Sustainable Packaging Material Based on PCL Nanofibers and Lavandula luisieri Essential Oil, to Preserve Museological Textiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chemical Characterization of Essential Oil
2.2.2. Minimum Inhibitory Concentration (MIC) of the Lavandula luisieri Oil
2.2.3. Production of the Electrospun Materials
Preparation and Electrospinning of the PCL Solution:
Preparation and Electrospinning of PCL Solution with Lavandula luisieri Oil
2.2.4. Characterization of the Electrospun Materials’ Morphology
2.2.5. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Analysis
2.2.6. Color Analysis
2.2.7. Mechanical Analysis
2.2.8. Antibacterial Test
2.2.9. Contamination Test
3. Results and discussion
3.1. Chemical Characterization of the Essential Oil
3.2. Minimum Inhibitory Concentration (MIC) of the Lavandula luisieri Oil
3.3. Characterization of the Electrospun Nanofibers’ Morphology
3.4. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Analysis
3.5. Color Analysis
3.6. Mechanical Properties
3.7. Antibacterial Efficacy Evaluation
3.8. Contamination Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borkopp-Restle, B.; Mcneil, P.; Martinetti, S.; Miller, L.; Riello, G.; Grlic, O. Museums and the Making of Textile Histories: Past, Present, and Future. Perspective 2016, 1, 43–60. [Google Scholar] [CrossRef] [Green Version]
- Brzozowska, I.; Bogdanowicz, A.; Szczęsny, P.; Zielenkiewicz, U.; Laudy, A. Evaluation of Bacterial Diversity on Historical Silk Velvet Textiles from the Museum of King John III’s Palace at Wilanów, Poland. Int. Biodeterior. Biodegrad. 2018, 131, 78–87. [Google Scholar] [CrossRef]
- Joseph, E. Microorganisms in the Deterioration and Preservation of Cultural Heritage; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Pangallo, D.; Kraková, L.; Chovanová, K.; Bučková, M.; Puškarová, A.; Šimonovičová, A. Disclosing a Crypt: Microbial Diversity and Degradation Activity of the Microflora Isolated from Funeral Clothes of Cardinal Peter Pázmány. Microbiol. Res. 2013, 168, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Anna, W.; Beata, G.; Dorota, R.; Katarzyna, P.; Waldemar, M.; Henryk, W.; Aleksandra, P.; Anetta, W.; Anna, O.; Justyna, S.; et al. Vapourised Hydrogen Peroxide (VHP) and Ethylene Oxide (EtO) Methods for Disinfecting Historical Cotton Textiles from the Auschwitz-Birkenau State Museum in Oświęcim, Poland. Int. Biodeterior. Biodegrad. 2018, 133, 42–51. [Google Scholar] [CrossRef]
- Abdel-Kareem, O. Evaluating the Combined Efficacy of Polymers with Fungicides for Protection of Museum Textiles against Fungal Deterioration in Egypt. Pol. J. Microbiol. 2010, 59, 271–280. [Google Scholar] [CrossRef]
- Szostak-Kotowa, J. Biodeterioration of Textiles. Int. Biodeterior. Biodegrad. 2004, 53, 165–170. [Google Scholar] [CrossRef]
- Omar, A.; Taha, A.; El-Wekeel, F. Microbial Degradation of Ancient Textiles Housed in the Egyptian Textile Museum and Methods of Its Control. Egypt. J. Archaeol. Restor. Stud. 2019, 9, 27–37. [Google Scholar] [CrossRef]
