Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
Preparation of Microspheres CH-Alg-QUE
3. Characterization of Microspheres
3.1. Determination of Quercetin Entrapment Efficiency (EE (%)) into the CH-Alg Microspheres
3.2. Swelling Index Study
3.3. In Vitro Release Studies of Quercetin Microspheres
3.4. Thermal Analysis
3.5. Scanning Laser Confocal Microscopy Analysis
3.6. Scanning Electron Microscopy
3.7. Statistical Analysis
4. Results and Discussion
4.1. QUE Entrapment Efficiency (EE (%)) Study Results
4.2. Swelling Index (idxSWL (%)) Study Results
4.3. In Vitro Release Studies of QUE Entrapped in Microspheres
4.4. Thermal Analysis of Quercetin Microspheres
4.5. Scanning Laser Confocal Microscopy Analysis
4.6. Results of Scanning Electron Microscopy (SEM)
4.7. Statistical Analysis
4.7.1. Nonlinear Regression of the Swelling Index and In Vitro Release Time Series
4.7.2. Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garrison, T.F.; Murawski, A.; Quirino, R.L. Bio-based polymers with potential for biodegradability. Polymers 2016, 8, 262. [Google Scholar] [CrossRef] [PubMed]
- Gopi, S.; Amalraj, A.; Thomas, S. Effective drug delivery system of biopolymers based on nanomaterials and hydrogels—A review. Drug Des. 2016, 5, 2169-0138. [Google Scholar]
- Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers 2018, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HPS, A.K.; Saurabh, C.K.; Adnan, A.; Fazita, M.N.; Syakir, M.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.; Haafiz, M.; Dungani, R. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym. 2016, 150, 216–226. [Google Scholar]
- Kulkarni Vishakha, S.; Butte Kishor, D.; Rathod Sudha, S. Natural polymers–A comprehensive review. Int. J. Res. Pharm. Biomed. Sci. 2012, 3, 1597–1613. [Google Scholar]
- Pérez-Recalde, M.; Arias, I.E.R.; Hermida, É.B. Could essential oils enhance biopolymers performance for wound healing? A systematic review. Phytomedicine 2018, 38, 57–65. [Google Scholar] [CrossRef]
- Periayah, M.H.; Halim, A.S.; Saad, A.Z.M. Chitosan: A promising marine polysaccharide for biomedical research. Pharmacogn. Rev. 2016, 10, 39. [Google Scholar] [CrossRef]
- Yadav, P.; Yadav, H.; Shah, V.G.; Shah, G.; Dhaka, G. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J. Clin. Diagn. Res. JCDR 2015, 9, ZE21. [Google Scholar] [CrossRef]
- Barani, M.; Hajinezhad, M.R.; Sargazi, S.; Rahdar, A.; Shahraki, S.; Lohrasbi-Nejad, A.; Baino, F. In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes. J. Mater. Sci. Mater. Med. 2021, 32, 147. [Google Scholar] [CrossRef]
- Barani, M.; Sangiovanni, E.; Angarano, M.; Rajizadeh, M.A.; Mehrabani, M.; Piazza, S.; Gangadharappa, H.V.; Pardakhty, A.; Mehrbani, M.; Dell’Agli, M.; et al. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int. J. Nanomed. 2021, 16, 6983–7022. [Google Scholar] [CrossRef]
- Rahdar, A.; Reza Hajinezhad, M.; Sargazi, S.; Barani, M.; Karimi, P.; Velasco, B.; Taboada, P.; Pandey, S.; Bameri, Z.; Zarei, S. Pluronic F127/carfilzomib-based nanomicelles as promising nanocarriers: Synthesis, characterization, biological, and in silico evaluations. J. Mol. Liq. 2022, 346, 118271. [Google Scholar] [CrossRef]
- Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release 2009, 133, 238–244. [Google Scholar] [PubMed]
- Gover Antoniraj, M.; Maria Leena, M.; Moses, J.A.; Anandharamakrishnan, C. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. Int. J. Biol. Macromol. 2020, 147, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, W.; Wang, C.; Hu, J.; Fu, S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm. 2005, 295, 235–245. [Google Scholar] [CrossRef]
