Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions
Abstract
:1. Introduction
2. Coupled Type I and II Photoinitiators
2.1. Type I Photoinitiators
2.2. Coupled Type II Photoinitiators
2.2.1. Coupled Benzophenone (BP)
2.2.2. Coupled Eosin
2.2.3. Coupled Thioxanthone
2.2.4. Coupled Antraquinone
2.3. Surface Immobilization of Synergists for Benzophenone and Thioxanthone
3. Light Mediated Controlled Radical Polymerization from Surfaces
3.1. Surface-Initiated Photoiniferter-Mediated Polymerization (SI-PIMP)
3.2. Surface Initiated Atom Transfer Radical Polymerization (SI-ATRP)
3.3. Surface Initiated Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain Transfer Polymerization (SI-PET-RAFT)
4. Coupled Photoacids and Photoacid Generators
5. Photocoupling and Photoclick Reactions
5.1. Coupled Azide
5.2. Coupled Tetrazole
5.3. Coupled Diazirine
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbrevations
Abbreviation | Meaning |
DMAEMA | 2-(dimethylaminoethyl) methacrylate |
AIBN | 2,2-azobis(2-methylpropionitrile) |
Irgacure 2959 | 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone |
HEA | 2-hydroxyethyl) acrylate |
HEMA | 2-hydroxyethyl) methacrylate |
APTES | 3-aminopropyltriethoxysilane |
ACPA | 4,4′-azobis(4-cyanopentanoic acid) |
AAm | acrylamide |
AA | acrylic acid |
BP | benzophenone |
BP-DS | benzophenone diazonium salt |
BAPO | bis(acyl)phosphane oxide |
CNC | cellulose nanocrystals |
DC | dithiocarbamate |
DTCA | dithiodiundecane- 11,1 diylbis[4({[(diethylamino) carbonothioyl] thioethyl) phenyl] carbamate}])] |
GMA | glycidyl methacrylate |
HAp | hydroxyapatite |
HPTX | hyperbranched thioxanthone |
LDPE | low-density-polyethylene |
MAA | methacrylic acid |
MMA | methyl methacrylate |
SDBC | N-(diethylamino) dithiocarbamoylbenzyl-(trimethoxy)silane |
DMAAM | N,N-dimethylacrylamide |
NIPAM | N-isopropylacrylamide |
NITEC | nitrile imine -mediated tetrazole-ene cycloaddition |
PFPA | perfluorophenyl azides |
PAH | photoacid |
PAG | photoacid generator |
PC | photoredox catalyst |
PAA | poly (acrylic acid) |
PMAA | poly (methacrylic acid) |
PMMA | poly (methyl methacrylate) |
PAAm | poly acrylamide |
PEOX | poly(2-ethyl-2-oxazoline) |
PDMAA | poly(dimethylacrylamide) |
PEGMA | poly(ethylene glycol) methacrylate |
PHEMA | poly(hydroxyethyl methacrylate) |
PEI | poly(propyleneimine) |
PEG | polyethylene glycol |
PEGDA | polyethylene glycol diacrylate |
PP | polypropylene |
PS | polystyrene |
DC-H | sodium- N,N diethyldithiocarbamate trihydrate |
St | styrene |
SI-ATRP | surface initiated atom transfer radical polymerization |
SI-PET-RAFT | Surface Initiated Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain Transfer Polymerization |
SI-PIMP | surface initiated photoiniferter-mediated polymerization |
SI-NMP | surface-initiated nitroxide-mediated polymerization |
SI-RAFT | surface-initiated reversible addition fragmentation chain transfer |
Two-photon absorption | TPA |
Two-photon induced photopolymerization | TPIP |
TX | thioxanthone |
References
- Sangermano, M.; Razza, N. Light Induced Grafting-from Strategies as Powerful Tool for Surface Modification. Express Polym. Lett. 2019, 13, 135–145. [Google Scholar] [CrossRef]
- Bandl, C.; Krempl, N.; Berger-Weber, G.; Kern, W.; Friesenbichler, W. Application of Organosilane Coatings for Improved Anti-Adhesive Properties Enabling Facilitated Demolding in Polymer Processing. J. Appl. Polym. Sci. 2021, 138, 50714. [Google Scholar] [CrossRef]
- Ulbricht, M.; Yang, H. Porous Polypropylene Membranes with Different Carboxyl Polymer Brush Layers for Reversible Protein Binding via Surface-Initiated Graft Copolymerization. Chem. Mater. 2005, 17, 2622–2631. [Google Scholar] [CrossRef]
- Barbey, R.; Lavanant, L.; Paripovic, D.; Schüwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H.A. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chem. Rev. 2009, 109, 5437–5527. [Google Scholar] [CrossRef] [PubMed]
- Tasdelen, M.A.; Yagci, Y. Lichtinduzierte Klickreaktionen. Angew. Chem. 2013, 125, 6044–6053. [Google Scholar] [CrossRef]
- Stetsyshyn, Y.; Raczkowska, J.; Harhay, K.; Gajos, K.; Melnyk, Y.; Dąbczyński, P.; Shevtsova, T.; Budkowski, A. Temperature-Responsive and Multi-Responsive Grafted Polymer Brushes with Transitions Based on Critical Solution Temperature: Synthesis, Properties, and Applications. Colloid Polym. Sci. 2021, 299, 363–383. [Google Scholar] [CrossRef]
