453. [Google Scholar]
- Oh, E.; Jun, A.W. Flow Path Device for External Light Blocking and Airflow Optimizing. Korea Patent Registration No. 10-2020-0146114, 20 November 2020. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Mesh size | 0.1 × 0.1 | mm2 |
Polymer surface concentration | 3.20 × 10−8 | kmol/m2 |
TNT diffusion coefficient | 5.76 × 10−6 | m2/s |
O2 diffusion coefficient | 1.76 × 10−5 | m2/s |
N2 diffusion coefficient | 2.00 × 10−5 | m2/s |
TNT mole fraction | 0.000000263 | |
O2 mole fraction | 0.21 | |
N2 mole fraction | 0.789999737 | |
Chemical reaction rate constant pre-exponential factor | 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, D.; Ampadu, E.K.; Oh, E. Influence of Air Flow on Luminescence Quenching in Polymer Films towards Explosives Detection Using Drones. Polymers 2022, 14, 483. https://doi.org/10.3390/polym14030483
Noh D, Ampadu EK, Oh E. Influence of Air Flow on Luminescence Quenching in Polymer Films towards Explosives Detection Using Drones. Polymers. 2022; 14(3):483. https://doi.org/10.3390/polym14030483
Chicago/Turabian StyleNoh, Daegwon, Emmanuel K. Ampadu, and Eunsoon Oh. 2022. "Influence of Air Flow on Luminescence Quenching in Polymer Films towards Explosives Detection Using Drones" Polymers 14, no. 3: 483. https://doi.org/10.3390/polym14030483
APA StyleNoh, D., Ampadu, E. K., & Oh, E. (2022). Influence of Air Flow on Luminescence Quenching in Polymer Films towards Explosives Detection Using Drones. Polymers, 14(3), 483. https://doi.org/10.3390/polym14030483