- Hanif, M.; Zaman, M.; Qureshi, S. Thiomers: A blessing to evaluating era of pharmaceuticals. Int. J. Polym. Sci. 2015, 2015, 146329. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.A.; Syeda, J.; Wasan, K.M.; Wasan, E.K. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Abd Elgadir, M.; Uddin, M.S.; Ferdosh, S.; Adam, A.; Chowdhury, A.J.K.; Sarker, M.Z.I. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J. Food Drug Anal. 2015, 23, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.; Bleher, S.; Eide Flaten, G.; Tho, I.; Mattsson, S.; Škalko-Basnet, N. Chitosan in mucoadhesive drug delivery: Focus on local vaginal therapy. Mar. Drugs 2015, 13, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Tian, Z.; Du, Y. Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices. Biomaterials 2004, 25, 3725–3732. [Google Scholar] [CrossRef]
- Salomon, C.; Goycoolea, F.M.; Moerschbacher, B. Recent Trends in the Development of Chitosan-Based Drug Delivery Systems; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Cadena-Velandia, Z.G.; Montenegro-Alarcón, J.C.; Marquínez-Casas, X.; Mora-Huertas, C.E. Quercetin-loaded alginate microparticles: A contribution on the particle structure. J. Drug Deliv. Sci. Technol. 2020, 56, 101558. [Google Scholar] [CrossRef]
- López-Maldonado, E.A.; Oropeza-Guzmán, M.T. Synthesis and physicochemical mechanistic evaluation of chitosan-based interbiopolyelectrolyte complexes for effective encapsulation of OLZ for potential application in nano-psychiatry. Sustain. Chem. Pharm. 2021, 22, 100456. [Google Scholar] [CrossRef]
- Ćirić, A.; Krajišnik, D.; Čalija, B.; Đekić, L. Biocompatible non-covalent complexes of chitosan and different polymers: Characteristics and application in drug delivery. Arh. Za Farm. 2020, 70, 173–197. [Google Scholar] [CrossRef]
- Buranachai, T.; Praphairaksit, N.; Muangsin, N. Chitosan/polyethylene glycol beads crosslinked with tripolyphosphate and glutaraldehyde for gastrointestinal drug delivery. Aaps Pharmscitech 2010, 11, 1128–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panos, I.; Acosta, N.; Heras, A. New drug delivery systems based on chitosan. Curr. Drug Discov. Technol. 2008, 5, 333–341. [Google Scholar] [CrossRef]
- Tiyaboonchai, W. Chitosan nanoparticles: A promising system for drug delivery. Naresuan Univ. J. Sci. Technol. (NUJST) 2013, 11, 51–66. [Google Scholar]
- Ahmed, S.; Ikram, S. Chitosan & its derivatives: A review in recent innovations. Int. J. Pharm. Sci. Res. 2015, 6, 14. [Google Scholar]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Pontillo, A.R.N.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the encapsulation of natural products: The case of chitosan biopolymer as a matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef]
- Dima, C.; Cotârlet, M.; Alexe, P.; Dima, S. Microencapsulation of essential oil of pimento [Pimenta dioica (L.) Merr.] by chitosan/k-carrageenan complex coacervation method. Innov. Food Sci. Emerg. Technol. 2014, 22, 203–211. [Google Scholar] [CrossRef]
- Qv, X.-Y.; Zeng, Z.-P.; Jiang, J.-G. Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocoll. 2011, 25, 1596–1603. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Maity, S.; Chakraborty, S.; Rudra, R.; Ghodadara, H.; Solanki, M.; Chakraborti, A.S.; Prajapati, A.K.; Kundu, P.P. Oral delivery of quercetin to diabetic animals using novel pH responsive carboxypropionylated chitosan/alginate microparticles. RSC Adv. 2016, 6, 73210–73221. [Google Scholar] [CrossRef]
- Silva, L.F.C.; Kasten, G.; de Campos, C.E.M.; Chinelatto, A.L.; Lemos-Senna, E. Preparation and characterization of quercetin-loaded solid lipid microparticles for pulmonary delivery. Powder Technol. 2013, 239, 183–192. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Maity, S.; Mandal, S.; Chakraborti, A.S.; Prajapati, A.K.; Kundu, P.P. Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr. Polym. 2018, 182, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, N.M.; Qureshi, U.F. Preparation and characterization of crosslinked acrylic acid/hydroxypropyl methyl cellulose hydrogels for drug delivery. Int. J. Pharm. Pharm. Sci. 2014, 6, 410. [Google Scholar]
- Roumanian Pharmacopeia, Xth ed.; Medical Publishing House: Bucharest, Roumania, 1993.