- Liu, L.H.; Yan, M. Perfluorophenyl Azides: New Applications in Surface Functionalization and Nanomaterial Synthesis. Acc. Chem. Res. 2010, 43, 1434–1443. [Google Scholar] [CrossRef] [Green Version]
- Dyer, D.J. Photoinitiated Synthesis of Grafted Polymers. Adv. Polym. Sci. 2006, 197, 47–65. [Google Scholar] [CrossRef]
- Felipe-Mendes, C.; Ruiz-Rubio, L.; Vilas-Vilela, J.L. Biomaterials Obtained by Photopolymerization: From UV to Two Photon. Emergent Mater. 2020, 3, 453–468. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3d Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Ng, G.; Li, M.; Yeow, J.; Jung, K.; Pester, C.W.; Boyer, C. Benchtop Preparation of Polymer Brushes by SI-PET-RAFT: The Effect of the Polymer Composition and Structure on Inhibition of a Pseudomonas Biofilm. ACS Appl. Mater. Interfaces 2020, 12, 55243–55254. [Google Scholar] [CrossRef] [PubMed]
- Zivic, N.; Sadaba, N.; Almandoz, N.; Ruipérez, F.; Mecerreyes, D.; Sardon, H. Thioxanthone-Based Photobase Generators for the Synthesis of Polyurethanes via the Photopolymerization of Polyols and Polyisocyanates. Macromolecules 2020, 53, 2069–2076. [Google Scholar] [CrossRef]
- Treat, N.J.; Sprafke, H.; Kramer, J.W.; Clark, P.G.; Barton, B.E.; Read De Alaniz, J.; Fors, B.P.; Hawker, C.J. Metal-Free Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2014, 136, 16096–16101. [Google Scholar] [CrossRef] [Green Version]
- Pucher, N.; Rosspeintner, A.; Satzinger, V.; Schmidt, V.; Gescheidt, G.; Stampfl, J.; Liska, R. Structure-Activity Relationship in D-π-a-π-D-Based Photoinitiators for the Two-Photon-Induced Photopolymerization Process. Macromolecules 2009, 42, 6519–6528. [Google Scholar] [CrossRef]
- Woods, R.; Feldbacher, S.; Zidar, D.; Langer, G.; Satzinger, V.; Schmidt, V.; Pucher, N.; Liska, R.; Kern, W. 3D Optical Waveguides Produced by Two Photon Photopolymerisation of a Flexible Silanol Terminated Polysiloxane Containing Acrylate Functional Groups. Opt. Mater. Express 2014, 4, 486. [Google Scholar] [CrossRef] [Green Version]
- Griesser, T.; Wolfberger, A.; Daschiel, U.; Schmidt, V.; Fian, A.; Jerrar, A.; Teichert, C.; Kern, W. Cross-Linking of ROMP Derived Polymers Using the Two-Photon Induced Thiol-Ene Reaction: Towards the Fabrication of 3D-Polymer Microstructures. Polym. Chem. 2013, 4, 1708–1714. [Google Scholar] [CrossRef]
- Heller, C.; Pucher, N.; Seidl, B.; Kalinyaprak-Icten, K.; Ullrich, G.; Kuna, L.; Satzinger, V.; Schmidt, V.; Lichtenegger, H.C.; Stampfl, J.; et al. One- and Two-Photon Activity of Cross-Conjugated Photoinitiators with Bathochromic Shift. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 3280–3291. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, X.; Yu, B.; Zhou, F. Brushing up Functional Materials. NPG Asia Mater. 2019, 11, 1–39. [Google Scholar] [CrossRef]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.L.; Cordero, R.; Tran, H.; Ober, C.K. 50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future Materials. Macromolecules 2017, 50, 4089–4113. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, F. Polymer Brushes for Antibiofouling and Lubrication. Biosurface Biotribology 2017, 3, 97–114. [Google Scholar] [CrossRef]
- Luderer, F.; Walschus, U. Immobilization of Oligonucleotides for Biochemical Sensing by Self-Assembled Monolayers: Thiol-Organic Bonding on Gold and Silanization on Silica Surfaces. Top. Curr. Chem. 2005, 260, 37–56. [Google Scholar] [CrossRef]
- Lago, M.A.; Rodríguez-Bernaldo de Quirós, A.; Sendón, R.; Bustos, J.; Nieto, M.T.; Paseiro, P. Photoinitiators: A Food Safety Review. Food Addit. Contam. - Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.H.; Ovsianikov, A.; Stampfl, J.; Liska, R. Additive Manufacturing of Photosensitive Hydrogels for Tissue Engineering Applications. BioNanoMaterials 2014, 15, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhang, Y.; Shi, W. Photoinitiating Behavior of Benzophenone Derivatives Covalently Bonded Tertiary Amine Group for UV-Curing Acrylate Systems. Polym. Adv. Technol. 2012, 23, 669–676. [Google Scholar] [CrossRef]
- Koehler, M.; Ohngemach, J. Coreactive Photoinitiators for Surface Polymerization. In Radiation Curing of Polymeric Materials; Chapter 9; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1990; Volume 417, pp. 106–124. [Google Scholar] [CrossRef]
- Schuh, C.; Santer, S.; Prucker, O.; Rühe, J. Polymer Brushes with Nanometer-Scale Gradients. Adv. Mater. 2009, 21, 4706–4710. [Google Scholar] [CrossRef]