- Gutarowska, B.; Pietrzak, K.; Machnowski, W.; Milczarek, J.M. Historical Textiles—A Review of Microbial Deterioration Analysis and Disinfection Methods. Text. Res. J. 2016, 87, 2388–2406. [Google Scholar] [CrossRef]
- Brennan, J. Simple Anoxic Storage for Textile Collections in Bhutan. In Proceedings of the ICOM Committee for Conservation 15th Triennial Meeting, New Delhi, India, 22–26 September 2008. [Google Scholar]
- La Gennusa, M.; Lascari, G.; Rizzo, G.; Scaccianoce, G. Conflicting Needs of the Thermal Indoor Environment of Museums: In Search of a Practical Compromise. J. Cult. Herit. 2008, 9, 125–134. [Google Scholar] [CrossRef]
- Kerschner, R.L. A Practical Approach to Environmental Requirements for Collections in Historic Buildings. J. Am. Inst. Conserv. 1992, 31, 65–76. [Google Scholar] [CrossRef]
- Odegaard, N.; Crawford, M.; Zimmt, W. The Use of Polytetrafluoroethylene (PTFE) Film for Storage Supports. J. Am. Inst. Conserv. 2013, 36, 249–251. [Google Scholar] [CrossRef]
- Pavlogeorgatos, G. Environmental Parameters in Museums. Build. Environ. 2003, 12, 1457–1462. [Google Scholar] [CrossRef]
- Templeton, R.H. Display of Textiles in Museum Collection; National Museum Institute of History of Art, Conservation and Museology: Delhi, India, 2012. [Google Scholar]
- Garside, P.; Hanson, L. A Systematic Approach to Selecting Inexpensive Conservation Storage Solutions. J. Conserv. Mus. Stud. 2011, 9, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Margariti, C.; Loukopoulou, P. Storage Solutions for Excavated Textiles: Tending to Their Recalcitrant Behaviour. J. Inst. Conserv. 2016, 39, 145–157. [Google Scholar] [CrossRef]
- Mir, S.A.; Dar, B.N.; Wani, A.A.; Shah, M.A. Effect of Plant Extracts on the Techno-Functional Properties of Biodegradable Packaging Films. Trends Food Sci. Technol. 2018, 80, 141–154. [Google Scholar] [CrossRef]
- Kalantari, K.; Afifi, A.M.; Jahangirian, H.; Webster, T.J. Biomedical Applications of Chitosan Electrospun Nanofibers as a Green Polymer—Review. Carbohydr. Polym. 2019, 207, 588–600. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review. Polymer 2017, 132, 368–393. [Google Scholar] [CrossRef]
- Tien, N.D.; Lyngstadaas, S.P.; Mano, J.F.; Blaker, J.J.; Haugen, H.J. Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules 2021, 26, 2683. [Google Scholar] [CrossRef]
- Mouro, C.; Simões, M.; Gouveia, I.C.; Xu, B. Emulsion Electrospun Fiber Mats of PCL/PVA/Chitosan and Eugenol for Wound Dressing Applications. Adv. Polym. Technol. 2019, 2019, 9859506. [Google Scholar] [CrossRef] [Green Version]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef]
- Sabir, M.I.; Xu, X.; Li, L. A Review on Biodegradable Polymeric Materials for Bone Tissue Engineering Applications. J. Mater. Sci. 2009, 44, 5713–5724. [Google Scholar] [CrossRef]
- Dash, T.K.; Konkimalla, V.B. Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-Caprolactone (PCL) as a Model Polymer. Mol. Pharm. 2012, 9, 2365–2379. [Google Scholar] [CrossRef] [PubMed]
