Separated Micelles Formation of pH-Responsive Random and Block Copolymers Containing Phosphorylcholine Groups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of a Random Copolymer, P(MPC/DPAEMA50)107
2.3. Synthesis of a Block Copolymer, PMPC52-b-PDPAEMA56
2.4. Fluorescence Labeling of Copolymers
2.5. Preparation of Sample Solutions
2.6. Measurements
3. Results and Discussion
3.1. Preparation and Characterization of Random and Block Copolymers
3.2. pH-Responsive Behavior of the Copolymers
3.3. Association Behavior of the Random and Block Copolymers and Their Mixture
3.4. FRET Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mane, S.R.; Sathyan, A.; Shunmugam, R. Biomedical applications of ph-responsive amphiphilic polymer nanoassemblies. ACS Appl. Nano Mater. 2020, 3, 2104–2117. [Google Scholar] [CrossRef]
- Förster, S.; Abetz, V.; Müller, A.H.E. Polyelectrolyte Block Copolymer Micelles Bt-Polyelectrolytes with Defined Molecular Architecture ii; Schmidt, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 173–210. [Google Scholar] [CrossRef]
- Houga, C.; Giermanska, J.; Lecommandoux, S.; Borsali, R.; Taton, D.; Gnanou, Y.; Le Meins, J.-F. Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block copolymers. Biomacromolecules 2009, 10, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Riess, G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28, 1107–1170. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Li, C.; Huang, R.; Su, R.; Qi, W.; He, Z. Amphiphilic hydrogels for biomedical applications. J. Mater. Chem. B 2019, 7, 2899–2910. [Google Scholar] [CrossRef]
- Perin, F.; Motta, A.; Maniglio, D. Amphiphilic copolymers in biomedical applications: Synthesis routes and property control. Mater. Sci. Eng. C 2021, 123, 111952. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, L.J.C.; de Castro, C.E.; Riske, K.A.; da Silva, M.C.C.; Muraro, P.I.R.; Schmidt, V.; Giacomelli, C.; Giacomelli, F.C. Gene transfection mediated by catiomers requires free highly charged polymer chains to overcome intracellular barriers. Biomacromolecules 2017, 18, 1918–1927. [Google Scholar] [CrossRef] [PubMed]
- Pearson, R.; Warren, N.; Lewis, A.; Armes, S.; Battaglia, G. Effect of pH and temperature on PMPC-PDPA copolymer self-assembly. Macromolecules 2013, 46, 1400–1407. [Google Scholar] [CrossRef]
- Jäger, A.; Jäger, E.; Surman, F.; Höcherl, A.; Angelov, B.; Ulbrich, K.; Drechsler, M.; Garamus, V.M.; Rodriguez-Emmenegger, C.; Nallet, F.; et al. Nanoparticles of the poly([n-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer for pH-triggered release of paclitaxel. Polym. Chem. 2015, 6, 4946–4954. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.Q.; Kim, M.S.; Kim, B.S.; Lee, D.S. RAFT synthesis of amphiphilic (A-ran-B)-B-C diblock copolymers with tunable pH-sensitivity. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3740–3748. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Yang, J.; Zhou, C.; Sun, J. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian J. Pharm. Sci. 2013, 8, 159–167. [Google Scholar] [CrossRef] [Green Version]
- De Castro, C.E.; Ribeiro, C.A.S.; Alavarse, A.C.; Albuquerque, L.J.C.; da Silva, M.C.C.; Jäger, E.; Surman, F.; Schmidt, V.; Giacomelli, C.; Giacomelli, F.C. Nanoparticle–cell interactions: Surface chemistry effects on the cellular uptake of biocompatible block copolymer assemblies. Langmuir 2018, 34, 2180–2188. [Google Scholar] [CrossRef]