- Hensarling, R.M.; Doughty, V.A.; Chan, J.W.; Patton, D.L. “Clicking” Polymer Brushes with Thiol-Yne Chemistry: Indoors and Out. J. Am. Chem. Soc. 2009, 131, 14673–14675. [Google Scholar] [CrossRef]
- Rahane, S.B.; Hensarling, R.M.; Sparks, B.J.; Stafford, C.M.; Patton, D.L. Synthesis of Multifunctional Polymer Brush Surfaces via Sequential and Orthogonal Thiol-Click Reactions. J. Mater. Chem. 2012, 22, 932–943. [Google Scholar] [CrossRef]
- Roszkowski, P.; Sahin, M.; Ayalur-Karunakaran, S.; Gammer, C.; Schlögl, S.; Kern, W.; Krawczyk, K.K. Synthesis and Evaluation of New Radical Photoinitiators Bearing Trialkoxysilyl Groups for Surface Immobilization. Polymer 2017, 129, 207–220. [Google Scholar] [CrossRef]
- Sahin, M.; Krawczyk, K.K.; Roszkowski, P.; Wang, J.; Kaynak, B.; Kern, W.; Schlögl, S.; Grützmacher, H. Photoactive Silica Nanoparticles: Influence of Surface Functionalization on Migration and Kinetics of Radical-Induced Photopolymerization Reactions. Eur. Polym. J. 2018, 98, 430–438. [Google Scholar] [CrossRef]
- Tan, H.; Yang, D.; Xiao, M.; Han, J.; Nie, J. Preparation of Silica/Polyurethane Nanocomposites by UV-Induced Polymerization from Surfaces of Silica. J. Appl. Polym. Sci. 2009, 111, 1936–1941. [Google Scholar] [CrossRef]
- Huber, A.; Kuschel, A.; Ott, T.; Santiso-Quinones, G.; Stein, D.; Bräuer, J.; Kissner, R.; Krumeich, F.; Schönberg, H.; Levalois-Grützmacher, J.; et al. Phosphorous-Functionalized Bis(Acyl)Phosphane Oxides for Surface Modification. Angew. Chem. 2012, 124, 4726–4730. [Google Scholar] [CrossRef]
- Sahin, M.; Schlögl, S.; Kaiser, S.; Kern, W.; Wang, J.; Grützmacher, H. Efficient Initiation of Radical-Mediated Thiol-Ene Chemistry with Photoactive Silica Particles. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 894–902. [Google Scholar] [CrossRef]
- Sangermano, M.; Periolatto, M.; Castellino, M.; Wang, J.; Dietliker, K.; Grützmacher, J.L.; Grützmacher, H. A Simple Preparation of Photoactive Glass Surfaces Allowing Coatings via the “Grafting-from” Method. ACS Appl. Mater. Interfaces 2016, 8, 19764–19771. [Google Scholar] [CrossRef]
- Romano, A. Polymer Chemistry Hybrid Silica Micro-Particles with Light-Responsive Surface Properties and Janus-like Character. Polym. Chem. 2021. [Google Scholar] [CrossRef]
- Razza, N.; Rizza, G.; Coulon, P.E.; Didier, L.; Fadda, G.C.; Voit, B.; Synytska, A.; Grützmacher, H.; Sangermano, M. Enabling the Synthesis of Homogeneous or Janus Hairy Nanoparticles through Surface Photoactivation. Nanoscale 2018, 10, 14492–14498. [Google Scholar] [CrossRef] [PubMed]
- Moehrke, J.; Vana, P. Termination Kinetics of Surface-Initiated Radical Polymerization Measured by Time-Resolved ESR Spectroscopy after Laser-Pulse Initiation. Macromolecules 2015, 48, 3190–3196. [Google Scholar] [CrossRef]
- Ohar, H.; Dolynska, L.; Tokarev, V. Synthesis and Application of Macrophotoinitiators Obtaines via Benzoin Tethering with Copolymers of Maleic Anhydride. Chem. Chem. Technol. 2013, 67. [Google Scholar] [CrossRef]
- Wang, J.; Siqueira, G.; Müller, G.; Rentsch, D.; Huch, A.; Tingaut, P.; Levalois-Grützmacher, J.; Grützmacher, H. Synthesis of New Bis(Acyl)Phosphane Oxide Photoinitiators for the Surface Functionalization of Cellulose Nanocrystals. Chem. Commun. 2016, 52, 2823–2826. [Google Scholar] [CrossRef]
- Tsubokawa, N.; Kogure, A.; Maruyama, K.; Sone, Y.; Shimomura, M. Graft Polymerization of Vinyl Monomers from Inorganic Ultrafine Particles Initiated by Azo Groups Introduced onto the Surface. Polym. J. 1990, 22, 827–833. [Google Scholar] [CrossRef] [Green Version]
- Tsubokawa, N.; Shirai, Y.; Tsuchida, H.; Handa, S. Photografting of Vinyl Polymers onto Ultrafine Inorganic Particles: Photopolymerization of Vinyl Monomers Initiated by Azo Groups Introduced onto These Surfaces. J. Polym. Sci. Part A Polym. Chem. 1994, 32, 2327–2332. [Google Scholar] [CrossRef]
- Prucker, O.; Rühe, J. Synthesis of Poly(Styrene) Monolayers Attached to High Surface Area Silica Gels through Self-Assembled Monolayers of Azo Initiators. Macromolecules 1998, 31, 592–601. [Google Scholar] [CrossRef]
- Rühe, J. Maßgeschneiderte Oberflächen. Nachr. Aus Chem. Tech. Und Lab. 1994, 42, 1237–1246. [Google Scholar] [CrossRef]
- Prucker, O.; Rühe, J. Grafting of Polymers to Solid Surfaces by Using Immobilized Azoinitiators. Mater. Res. Soc. 1993. [Google Scholar] [CrossRef]
- Prucker, O.; Rühe, J. Mechanism of Radical Chain Polymerizations Initiated by Azo Compounds Covalently Bound to the Surface of Spherical Particles. Macromolecules 1998, 31, 602–613. [Google Scholar] [CrossRef]