- Razdan, S.; Adler, J.; Barua, D.; Barua, S. Multifunctional Biofilter to Effectively Remove Toxins. ACS Appl. Bio Mater. 2021, 4, 731–741. [Google Scholar] [CrossRef]
- Mouro, C.; Fangueiro, R.; Gouveia, I.C. Preparation and Characterization of Electrospun Double-Layered Nanocomposites Membranes as a Carrier for Centella Asiatica (L.). Polymers 2020, 12, 2653. [Google Scholar] [CrossRef]
- Motealleh, B.; Zahedi, P.; Rezaeian, I.; Moghimi, M.; Abdolghaffari, A.H.; Zarandi, M.A. Morphology, Drug Release, Antibacterial, Cell Proliferation, and Histology Studies of Chamomile-Loaded Wound Dressing Mats Based on Electrospun Nanofibrous Poly(ɛ-Caprolactone)/Polystyrene Blends. J. Biomed. Mater. Research. Part B Appl. Biomater. 2014, 102, 977–987. [Google Scholar] [CrossRef]
- Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-Based Materials in Biomedical Applications. J. Biomater. Science. Polym. Ed. 2018, 29, 863–893. [Google Scholar] [CrossRef]
- Razdan, S.; Wang, J.C.; Barua, S. PolyBall: A New Adsorbent for the Efficient Removal of Endotoxin from Biopharmaceuticals. Sci. Rep. 2019, 9, 8867. [Google Scholar] [CrossRef] [Green Version]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid.-Based Complementary Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef]
- Wells, R.; Truong, F.; Adal, A.M.; Sarker, L.S.; Mahmoud, S.S. Lavandula Essential Oils: A Current Review of Applications in Medicinal, Food, and Cosmetic Industries of Lavender. Nat. Prod. Commun. 2018, 13, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula Luisieri Essential Oil as a Source of Antifungal Drugs. Food Chem. 2012, 135, 1505–1510. [Google Scholar] [CrossRef]
- Benesovsky, P. Determination of Antibacterial Activity of Textiles-Methods, Results and Their Interpretation. In Proceedings of the ICAMS 2010–3rd International Conference on Advanced Materials and Systems, Bucharest, Romania, 16–18 September 2010; pp. 363–368. [Google Scholar]
- Ristić, T.; Zemljič, L.F.; Novak, M.; Kunčič, M.K.; Sonjak, S.; Gunde-Cimerman, N.; Strnad, S. Antimicrobial Efficiency of Functionalized Cellulose Fibres as Potential Medical Textiles. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Center: Badajoz, Spain, 2011; pp. 36–51. [Google Scholar]
- Mouro, C.; Dunne, C.P.; Gouveia, I.C. Designing New Antibacterial Wound Dressings: Development of a Dual Layer Cotton Material Coated with Poly(Vinyl Alcohol)_Chitosan Nanofibers Incorporating Agrimonia Eupatoria L. Extract. Molecules 2020, 26, 83. [Google Scholar] [CrossRef] [PubMed]
- Mouro, C.; Gomes, A.P.; Ahonen, M.; Fangueiro, R.; Gouveia, I.C. Chelidonium majus L. Incorporated Emulsion Electrospun PCL/PVA_PEC Nanofibrous Meshes for Antibacterial Wound Dressing Applications. Nanomaterials 2021, 11, 1785. [Google Scholar] [CrossRef]
- Simoncic, B.; Tomsic, B. Structures of Novel Antimicrobial Agents for Textiles—A Review. Text. Res. J. 2010, 80, 1721–1737. [Google Scholar] [CrossRef]
- Cavanagh, H.M.A.; Wilkinson, J.M. Biological Activities of Lavender Essential Oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef]