- Goda, T.; Ishihara, K.; Miyahara, Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Ishihara, K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J. Biomed. Mater. Res. Part A 2019, 107, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Hachiya, S.; Inoue, Y.; Fukazawa, K.; Konno, T. Water-soluble and cytocompatible phospholipid polymers for molecular complexation to enhance biomolecule transportation to cells in vitro. Polymers 2020, 12, 1762. [Google Scholar] [CrossRef] [PubMed]
- Hiranphinyophat, S.; Iwasaki, Y. Controlled biointerfaces with biomimetic phosphorus-containing polymers. Sci. Technol. Adv. Mater. 2021, 22, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Ishihara, K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005, 381, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Manjappa, A.S.; Kumbhar, P.S.; Patil, A.B.; Disouza, J.I.; Patravale, V.B. Polymeric mixed micelles: Improving the anticancer efficacy of single-copolymer micelles. Crit. Rev. Ther. Drug Carrier Syst. 2019, 36, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Atanase, L.I.; Riess, G. Micellization of pH-stimulable poly(2-vinylpyridine)-b-poly(ethylene oxide) copolymers and their complexation with anionic surfactants. J. Colloid Interface Sci. 2013, 395, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Atanase, L.I.; Lerch, J.-P.; Caprarescu, S.; Iurciuc (Tincu), C.E.; Riess, G. Micellization of pH-sensitive poly(butadiene)-block-poly(2 vinylpyridine)-block-poly(ethylene oxide) triblock copolymers: Complex formation with anionic surfactants. J. Appl. Polym. Sci. 2017, 134, 45313. [Google Scholar] [CrossRef]
- Iurciuc-Tincu, C.-E.; Cretan, M.S.; Purcar, V.; Popa, M.; Daraba, O.M.; Atanase, L.I.; Ochiuz, L. Drug Delivery System Based on pH-Sensitive Biocompatible Poly(2-vinyl pyridine)-b-poly(ethylene oxide) Nanomicelles Loaded with Curcumin and 5-Fluorouracil. Polymers 2020, 12, 1450. [Google Scholar] [CrossRef]
- Zheng, Y.; Davis, H.T. Mixed micelles of nonionic surfactants and uncharged block copolymers in aqueous solutions: Microstructure seen by cryo-TEM. Langmuir 2000, 16, 6453–6459. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Kim, J.-S.; Eisenberg, A. Self-assembly of mixtures of block copolymers of poly(styrene-b-acrylic acid) with random copolymers of poly(styrene-co-methacrylic acid). Langmuir 2006, 22, 419–424. [Google Scholar] [CrossRef]
- Chang, C.; Wei, H.; Li, Q.; Yang, B.; Chen, N.; Zhou, J.-P.; Zhang, X.-Z.; Zhuo, R.-X. Construction of mixed micelle with cross-linked core and dual responsive shells. Polym. Chem. 2011, 2, 923–930. [Google Scholar] [CrossRef]
- Wright, D.B.; Patterson, J.P.; Gianneschi, N.C.; Chassenieux, C.; Colombani, O.; O’Reilly, R.K. Blending block copolymer micelles in solution; obstacles of blending. Polym. Chem. 2016, 7, 1577–1583. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Liu, H.; He, H.; Ribbe, A.E.; Thayumanavan, S. Blended assemblies of amphiphilic random and block copolymers for tunable encapsulation and release of hydrophobic guest molecules. Macromolecules 2020, 53, 2713–2723. [Google Scholar] [CrossRef]
- Abbas, S.; Lodge, T.P. Superlattice formation in binary mixtures of block copolymer micelles. Langmuir 2008, 24, 6247–6253. [Google Scholar] [CrossRef]
- Ishihara, K.; Ueda, T.; Nakabayashi, N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J. 1990, 22, 355–360. [Google Scholar] [CrossRef]