- Prucker, O.; Habicht, J.; Park, I.-J.; Ruhe, J. Photolithographic Structuring of Surface-Attached Polymer Monolayers. Mater. Sci. Eng. C 1999, 8, 291–297. [Google Scholar] [CrossRef]
- Konradi, R.; Rühe, J. Fabrication of Chemically Microstructured Polymer Brushes. Langmuir 2006, 22, 8571–8575. [Google Scholar] [CrossRef]
- Huang, W.; Skanth, G.; Baker, G.L.; Bruening, M.L. Surface-Initiated Thermal Radical Polymerization on Gold. Langmuir 2001, 17, 1731–1736. [Google Scholar] [CrossRef]
- Schmidt, R.; Zhao, T.; Green, J.B.; Dyer, D.J. Photoinitiated Polymerization of Styrene from Self-Assembled Monolayers on Gold. Langmuir 2002, 18, 1281–1287. [Google Scholar] [CrossRef]
- Paul, R.; Schmidt, R.; Feng, J.; Dyer, D.J. Photoinitiated Polymerization of Styrene from Self-Assembled Monolayers on Gold. II. Grafting Rates and Extraction. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 3284–3291. [Google Scholar] [CrossRef]
- Feng, J.; Haasch, R.T.; Dyer, D.J. Photoinitiated Synthesis of Mixed Polymer Brushes of Polystyrene and Poly(Methyl Methacrylate). Macromolecules 2004, 37, 9525–9537. [Google Scholar] [CrossRef]
- Kaholek, M.; Lee, W.K.; Feng, J.; Lamattina, B.; Dyer, D.J.; Zauscher, S. Weak Polyelectrolyte Brush Arrays Fabricated by Combining Electron-Beam Lithography with Surface-Initiated Photopolymerization. Chem. Mater. 2006, 18, 3660–3664. [Google Scholar] [CrossRef]
- Schmelmer, U.; Paul, A.; Küller, A.; Steenackers, M.; Ulman, A.; Grunze, M.; Gölzhäuser, A.; Jordan, R. Nanostructured Polymer Brushes. Small 2007, 3, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Rånby, B. Radical Living Graft Polymerization on the Surface of Polymeric Materials. Macromolecules 1996, 29, 3308–3310. [Google Scholar] [CrossRef]
- Ma, H.; Davis, R.H.; Bowman, C.N. Novel Sequential Photoinduced Living Graft Polymerization. Macromolecules 2000, 33, 331–335. [Google Scholar] [CrossRef]
- Ma, H.; Davis, R.H.; Bowman, C.N. Principal Factors Affecting Sequential Photoinduced Graft Polymerization. Polymer 2001, 42, 8333–8338. [Google Scholar] [CrossRef]
- Yu, H.Y.; Li, W.; Zhou, J.; Gu, J.S.; Huang, L.; Tang, Z.Q.; Wei, X.W. Thermo- and PH-Responsive Polypropylene Microporous Membrane Prepared by the Photoinduced RAFT-Mediated Graft Copolymerization. J. Membr. Sci. 2009, 343, 82–89. [Google Scholar] [CrossRef]
- Lee, J.S.; Shin, B.H.; Yoo, B.Y.; Nam, S.Y.; Lee, M.; Choi, J.; Park, H.; Choy, Y.B.; Heo, C.Y.; Koh, W.G. Modulation of Foreign Body Reaction against PDMS Implant by Grafting Topographically Different Poly(Acrylic Acid) Micropatterns. Macromol. Biosci. 2019, 19, 1900206. [Google Scholar] [CrossRef]
- Janorkar, A.V.; Metters, A.T.; Hirt, D.E. Modification of Poly(Lactic Acid) Films: Enhanced Wettability from Surface-Confined Photografting and Increased Degradation Rate Due to an Artifact of the Photografting Process. Macromolecules 2004, 37, 9151–9159. [Google Scholar] [CrossRef]
- Stachowiak, T.B.; Svec, F.; Fréchet, J.M.J. Patternable Protein Resistant Surfaces for Multifunctional Microfluidic Devices via Surface Hydrophilization of Porous Polymer Monoliths Using Photografting. Chem. Mater. 2006, 18, 5950–5957. [Google Scholar] [CrossRef]
- Kuşçuoğlu, C.K.; Güner, H.; Söylemez, M.A.; Güven, O.; Barsbay, M. A Smartphone-Based Colorimetric PET Sensor Platform with Molecular Recognition via Thermally Initiated RAFT-Mediated Graft Copolymerization. Sens. Actuators B Chem. 2019, 296, 126653. [Google Scholar] [CrossRef]
- Castell, P.; Wouters, M.; de With, G.; Fischer, H.; Huijs, F. Surface Modification of Poly(Propylene) by Photoinitiators: Improvement of Adhesion and Wettability. J. Appl. Polym. Sci. 2004, 92, 2341–2350. [Google Scholar] [CrossRef]
- Castell, P.; Wouters, M.; Fischer, H.; de With, G. Study of Wettability and Improvement of Adhesion of UV Curable Powder Coatings on Polypropylene Substrates. J. Appl. Polym. Sci. 2007, 106, 3348–3358. [Google Scholar] [CrossRef]
- Gao, Z.; Henthorn, D.B.; Kim, C.S. Enhanced Wettability of an SU-8 Photoresist through a Photografting Procedure for Bioanalytical Device Applications. J. Micromechanics Microengineering 2008, 18, 045013. [Google Scholar] [CrossRef] [PubMed]
- Prucker, O.; Naumann, C.A.; Ru, R.; Knoll, W.; Frank, C.W. Photochemical Attachment of Polymer Films to Solid Surfaces via Monolayers of Benzophenone Derivatives. J. Amer. Chem. Soc. 1999, 121, 8766–8770. [Google Scholar] [CrossRef]
