Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of HPC
2.2. Characterization
2.3. Electrochemical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, G.; Li, H.; Bai, Q.; Li, C.; Shen, Y.; Uyama, H. Dual-doping activated carbon with hierarchical pore structure derived from polymeric porous monolith for high performance EDLC. Electrochim. Acta 2021, 375, 137927. [Google Scholar] [CrossRef]
- Phan, T.N.; Gong, M.K.; Thangavel, R.; Lee, Y.S.; Ko, C.H. Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): Role of mesopores and mesopore structures. J. Alloys Compd. 2019, 780, 90–97. [Google Scholar] [CrossRef]
- Yang, I.; Kwon, D.; Kim, M.S.; Jung, J.C. A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon 2018, 132, 503–511. [Google Scholar] [CrossRef]
- Chen, L.; Yu, H.; Li, Z.; Chen, X.; Zhou, W. Cellulose nanofiber derived carbon aerogel with 3D multiscale pore architecture for high-performance supercapacitors. Nanoscale 2021, 13, 17837–17845. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Liu, Y.; Zhang, Y.; Chen, M.; Zheng, J.; Tang, J.; Meng, C. 3D hierarchical porous V3O7·H2O nanobelts/CNT/reduced graphene oxide integrated composite with synergistic effect for supercapacitors with high capacitance and long cycling life. J. Colloid Interface Sci. 2018, 531, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Jung, M.; Joo, O.S.; Mho, S.I. EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates. Curr. Appl. Phys. 2006, 6, 1012–1015. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, H.; Wang, S.; Wu, Q.; Xia, N.; Kong, F. Electroless decoration of cellulose paper with nickel nanoparticles: A hybrid carbon fiber for supercapacitors. Mater. Chem. Phys. 2018, 215, 157–162. [Google Scholar] [CrossRef]
- Felhősi, I.; Keresztes, Z.; Marek, T.; Pajkossy, T. Properties of electrochemical double-layer capacitors with carbon-nanotubes-on-carbon-fiber-felt electrodes. Electrochim. Acta 2020, 334, 135548. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Bao, L.; Wu, S.; Yang, W.; Wang, H. One-step synthesis of chitin-derived nitrogen-rich porous carbon fiber assisted with ammonium chloride chemical blowing for supercapacitors. J. Mater. Sci. Mater. Electron. 2018, 29, 12340–12350. [Google Scholar] [CrossRef]
- Arkhipova, E.A.; Ivanov, A.S.; Maslakov, K.I.; Savilov, S.V. Nitrogen-doped mesoporous graphene nanoflakes for high performance ionic liquid supercapacitors. Electrochim. Acta 2020, 353, 136463. [Google Scholar] [CrossRef]
- Yanik, M.O.; Yigit, E.A.; Akansu, Y.E.; Sahmetlioglu, E. Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy 2017, 138, 883–889. [Google Scholar] [CrossRef]
- Yang, H.; Bo, Z.; Yang, J.; Kong, J.; Chen, X.; Yan, J.; Cen, K. Substrate effects in graphene-based electric double-layer capacitors: The pivotal interplays between ions and solvents. ChemElectroChem 2017, 4, 2966–2974. [Google Scholar] [CrossRef]
- Oasmaa, A.; Czernik, S. Fuel oil quality of biomass pyrolysis oils state of the art for the end users. Energy Fuels 1999, 13, 914–921. [Google Scholar] [CrossRef]
- Yumak, T.; Yakaboylu, G.A.; Oginni, O.; Singh, K.; Ciftyurek, E.; Sabolsky, E.M. Comparison of the electrochemical properties of engineered switchgrass biomass-derived activated carbon-based EDLCs. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124150. [Google Scholar] [CrossRef]