- Mitsukami, Y.; Donovan, M.S.; Lowe, A.B.; McCormick, C.L. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 2001, 34, 2248–2256. [Google Scholar] [CrossRef]
- Dong, D.C.; Winnik, M.A. The Py scale of solvent polarities. solvent effects on the vibronic fine structure of pyrene fluorescence and empirical correlations with ET and Y values. Photochem. Photobiol. 1982, 35, 17–21. [Google Scholar] [CrossRef]
- Kalyanasundaram, K.; Thomas, J.K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1977, 99, 2039–2044. [Google Scholar] [CrossRef]
- Xu, F.-M.; Xu, J.-P.; Ji, J.; Shen, J.-C. A novel biomimetic polymer as amphiphilic surfactant for soluble and biocompatible carbon nanotubes (CNTs). Colloids Surf. B Biointerfaces 2008, 67, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Parelkar, S.S.; Emrick, T. A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers. Polym. Chem. 2015, 6, 525–530. [Google Scholar] [CrossRef]
- Adolphi, U.; Kulicke, W.-M. Coil dimensions and conformation of macromolecules in aqueous media from flow field-flow fractionation/multi-angle laser light scattering illustrated by studies on pullulan. Polymer 1997, 38, 1513–1519. [Google Scholar] [CrossRef]
- Basak, D.; Ghosh, S. pH-regulated controlled swelling and sustained release from the core functionalized amphiphilic block copolymer micelle. ACS Macro Lett. 2013, 2, 799–804. [Google Scholar] [CrossRef]
- Rajdev, P.; Ghosh, S. Fluorescence resonance energy transfer (FRET): A powerful tool for probing amphiphilic polymer aggregates and supramolecular polymers. J. Phys. Chem. B 2019, 123, 327–342. [Google Scholar] [CrossRef]
- Rajdev, P.; Basak, D.; Ghosh, S. Insights into noncovalently core cross-linked block copolymer micelles by fluorescence resonance energy transfer (FRET) studies. Macromolecules 2015, 48, 3360–3367. [Google Scholar] [CrossRef]
- Haugland, R.P. The Handbook—A Guide to Fluorescent Probes and Labeling Techniques, 10th ed.; Invitrogen: Eugene, OR, USA, 2005. [Google Scholar]
Sample | Mn(theo) a × 10−4 (g/mol) | Mn(NMR) b × 10−4 (g/mol) | Mn(GPC) c × 10−4 (g/mol) | Mw/Mnc |
---|---|---|---|---|
P(MPC/DPAEMA50)107 | 2.51 | 2.75 | 1.02 | 1.03 |
PMPC52-b-PDPAMEA56 | 2.53 | 2.76 | 1.49 | 1.14 |
Sample | dn/dCp | Rha (nm) | RTEMb (nm) | Rgc (nm) | Rg/Rh | Mwc × 105 (g/mol) | Naggd | d e (g/cm3) |
---|---|---|---|---|---|---|---|---|
Random | 0.253 | 4.4 | 5.2 | - | - | 0.23 | 0.83 | 0.108 |
Block | 0.274 | 11.0 | 12.7 | 12.3 | 1.12 | 2.11 | 6.7 | 0.063 |
Mixture | 0.228 | 10.4 (4.5) f | 10.6 (4.6) g | 12.2 | - | 1.21 | 4.6 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.L.; Ishihara, K.; Yusa, S.-i. Separated Micelles Formation of pH-Responsive Random and Block Copolymers Containing Phosphorylcholine Groups. Polymers 2022, 14, 577. https://doi.org/10.3390/polym14030577
Nguyen TL, Ishihara K, Yusa S-i. Separated Micelles Formation of pH-Responsive Random and Block Copolymers Containing Phosphorylcholine Groups. Polymers. 2022; 14(3):577. https://doi.org/10.3390/polym14030577
Chicago/Turabian StyleNguyen, Thi Lien, Kazuhiko Ishihara, and Shin-ichi Yusa. 2022. "Separated Micelles Formation of pH-Responsive Random and Block Copolymers Containing Phosphorylcholine Groups" Polymers 14, no. 3: 577. https://doi.org/10.3390/polym14030577
APA StyleNguyen, T. L., Ishihara, K., & Yusa, S. -i. (2022). Separated Micelles Formation of pH-Responsive Random and Block Copolymers Containing Phosphorylcholine Groups. Polymers, 14(3), 577. https://doi.org/10.3390/polym14030577