- Kado, Y.; Mitsuishi, M.; Miyashita, T. Fabrication of Three-Dimensional Nanostructures Using Reactive Polymer Nanosheets. Adv. Mater. 2005, 17, 1857–1861. [Google Scholar] [CrossRef]
- Braun, L.; Schafforz, S.L.; Lorenz, A. Surface Grafted Crosslinker in Polymer Network Liquid Crystals. J. Mol. Liq. 2018, 267, 109–114. [Google Scholar] [CrossRef]
- Leshem, B.; Sarfati, G.; Novoa, A.; Breslav, I.; Marks, R.S. Photochemical Attachment of Biomolecules onto Fibre-Optics for Construction of a Chemiluminescent Immunosensor. Luminescence 2004, 19, 69–77. [Google Scholar] [CrossRef]
- Naumann, C.A.; Prucker, O.; Lehmann, T.; Rühe, J.; Knoll, W.; Frank, C.W. The Polymer-Supported Phospholipid Bilayer: Tethering as a New Approach to Substrate-Membrane Stabilization. Biomacromolecules 2002, 3, 27–35. [Google Scholar] [CrossRef]
- Murata, H.; Chang, B.J.; Prucker, O.; Dahm, M.; Ruhe, J. Polymeric Coatings for Biomedical Devices. Surf. Sci. 2004, 570, 111–118. [Google Scholar] [CrossRef]
- Griep-Raming, N.; Karger, M.; Menzel, H. Using Benzophenone-Functionalized Phosphonic Acid to Attach Thin Polymer Films to Titanium Surfaces. Langmuir 2004, 20, 11811–11814. [Google Scholar] [CrossRef]
- Raghuraman, G.K.; Dhamodharan, R.; Prucker, O.; Rühe, J. A Robust Method for the Immobilization of Polymer Molecules on SiO 2 Surfaces. Macromolecules 2008, 41, 873–878. [Google Scholar] [CrossRef]
- Gam-Derouich, S.; Carbonnier, B.; Turmine, M.; Lang, P.; Jouini, M.; Hassen-Chehimi, D.B.; Chehimi, M.M. Electrografted Aryl Diazonium Initiators for Surface-Confined Photopolymerization: A New Approach to Designing Functional Polymer Coatings. Langmuir 2010, 26, 11830–11840. [Google Scholar] [CrossRef]
- Gam-Derouich, S.; Gosecka, M.; Lepinay, S.; Turmine, M.; Carbonnier, B.; Basinska, T.; Slomkowski, S.; Millot, M.C.; Othmane, A.; ben Hassen-Chehimi, D.; et al. Highly Hydrophilic Surfaces from Polyglycidol Grafts with Dual Antifouling and Specific Protein Recognition Properties. Langmuir 2011, 27, 9285–9294. [Google Scholar] [CrossRef] [PubMed]
- Gam-Derouich, S.; Mahouche-Chergui, S.; Turmine, M.; Piquemal, J.Y.; Hassen-Chehimi, D.B.; Omastová, M.; Chehimi, M.M. A Versatile Route for Surface Modification of Carbon, Metals and Semi-Conductors by Diazonium Salt-Initiated Photopolymerization. Surf. Sci. 2011, 605, 1889–1899. [Google Scholar] [CrossRef]
- Gam-Derouich, S.; Mahouche-Chergui, S.; Truong, S.; ben Hassen-Chehimi, D.; Chehimi, M.M. Design of Molecularly Imprinted Polymer Grafts with Embedded Gold Nanoparticles through the Interfacial Chemistry of Aryl Diazonium Salts. Polymer 2011, 52, 4463–4470. [Google Scholar] [CrossRef]
- Khlifi, A.; Gam-Derouich, S.; Jouini, M.; Kalfat, R.; Chehimi, M.M. Melamine-Imprinted Polymer Grafts through Surface Photopolymerization Initiated by Aryl Layers from Diazonium Salts. Food Control 2013, 31, 379–386. [Google Scholar] [CrossRef]
- Hong, K.H.; Liu, N.; Sun, G. UV-Induced Graft Polymerization of Acrylamide on Cellulose by Using Immobilized Benzophenone as a Photo-Initiator. Eur. Polym. J. 2009, 45, 2443–2449. [Google Scholar] [CrossRef]
- Biyani, M.V.; Jorfi, M.; Weder, C.; Foster, E.J. Light-Stimulated Mechanically Switchable, Photopatternable Cellulose Nanocomposites. Polym. Chem. 2014, 5, 5716–5724. [Google Scholar] [CrossRef]
- Melinte, V.; Chibac, A.; Buruiana, T.; Buruiana, E.C. Hybrid Nanocomposites Prepared by in Situ Photopolymerization Using Photoinitiator-Modified Montmorillonite. Prog. Org. Coat. 2017, 104, 125–134. [Google Scholar] [CrossRef]
- Srivastava, V.; Singh, P.P. Eosin y Catalysed Photoredox Synthesis: A Review. RSC Adv. 2017, 7, 31377–31392. [Google Scholar] [CrossRef]
- Avens, H.J.; Randle, T.J.; Bowman, C.N. Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions. Polymer 2008, 49, 4762–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kizilel, S.; Pérez-Luna, V.H.; Teymour, F. Photopolymerization of Poly(Ethylene Glycol) Diacrylate on Eosin-Functionalized Surfaces. Langmuir 2004, 20, 8652–8658. [Google Scholar] [CrossRef]
- Hansen, R.R.; Sikes, H.D.; Bowman, C.N. Visual Detection of Labeled Oligonucleotides Using Visible-Light-Polymerization-Based Amplification. Biomacromolecules 2008, 9, 355–362. [Google Scholar] [CrossRef]
- Satoh, M.; Shirai, K.; Saitoh, H.; Yamauchi, T.; Tsubokawa, N. Photografting of Polymers onto Nanosized Silica Surface Initiated by Eosin Moieties Immobilized onto the Surface. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 600–606. [Google Scholar] [CrossRef]