- Quan, H.; Fan, X.; Wang, W.; Gao, W.; Dong, Y.; Chen, D. Hierarchically porous carbon derived from biomass: Effect of mesopore and heteroatom-doping on electrochemical performance. Appl. Sur. Sci. 2018, 460, 8–16. [Google Scholar] [CrossRef]
- Kostas, E.T.; Cooper, M.; Shepherd, B.J.; Robinson, J.P. Identification of bio-oil compound utilizing yeasts through phenotypic microarray screening. Waste Biomass Valorization 2020, 11, 2507–2519. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.G.; Oh, S.J.; Lee, S.J.; Kim, J.S. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresour. Technol. 2015, 178, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Chang-Jian, C.W.; Hsieh, T.H.; Huang, J.H.; Weng, H.C.; Hsiao, Y.S.; Syu, W.L.; Chen, C.P. High-performance Li-Ion capacitor constructed from biomass-derived porous carbon and high-rate Li4Ti5O12. Appl. Sur. Sci. 2021, 543, 148717. [Google Scholar] [CrossRef]
- Rios, C.D.M.S.; Simone, V.; Simonin, L.; Martinet, S.; Dupont, C. Biochars from various biomass types as precursors for hard carbon anodes in sodium-ion batteries. Biomass Bioenergy 2018, 117, 32–37. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Zhao, H.M.; Wang, D.Y.; Wang, Q.; Pang, Y.; Deng, N.Q.; Cao, H.W.; Yang, Y.; Ren, T.L. A super flexible and custom-shaped graphene heater. Nanoscale 2017, 9, 14357–14363. [Google Scholar] [CrossRef]
- Gan, W.; Gao, L.; Zhan, X.; Li, J. Preparation of thiol-functionalized magnetic sawdust composites as an adsorbent to remove heavy metal ions. RSC Adv. 2016, 6, 37600–37609. [Google Scholar] [CrossRef]
- Sonal, S.; Prakash, P.; Mishra, B.K.; Nayak, G.C. Synthesis, characterization and sorption studies of a zirconium(IV) impregnated highly functionalized mesoporous activated carbons. RSC Adv. 2020, 10, 13783–13798. [Google Scholar] [CrossRef] [Green Version]
- ElShafei, G.M.S.; ElSherbiny, I.M.A.; Darwish, A.S.; Philip, C.A. Artichoke as a non-conventional precursor for activated carbon: Role of the activation process. J. Taibah Univ. Sci. 2017, 11, 677–688. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Tu, L.Y.; Liang, Y.; Chen, Q.; Li, Z.S.; Li, C.H.; Wang, Z.H.; Li, W. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018, 8, 42280–42291. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhang, Y.; Li, X.; Lv, Z.; Wang, X.; Liu, Z.; Huang, X. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim. Acta 2018, 282, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Peng, X.; Zhao, M.; Liu, P.; Xu, B.; Guo, J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RSC Adv. 2018, 8, 2858–2865. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, A.; Jeyavelan, M.; Rajju Balan, J.A.A.; Srivastava, O.N.; Hudson, M.S.L. Supercapacitor and room temperature H, CO2 and CH4 gas storage characteristics of commercial nanoporous activated carbon. J. Phys. Chem. Solids 2021, 152, 109969. [Google Scholar] [CrossRef]
- Barroso-Bogeat, A.; Alexandre-Franco, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V. Electrical conductivity of activated carbon–metal oxide nanocomposites under compression: A comparison study. Phys. Chem. Chem. Phys. 2014, 16, 25161–25175. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Mouscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers; Wiley: Hoboken, NJ, USA, 1992; p. 2956. [Google Scholar]