- Unalan, I.; Endlein, S.J.; Slavik, B.; Buettner, A.; Goldmann, W.H.; Detsch, R.; Boccaccini, A.R. Evaluation of Electrospun Poly(ε-Caprolactone)/Gelatin Nanofiber Mats Containing Clove Essential Oil for Antibacterial Wound Dressing. Pharmaceutics 2019, 11, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EĞRİ, Ö. Production of Lavender Oil Loaded Antibacterial Polymeric Membranes. Cumhur. Sci. J. 2020, 41, 160–168. [Google Scholar] [CrossRef]
- Haque, A.N.M.A.; Islam, M. Optimization Of Bleaching Parameters by Whiteness Index and Bursting Strength of Knitted Cotton Fabric. Int. J. Sci. Technol. Res. 2015, 4, 40–43. [Google Scholar]
- Mohamed, R.M.; Yusoh, K. A Review on the Recent Research of Polycaprolactone (PCL). Adv. Mater. Res. 2016, 1134, 249–255. [Google Scholar] [CrossRef]
- Abdel-Kareem, O.M.A. The Long-Term Effect of Selected Conservation Materials Used in the Treatment of Museum Artefacts on Some Properties of Textiles. Polym. Degrad. Stab. 2005, 87, 121–130. [Google Scholar] [CrossRef]
- Bastardes, T.; Ventosa, S. Fashion at the Museum: An Interpretation of the Dress Collections at the Design Museum of Barcelona. Datatèxtil 2015, 33, 24–34. [Google Scholar]
- Nilson, T.; Thorell, K. Cultural Heritage Preservation: The Past, the Present and the Future; Halmstad University: Halmstad, Sweden, 2018. [Google Scholar]
RI | Compound | % |
---|---|---|
922 | 1,2,5,5-tetramethyl-1,3-cyclopentadiene | 0.1 |
936 | α-Pinene | 2.4 |
950 | Camphene | 3.0 |
963 | Verbenene | 0.1 |
973 | Sabinene | 0.1 |
978 | β-Pinene | 0.4 |
989 | β-Myrcene | 0.1 |
1015 | 1,2,3,3-tetramethylcyclopenten-4-one | 0.2 |
1024 | p-Cymene | 0.2 |
1030 | Limonene | 0.3 |
1032 | 1,8-Cineole | 23.3 |
1038 | β-cis-Ocimene | 0.8 |
1048 | β-trans-Ocimene | 0.0 |
1060 | γ-Terpinene | 0.1 |
1075 | cis-Linalool oxide (furanoid) | 0.2 |
1079 | 3,4,4-trimethylcyclohex-2-en-1-one | 0.7 |
1083 | trans-linalool oxide (furanoid) | 0.2 |
1085 | 3,4,5,5-tetramethylcyclopent-2-en-1-one | 0.2 |
1088 | Fenchone | 0.8 |
1099 | Linalool | 2.2 |
1124 | α-Campholenal | 0.1 |
1140 | trans-Pinocarveol | 0.1 |
1143 | Camphor | 1.1 |
1163 | trans-α-necrodol | 10.2 |
1165 | δ-Terpineol | 1.2 |
1168 | Lavandulol | 1.3 |
1177 | Terpinen-4-ol | 0.3 |
1177 | Limonen-4-ol | 0.1 |
1184 | p-Cymen-8-ol | 0.1 |
1190 | α-Terpineol | 0.3 |
1192 | Myrtenal | 0.1 |
1206 | Verbenone | 1.6 |
1255 | Linalool acetate | 0.1 |
1265 | trans-α-necrodyl acetate | 25.8 |
1289 | Lavandulyl acetate | 5.3 |
1376 | α-Copaene | 0.2 |
1380 | Geranyl acetate | 2.0 |
1387 | β-Cubenene | 0.1 |
1453 | α-Humulene | 0.1 |
1486 | β-Selinene | 0.6 |
1493 | α-Selinene | 1.0 |
1523 | δ-cadinene | 1.1 |
1541 | Selina-3,7(11)-diene | 2.5 |
1637 | t-Cadinol | 1.5 |
Spectrophotometric Comparison of Materials | ||||
---|---|---|---|---|
Cotton | Non-Woven Polyester | PCL | PCL + EO | |
Color Appearance | ||||
RGB | 230.000 227.000 212.000 | 227.000 230.000 223.000 | 241.000 246.000 247.000 | 242.000 246.000 247.000 |
Reflectance (%/R) | 58.046 ± 1.604 | 52.630 ± 0.711 | 90.250 ± 2.021 | 89.052 ± 1.417 |