- Lilly, J.L.; Romero, G.; Xu, W.; Shin, H.Y.; Berron, B.J. Characterization of Molecular Transport in Ultrathin Hydrogel Coatings for Cellular Immunoprotection. Biomacromolecules 2015, 16, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Lilly, J.L.; Berron, B.J. The Role of Surface Receptor Density in Surface-Initiated Polymerizations for Cancer Cell Isolation. Langmuir 2016, 32, 5681–5689. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.K.; Kwon, Y.J. Polyamine/DNA Polyplexes with Acid-Degradable Polymeric Shell as Structurally and Functionally Virus-Mimicking Nonviral Vectors. J. Control. Release 2011, 150, 287–297. [Google Scholar] [CrossRef]
- Staneva, D.; Grabchev, I.; Bosch, P. Fluorescent Hydrogel-Textile Composite Material Synthesized by Photopolymerization. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 838–847. [Google Scholar] [CrossRef] [Green Version]
- Kizilel, S.; Sawardecker, E.; Teymour, F.; Pérez-Luna, V.H. Sequential Formation of Covalently Bonded Hydrogel Multilayers through Surface Initiated Photopolymerization. Biomaterials 2006, 27, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Nikitas, N.F.; Gkizis, P.L.; Kokotos, C.G. Thioxanthone: A Powerful Photocatalyst for Organic Reactions. Org. Biomol. Chem. 2021, 19, 5237–5253. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yin, J. Dendritic Macrophotoinitiator Containing Thioxanthone and Coinitiator Amine. Macromolecules 2004, 37, 7850–7853. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, W.; Xu, H.; Yin, J. Water-Compatible Dendritic Macrophotoinitiator Containing Thioxanthone. J. Photochem. Photobiol. A Chem. 2006, 181, 233–237. [Google Scholar] [CrossRef]
- Jia, X.; Jiang, X.; Liu, R.; Yin, J. Poly(N-Isopropylacrylamide) Brush Fabricated by Surface-Initiated Photopolymerization and Its Response to Temperature. Macromol. Chem. Phys. 2009, 210, 1876–1882. [Google Scholar] [CrossRef]
- Jia, X.; Jiang, X.; Liu, R.; Yin, J. Facile Approach to Patterned Binary Polymer Brush through Photolithography and Surface-Initiated Photopolymerization. ACS Appl. Mater. Interfaces 2010, 2, 1200–1205. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, X.; Liu, R.; Yin, J. Well-Defined PMMA Brush on Silica Particles Fabricated by Surface-Initiated Photopolymerization (SIPP). ACS Appl. Mater. Interfaces 2010, 2, 1031–1037. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Hong, P.; Chen, L.; Liu, X. Synthesis of Organic and Inorganic Hybrid Nanoparticles as Multifunctional Photoinitiator and Its Application in UV-Curable Epoxy Acrylate-Based Coating Systems. Prog. Org. Coat. 2020, 141, 105565. [Google Scholar] [CrossRef]
- Bai, H.; Huang, Z.; Yang, W. Visible Light-Induced Living Surface Grafting Polymerization for the Potential Biological Applications. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 6852–6862. [Google Scholar] [CrossRef]
- Lin, Z.; Ma, Y.; Zhao, C.; Chen, R.; Zhu, X.; Zhang, L.; Yan, X.; Yang, W. An Extremely Simple Method for Fabricating 3D Protein Microarrays with an Anti-Fouling Background and High Protein Capacity. Lab A Chip 2014, 14, 2505–2514. [Google Scholar] [CrossRef]
- Zhao, C.; He, B.; Wang, G.; Ma, Y.; Yang, W. Hierarchical PEG-Based 3D Patterns Grafting from Polymer Substrate by Surface Initiated Visible Light Photolithography. Macromol. Rapid Commun. 2016, 37, 1611–1617. [Google Scholar] [CrossRef] [PubMed]
- Fukumori, K.; Akiyama, Y.; Yamato, M.; Okano, T. A Facile Method for Preparing Temperature-Responsive Cell Culture Surfaces by Using a Thioxanthone Photoinitiator Immobilized on a Polystyrene Surface. ChemNanoMat 2016, 2, 454–460. [Google Scholar] [CrossRef]
- Liu, N.; Sun, G.; Gaan, S.; Rupper, P. Controllable Surface Modifications of Polyamide by Photo-Induced Graft Polymerization Using Immobilized Photo-Initiators. J. Appl. Polym. Sci. 2010, 116, 3629–3637. [Google Scholar] [CrossRef]
- Liu, N.; Sun, G.; Zhu, J. Photo-Induced Self-Cleaning Functions on 2-Anthraquinone Carboxylic Acid Treated Cotton Fabrics. J. Mater. Chem. 2011, 21, 15383–15390. [Google Scholar] [CrossRef]
- He, D.; Ulbricht, M. Surface-Selective Photo-Grafting on Porous Polymer Membranes via a Synergist Immobilization Method. J. Mater. Chem. 2006, 16, 1860–1868. [Google Scholar] [CrossRef]
- He, D.; Ulbricht, M. Synergist Immobilization Method for Photo-Grafting: Factors Affecting Surface Selectivity. Macromol. Chem. Phys. 2007, 208, 1582–1591. [Google Scholar] [CrossRef]