- Negrea, A.; Mihailescu, M.; Mosoarca, G.; Ciopec, M.; Duteanu, N.; Negrea, P.; Minzatu, V. Estimation on Fixed-Bed Column Parameters of Breakthrough Behaviors for Gold Recovery by Adsorption onto Modified/Functionalized Amberlite XAD7. Int. J. Environ. Res. Public Health 2020, 17, 6868. [Google Scholar] [CrossRef] [PubMed]
- Karthick, V.; Panda, S.; Kumar, V.G.; Kumar, D.; Shrestha, L.K.; Ariga, K.; Vasanth, K.; Chinnathambi, S.; Dhas, T.S.; Suganya, K.U. Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells. Appl. Surf. Sci. 2019, 487, 211–217. [Google Scholar] [CrossRef]
- Devi, N.; Kakati, D.K. Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. J. Food Eng. 2013, 117, 193–204. [Google Scholar] [CrossRef]
- Özbilenler, C.; Altundağ, E.M.; Gazi, M. Synthesis of quercetin-encapsulated alginate beads with their antioxidant and release kinetic studies. J. Macromol. Sci. Part A 2020, 58, 22–31. [Google Scholar] [CrossRef]
- Hazra, M.; Mandal, D.D.; Mandal, T.; Bhuniya, S.; Ghosh, M. Designing polymeric microparticulate drug delivery system for hydrophobic drug quercetin. Saudi Pharm. J. 2015, 23, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Takka, S.; Gürel, A. Evaluation of chitosan/alginate beads using experimental design: Formulation and in vitro characterization. AAPS Pharmscitech 2010, 11, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Bhushan, B. Chapter 2: Surface Roughness Analysis and Measurement Techniques. In Modern Tribology Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001; p. 72. [Google Scholar]
Samples | The Mass of Quercetin (g) | The Mass of Chitosan (g) | The Mass pf Sodium Alginate (g) |
---|---|---|---|
P1 (QUE050_Ch01) | 0.050 | 0.1 | 0.75 |
P2 (QUE075_Ch01) | 0.075 | 0.1 | 0.75 |
P3 (QUE100_Ch01) | 0.100 | 0.1 | 0.75 |
P4 | - | 0.1 | 0.75 |
P5 (QUE050_Ch02) | 0.050 | 0.2 | 0.75 |
P6 (QUE075_Ch02) | 0.075 | 0.2 | 0.75 |
P7 (QUE100_Ch02) | 0.100 | 0.2 | 0.75 |
P8 | - | 0.2 | 0.75 |
Sample | EE (%) |
---|---|
P1 | 82.217d ± 0.668 |
P2 | 83.257c, d ± 0.609 |
P3 | 84.047b, c ± 0.764 |
P5 | 84.180b, c ± 0.478 |
P6 | 85.227a, b ± 0.502 |
P7 | 86.067a ± 0.276 |
pH | idxSWL (%) |
---|---|
1.2 | 1327.290e ± 529.110 |
3 | 2020.404d ± 864.895 |
5 | 5375.740c ± 2583.403 |
6.8 | 8984.463b ± 3128.500 |
7.4 | 11,514.305a ± 3730.353 |
Sample | mQUErel (%) |
---|---|
P1 | 57.303d ± 32.163 |
P2 | 60.056c ± 32.071 |
P3 | 62.584b ± 32.569 |
P5 | 46.979g ± 28.720 |
P6 | 50.084f ± 29.809 |
P7 | 53.584e ± 31.223 |
QUE | 68.958a ± 30.654 |
Sample | Evaluation Area (µm2) | Sa (µm) | Sq (µm) | Sp (µm) | Sv (µm) | Sy (µm) |
---|---|---|---|---|---|---|
P1 | 1279 × 1280 | 20.890h ± 0.0082 | 42.110h ± 0.0163 | 472.10h ± 0.02 | 386.56h ± 0.01 | 858.67h ± 0.03 |
P2 | 1279 × 1280 | 22.013g ± 0.0170 | 48.733g ± 0.0205 | 563.08g ± 0.03 | 489.47g ± 0.01 | 1052.56g ± 0.03 |
P3 | 1279 × 1280 | 28.330d ± 0.0408 | 62.630d ± 0.0163 | 713.99d ± 0.02 | 672.91d ± 0.02 | 1386.90d ± 0.01 |
P4 | 1279 × 1280 | 29.790c ± 0.0082 | 64.530c ± 0.0163 | 773.75c ± 0.02 | 712.11c ± 0.01 | 1586.90c ± 0.01 |
P5 | 1279 × 1280 | 24.260f ± 0.0163 | 50.490f ± 0.0408 | 578.75f ± 0.01 | 462.30f ± 0.02 | 1041.05f ± 0.02 |
P6 | 1279 × 1280 | 24.790e ± 0.0082 | 53.260e ± 0.0163 | 624.40e ± 0.01 | 538.86e ± 0.01 | 1165.51e ± 0.02 |
P7 | 1279 × 1280 | 34.560b ± 0.0408 | 74.020b ± 0.0082 | 710.85b ± 0.02 | 540.86b ± 0.02 | 1249.72b ± 0.01 |
P8 | 1279 × 1280 | 36.760a ± 0.0408 | 82.180a ± 0.0082 | 776.42a ± 0.02 | 577.15a ± 0.01 | 1359.72a ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frenț, O.D.; Duteanu, N.; Teusdea, A.C.; Ciocan, S.; Vicaș, L.; Jurca, T.; Muresan, M.; Pallag, A.; Ianasi, P.; Marian, E. Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin. Polymers 2022, 14, 490. https://doi.org/10.3390/polym14030490
Frenț OD, Duteanu N, Teusdea AC, Ciocan S, Vicaș L, Jurca T, Muresan M, Pallag A, Ianasi P, Marian E. Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin. Polymers. 2022; 14(3):490. https://doi.org/10.3390/polym14030490
Chicago/Turabian StyleFrenț, Olimpia Daniela, Narcis Duteanu, Alin Cristian Teusdea, Stefania Ciocan, Laura Vicaș, Tunde Jurca, Mariana Muresan, Annamaria Pallag, Paula Ianasi, and Eleonora Marian. 2022. "Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin" Polymers 14, no. 3: 490. https://doi.org/10.3390/polym14030490
APA StyleFrenț, O. D., Duteanu, N., Teusdea, A. C., Ciocan, S., Vicaș, L., Jurca, T., Muresan, M., Pallag, A., Ianasi, P., & Marian, E. (2022). Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin. Polymers, 14(3), 490. https://doi.org/10.3390/polym14030490