Color strength (K/S) | 0.152 ± 0.016 | 0.213 ± 0.009 | 0.005 ± 0.002 | 0.007 ± 0.002 |
L* | 91.388 ± 0.386 | 92.014 ± 0.251 | 97.618 ± 0.871 | 97.534 ± 0.528 |
a* | 0.198 ± 0.152 | −0.736 ± 0.043 | −0.118 ± 0.053 | −0.184 ± 0.005 |
b* | 8.846 ± 0.684 | 3.850 ± 0.092 | 0.634 ± 0.164 | 0.926 ± 0.118 |
Whiteness Index | 16.865 ± 0.684 | 32.253 ± 4.062 | 93.073 ± 3.398 | 92.751 ± 2.404 |
Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) | |
---|---|---|---|
Raw Cotton | 577.511 ± 57.440 | 33.759 ± 3.103 | 5.860 ± 0.446 |
Non-woven Polyester | 17.399 ± 3.006 | 4.257 ± 0.337 | 25.203 ± 5.822 |
PCL | 83.547 ± 83.030 | 1.834 ± 1.640 | 2.233 ± 0.475 |
PCL + EO | 69.275 ± 22.015 | 1.139 ± 0.298 | 1.678 ± 0.228 |
S. aureus | P. aeruginosa | |||
---|---|---|---|---|
CFU/mL | Bacterial Reduction (%) | CFU/mL | Bacterial Reduction (%) | |
Raw Cotton | 9.03 × 107 | - | 6.00 × 106 | - |
Non-woven Polyester | 4.32 × 106 | 95.22% | 3.25 × 105 | 94.59% |
PCL | 2.03 × 107 | 77.51% | 8.07 × 105 | 86.56% |
PCL+EO | 6.02 × 105 | 99.33% | 4.25 × 104 | 99.29% |
S. aureus | P. aeruginosa | |
---|---|---|
CFU/mL | CFU/mL | |
Control | 4.30 × 108 | 1.01 × 108 |
Raw Cotton | No growth | No growth |
Dyed Cotton | No growth | No growth |
Raw Cotton | No growth | No growth |
Contaminated Dyed Cotton | 1.98 × 105 | 3.13 × 105 |
Raw Cotton | No growth | No growth |
Non-woven Ppolyester | No growth | No growth |
Dyed Cotton | No growth | No growth |
Non-woven Polyester | No growth | No growth |
Contaminated Dyed Cotton | 1.80 × 105 | 3.92 × 106 |
Non-woven Polyester | No growth | No growth |
PCL | No growth | No growth |
Dyed Cotton | No growth | No growth |
PCL | No growth | No growth |
Contaminated Dyed Cotton | 1.52 × 106 | 2.29 × 105 |
PCL | No growth | No growth |
PCL + EO | No growth | No growth |
Dyed Cotton | No growth | No growth |
PCL + EO | No growth | No growth |
Contaminated Dyed Cotton | 8.02 × 105 | 3.97 × 104 |
PCL + EO | No growth | No growth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, E.F.; Mouro, C.; Silva, L.; Gouveia, I.C. Sustainable Packaging Material Based on PCL Nanofibers and Lavandula luisieri Essential Oil, to Preserve Museological Textiles. Polymers 2022, 14, 597. https://doi.org/10.3390/polym14030597
Ferreira EF, Mouro C, Silva L, Gouveia IC. Sustainable Packaging Material Based on PCL Nanofibers and Lavandula luisieri Essential Oil, to Preserve Museological Textiles. Polymers. 2022; 14(3):597. https://doi.org/10.3390/polym14030597
Chicago/Turabian StyleFerreira, Ester F., Cláudia Mouro, Lúcia Silva, and Isabel C. Gouveia. 2022. "Sustainable Packaging Material Based on PCL Nanofibers and Lavandula luisieri Essential Oil, to Preserve Museological Textiles" Polymers 14, no. 3: 597. https://doi.org/10.3390/polym14030597
APA StyleFerreira, E. F., Mouro, C., Silva, L., & Gouveia, I. C. (2022). Sustainable Packaging Material Based on PCL Nanofibers and Lavandula luisieri Essential Oil, to Preserve Museological Textiles. Polymers, 14(3), 597. https://doi.org/10.3390/polym14030597