- He, D.; Ulbricht, M. Preparation and Characterization of Porous Anion-Exchange Membrane Adsorbers with High Protein-Binding Capacity. J. Membr. Sci. 2008, 315, 155–163. [Google Scholar] [CrossRef]
- He, D.; Sun, W.; Schrader, T.; Ulbricht, M. Protein Adsorbers from Surface-Grafted Copolymers with Selective Binding Sites. J. Mater. Chem. 2009, 19, 253–260. [Google Scholar] [CrossRef]
- Dyer, D.J.; Feng, J.; Schmidt, R.; Wong, V.N.; Zhao, T.; Yagci, Y. Photoinduced Polymerization from Dimethylamino-Terminated Self-Assembled Monolayers on Gold. Macromolecules 2004, 37, 7072–7074. [Google Scholar] [CrossRef]
- Gam-Derouich, S.; Lamouri, A.; Redeuilh, C.; Decorse, P.; Maurel, F.; Carbonnier, B.; Beyaz, S.; Yilmaz, G.; Yagci, Y.; Chehimi Langmuir, M.M.; et al. Diazonium Salt-Derived 4-(Dimethylamino)Phenyl Groups as Hydrogen Donors in Surface-Confined Radical Photopolymerization for Bioactive PHEMA Grafts. Langmuir 2012, 28, 8035–8045. [Google Scholar] [CrossRef]
- Kim, S.; Kim, E.; Kim, S.; Kim, W. Surface Modification of Silica Nanoparticles by UV-Induced Graft Polymerization of Methyl Methacrylate. J. Colloid Interface Sci. 2005, 292, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Jiang, X.; Liu, R.; Yin, J. Polymeric Vesicles with Well-Defined Poly(Methyl Methacrylate) (PMMA) Brushes via Surface-Initiated Photopolymerization (SIPP). Polym. Chem. 2011, 2, 614–618. [Google Scholar] [CrossRef]
- Otsu, T.; Yoshida, M.; Tazaki, T. A Model for Living Radical Polymerization. Makromol. Chem. Rapid Commun 1982, 3, 133–140. [Google Scholar] [CrossRef]
- Otsu, T. Iniferter Concept and Living Radical Polymerization. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 2121–2136. [Google Scholar] [CrossRef]
- Chen, M.; Zhong, M.; Johnson, J.A. Light-Controlled Radical Polymerization: Mechanisms, Methods, and Applications. Chem. Rev. 2016, 116, 10167–10211. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Luan, S.; Shi, H.; Xu, X.; Zhang, J.; Yuan, S.; Yang, Y.; Yin, J. Hierarchical Polymer Brushes with Dominant Antibacterial Mechanisms Switching from Bactericidal to Bacteria Repellent. Biomacromolecules 2016, 17, 1696–1704. [Google Scholar] [CrossRef]
- Silies, L.; Didzoleit, H.; Hess, C.; Stühn, B.; Andrieu-Brunsen, A. Mesoporous Thin Films, Zwitterionic Monomers, and Iniferter-Initiated Polymerization: Polymerization in a Confined Space. Chem. Mater. 2015, 27, 1971–1981. [Google Scholar] [CrossRef]
- Otsu, T.; Ogawa, T.; Yamamoto, T. Solid-Phase Block Copolymer Synthesis by the Iniferter Technique. Macromolecules 1986, 19, 2087–2089. [Google Scholar] [CrossRef]
- Nakayama, Y.; Matsuda, T. Surface Macromolecular Architectural Designs Using Photo-Graft Copolymerization Based on Photochemistry of Benzyl N,N-Diethyldithiocarbamate. Macromolecules 1996, 29, 8622–8630. [Google Scholar] [CrossRef]
- Lee, H.J.; Nakayama, Y.; Matsuda, T. Spatio-Resolved, Macromolecular Architectural Surface: Highly Branched Graft Polymer via Photochemically Driven Quâsiliving Polymerization Technique. Macromolecules 1999, 32, 6989–6995. [Google Scholar] [CrossRef]
- Lee, H.J.; Matsuda, T. Surface Photograft Polymerization on Segmented Polyurethane Using the Iniferter Technique. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 1999, 47, 564–567. [Google Scholar] [CrossRef]
- Derouet, D.; Chi, N.H.T. Synthesis and Characterization of Poly(Methyl Methacrylate)-Grafted Silica Microparticles. J. Appl. Polym. Sci. 2008, 109, 2113–2127. [Google Scholar] [CrossRef]
- Hattori, K.; Hiwatari, M.; Iiyama, C.; Yoshimi, Y.; Kohori, F.; Sakai, K.; Piletsky, S.A. Gate Effect of Theophylline-Imprinted Polymers Grafted to the Cellulose by Living Radical Polymerization. J. Membr. Sci. 2004, 233, 169–173. [Google Scholar] [CrossRef]
- Ma, J.; Luan, S.; Song, L.; Jin, J.; Yuan, S.; Yan, S.; Yang, H.; Shi, H.; Yin, J. Fabricating a Cycloolefin Polymer Immunoassay Platform with a Dual-Function Polymer Brush via a Surface-Initiated Photoiniferter-Mediated Polymerization Strategy. ACS Appl. Mater. Interfaces 2014, 6, 1971–1978. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Song, L.; Shi, H.; Yang, H.; Ye, W.; Guo, X.; Luan, S.; Yin, J. Development of Hierarchical Fe3O4 Magnetic Microspheres as Solid Substrates for High Sensitive Immunoassays. J. Mater. Chem. B 2018, 6, 3762–3769. [Google Scholar] [CrossRef]
- He, D.; Ulbricht, M. Tailored “Grafting-From” Functionalization of Microfiltration Membrane Surface Photo-Initiated by Immobilized Iniferter. Macromol. Chem. Phys. 2009, 210, 1149–1158. [Google Scholar] [CrossRef]