- Muruganantham, R.; Hsieh, T.H.; Lin, C.H.; Liu, W.R. Bio-oil derived hierarchical porous hard carbon from rubber wood sawdust via a template fabrication process as highly stable anode for sodium-ion batteries. Mater. Today Energy 2019, 14, 100346. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, Y.; Ma, Z.; Pan, Y.; Sun, C.Q. Interfacial adhesion energy of lithium-ion battery electrodes. Extreme Mech. Lett. 2016, 9, 226–236. [Google Scholar] [CrossRef]
- Ghosh, S.; Santhosh, R.; Jeniffer, S.; Raghavan, V.; Jacob, G.; Nanaji, K.; Kollu, P.; Jeong, S.K.; Grace, A.N. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep. 2019, 9, 16315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayakumar, M.; Sankar, A.B.; Rohita, D.S.; Rao, T.N.; Karthik, M. Conversion of biomass waste into high performance supercapacitor electrodes for real-time supercapacitor applications. ACS Sustain. Chem. Eng. 2019, 7, 17175–17185. [Google Scholar] [CrossRef]
- Xie, Q.; Wu, S.; Zhang, Y.; Zhao, P. Nitrogen-enriched flexible porous carbon/graphene composite cloth as free-standing electrodes for high performance aqueous supercapacitors. J. Electroanal. Chem. 2017, 801, 57–64. [Google Scholar] [CrossRef]
- Perera Jayawickramage, R.A.; Ferraris, J.P. High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes. Nanotechnology 2019, 30, 155402. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xue, J.; Dong, S.; Zhang, Y.; An, Y.; Ding, B.; Zhang, T.; Dou, H.; Zhang, X. Biomass-derived porous carbon electrodes for high-performance supercapacitors. J. Mater. Sci. 2020, 55, 5166–5176. [Google Scholar] [CrossRef]
- Jain, A.; Ghosh, M.; Krajewski, M.; Sreekumar Kurungot, S.; Michalska, M. Biomass-derived activated carbon material from native European deciduous trees as an inexpensive and sustainable energy material for supercapacitor application. J. Energy Storage 2021, 34, 102178. [Google Scholar] [CrossRef]
- He, D.; Gao, Y.; Wang, Z.; Yao, Y.; Wu, L.; Zhang, J.; Huang, Z.H.; Wang, M.X. One-step green fabrication of hierarchically porous hollow carbon nanospheres (HCNSs) from raw biomass: Formation mechanisms and supercapacitor applications. J. Colloid Interface Sci. 2021, 581, 238–250. [Google Scholar] [CrossRef]
- Yakaboylu, G.A.; Jiang, C.; Yumak, T.; Zondlo, J.W.; Wang, J.; Sabolsky, E.M. Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renew. Energy 2021, 163, 276–287. [Google Scholar] [CrossRef]
- Rajesh, M.; Manikandan, R.; Park, S.; Kim, B.C.; Cho, W.J.; Yu, K.H.; Raj, C.J. Pinecone biomass-derived activated carbon: The potential electrode material for the development of symmetric and asymmetric supercapacitors. Int. J. Energy Res. 2020, 44, 8591–8605. [Google Scholar] [CrossRef]
- Vinayagam, M.; Babu, R.S.; Sivasamy, A.; Ferreira de Barros, A.L. Biomass-derived porous activated carbon from Syzygium cumini fruit shells and Chrysopogon zizanioides roots for high-energy density symmetric supercapacitors. Biomass Bioenergy 2020, 143, 105838. [Google Scholar] [CrossRef]
- Karuppannan, M.; Kim, Y.; Sung, Y.E.; Kwon, O.J. Nitrogen and sulfur co-doped graphene-like carbon sheets derived from coir pith bio-waste for symmetric supercapacitor applications. J. Appl. Electrochem. 2019, 49, 57–66. [Google Scholar] [CrossRef]
- Chang, C.; Wang, H.; Zhang, Y.; Wang, S.; Liu, X.; Li, L. Fabrication of hierarchical porous carbon frameworks from metal-ion-assisted step-activation of biomass for supercapacitors with ultrahigh capacitance. ACS Sustainable Chem. Eng. 2019, 7, 10763–10772. [Google Scholar] [CrossRef]
- Le, P.A.; Nguyen, V.T.; Sahoo, S.K.; Tseng, T.Y.; Wei, K.H. Porous carbon materials derived from areca palm leaves for high performance symmetrical solid-state supercapacitors. J. Mater. Sci. 2020, 55, 10751–10764. [Google Scholar] [CrossRef]
- Chang-Jian, C.W.; Ho, B.C.; Chung, C.K.; Chou, J.A.; Chung, C.L.; Huang, J.H.; Huang, J.H.; Hsiao, Y.S. Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries. Ceram. Int. 2018, 44, 23063–23072. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Z.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X.; Zahiri, B.; Olsen, B.C.; Holt, C.M.B.; et al. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery–supercapacitor divide. Nano Lett. 2014, 14, 1987–1994. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Liang, Q.; Lei, Y.; Yu, X.; Han, C.; Shen, W.; Huang, Z.H.; Kang, F.; Yang, Q.H. A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. J. Power Sources 2015, 282, 174–178. [Google Scholar] [CrossRef]
- Long, D.H.; Jeong, M.G.; Lee, Y.S.; Choi, W.; Lee, J.K.; Oh, I.H.; Jung, H.G. Coating lithium titanate with nitrogen-doped carbon by simple refluxing for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 10250–10257. [Google Scholar] [CrossRef]
- Yang, Y.; Qiao, B.; Yang, X.; Fang, L.; Pan, C.; Song, W.; Hou, H.; Ji, X. Lithium titanate tailored by cathodically induced graphene for an ultrafast lithium ion battery. Adv. Funct. Mater. 2014, 24, 4349–4356. [Google Scholar] [CrossRef]
Biomass Resource | BET Surface Area (m2/g) | Capacitance (F/g) | Measurement Condition | Ref |
---|---|---|---|---|
Corn cob | 567.36 | 118 | 0.5 A/g (6 M KOH) | [33] |
Industrial waste cotton | 1893 | 118 | 0.5 A/g (1 M TEABF4/AN) | [34] |
Cotton | 1284 | 92 | 0.1 A/g (6 M KOH) | [35] |
Lignin | 2170 | 87 | [36] | |
Quinoa | 2597 | 99.2 | 0.5 A/g (1 M TEABF4/AN) | [37] |
European hornbeam | 614 | 24 | 0.25 A/g (1.0 M H2SO4) | [38] |
Rice husk | 1984 | 42.5 | 0.5 A/g (6 M KOH) | [39] |
Miscanthus grass | 2062 | 162 | 0.5 A/g (6 M KOH) | [40] |
Pinecone | 1169.31 | 43 | 0.5 A/g (1 M H2SO4) | [41] |
Chrysopogon zizanioides | 120 | 0.2 A/g (6 M KOH) | [42] | |
Coir pith bio-waste | 453 | 33.7 | 0.2 A/g (6 M KOH) | [43] |
Chinese parasol fluff | 1449 | 33.8 | 0.5 A/g (BMIMBF4/AN) | [44] |
Areca palm leaves | 876 | 132 | 0.5 A/g (PVA–Li2SO4) | [45] |
Rubberwood sawdust | 1604.9 | 113.3 | 0.5 A/g ((C2H5)4N(BF4)/PC) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, E.-C.; Chang-Jian, C.-W.; Lu, C.-Z.; Huang, J.-H.; Hsieh, T.-H.; Wu, N.-J.; Lee, K.-C.; Hsu, S.-C.; Weng, H.C. Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor. Polymers 2022, 14, 575. https://doi.org/10.3390/polym14030575
Cho E-C, Chang-Jian C-W, Lu C-Z, Huang J-H, Hsieh T-H, Wu N-J, Lee K-C, Hsu S-C, Weng HC. Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor. Polymers. 2022; 14(3):575. https://doi.org/10.3390/polym14030575
Chicago/Turabian StyleCho, Er-Chieh, Cai-Wan Chang-Jian, Cheng-Zhang Lu, Jen-Hsien Huang, Tzu-Hsien Hsieh, Nian-Jheng Wu, Kuen-Chan Lee, Shih-Chieh Hsu, and Huei Chu Weng. 2022. "Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor" Polymers 14, no. 3: 575. https://doi.org/10.3390/polym14030575
APA StyleCho, E. -C., Chang-Jian, C. -W., Lu, C. -Z., Huang, J. -H., Hsieh, T. -H., Wu, N. -J., Lee, K. -C., Hsu, S. -C., & Weng, H. C. (2022). Bio-Phenolic Resin Derived Porous Carbon Materials for High-Performance Lithium-Ion Capacitor. Polymers, 14(3), 575. https://doi.org/10.3390/polym14030575