- de Boer, B.; Simon, H.K.; Werts, M.P.L.; van der Vegte, E.W.; Hadziioannou, G. ‘Living’ Free Radical Photopolymerization Initiated from Surface-Grafted Iniferter Monolayers. Macromolecules 2000, 33, 349–356. [Google Scholar] [CrossRef]
- Rahane, S.B.; Kilbey, S.M.; Metters, A.T. Kinetics of Surface-Initiated Photoiniferter-Mediated Photopolymerization. Macromolecules 2005, 38, 8202–8210. [Google Scholar] [CrossRef]
- Rahane, S.B.; Michael Kilbey, S.; Metters, A.T. Kinetic Modeling of Surface-Initiated Photoiniferter-Mediated Photopolymerization in Presence of Tetraethylthiuram Disulfide. Macromolecules 2008, 41, 9612–9618. [Google Scholar] [CrossRef]
- Rahane, S.B.; Metters, A.T.; Kilbey, S.M. Impact of Added Tetraethylthiuram Disulfide Deactivator on the Kinetics of Growth and Reinitiation of Poly(Methyl Methacrylate) Brushes Made by Surface-Initiated Photoiniferter-Mediated Photopolymerization. Macromolecules 2006, 39, 8987–8991. [Google Scholar] [CrossRef]
- Li, A.; Benetti, E.M.; Tranchida, D.; Clasohm, J.N.; Schönherr, H.; Spencer, N.D. Surface-Grafted, Covalently Cross-Linked Hydrogel Brushes with Tunable Interfacial and Bulk Properties. Macromolecules 2011, 44, 5344–5351. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, L.; Huang, L.; Xiao, S.; Chen, F.; Fan, P.; Zhong, M.; Yang, J. Salt- and Thermo-Responsive Polyzwitterionic Brush Prepared via Surface-Initiated Photoiniferter-Mediated Polymerization. Appl. Surf. Sci. 2018, 450, 130–137. [Google Scholar] [CrossRef]
- Brewer, N.J.; Janusz, S.; Critchley, K.; Evans, S.D.; Leggett, G.J. Photooxidation of Self-Assembled Monolayers by Exposure to Light of Wavelength 254 Nm: A Static SIMS Study. J. Phys. Chem. B 2005, 109, 11247–11256. [Google Scholar] [CrossRef] [PubMed]
- Benetti, E.M.; Zapotoczny, S.; Vancso, G.J. Tunable Thermoresponsive Polymeric Platforms on Gold by “Photoiniferter”-Based Surface Grafting. Adv. Mater. 2007, 19, 268–271. [Google Scholar] [CrossRef]
- Benetti, E.M.; Reimhult, E.; de Bruin, J.; Zapotoczny, S.; Textor, M.; Vancso, G.J. Poly(Methacrylic Acid) Grafts Grown from Designer Surfaces: The Effect of Initiator Coverage on Polymerization Kinetics, Morphology, and Properties. Macromolecules 2009, 42, 1640–1647. [Google Scholar] [CrossRef]
- Navarro, M.; Benetti, E.M.; Zapotoczny, S.; Planell, J.A.; Vancso, G.J. Buried, Covalently Attached RGD Peptide Motifs in Poly(Methacrylic Acid) Brush Layers: The Effect of Brush Structure on Cell Adhesion. Langmuir 2008, 24, 10996–11002. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.E.; Brault, N.D.; Li, Y.; Xue, H.; Zhou, Y.; Jiang, S. Photoiniferter-Mediated Polymerization of Zwitterionic Carboxybetaine Monomers for Low-Fouling and Functionalizable Surface Coatings. Macromolecules 2011, 44, 9213–9220. [Google Scholar] [CrossRef]
- Griffete, N.; Lamouri, A.; Herbst, F.; Felidj, N.; Ammar, S.; Mangeney, C. Synthesis of Highly Soluble Polymer-Coated Magnetic Nanoparticles Using a Combination of Diazonium Salt Chemistry and the Iniferter Method. RSC Adv. 2012, 2, 826–830. [Google Scholar] [CrossRef]
- Atmane, Y.A.; Sicard, L.; Lamouri, A.; Pinson, J.; Sicard, M.; Masson, C.; Nowak, S.; Decorse, P.; Piquemal, J.Y.; Galtayries, A.; et al. Functionalization of Aluminum Nanoparticles Using a Combination of Aryl Diazonium Salt Chemistry and Iniferter Method. J. Phys. Chem. C 2013, 117, 26000–26006. [Google Scholar] [CrossRef]
- Adenier, A.; Cabet-Deliry, E.; Lalot, T.; Pinson, J.; Podvorica, F. Attachment of Polymers to Organic Moieties Covalently Bonded to Iron Surfaces. Chem. Mater. 2002, 14, 4576–4585. [Google Scholar] [CrossRef]
- Ahmad, R.; Griffete, N.; Lamouri, A.; Mangeney, C. Functionalization of Magnetic Nanocrystals by Oligo (Ethylene Oxide) Chains Carrying Diazonium and Iniferter End Groups. J. Colloid Interface Sci. 2013, 407, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Félidj, N.; Boubekeur-Lecaque, L.; Lau-Truong, S.; Gam-Derouich, S.; Decorse, P.; Lamouri, A.; Mangeney, C. Water-Soluble Plasmonic Nanosensors with Synthetic Receptors for Label-Free Detection of Folic Acid. Chem. Commun. 2015, 51, 9678–9681. [Google Scholar] [CrossRef] [PubMed]
- Dadashi-Silab, S.; Atilla Tasdelen, M.; Yagci, Y. Photoinitiated Atom Transfer Radical Polymerization: Current Status and Future Perspectives. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 2878–2888. [Google Scholar] [CrossRef]
- Zholdassov, Y.S.; Valles, D.J.; Uddin, S.; Korpanty, J.; Gianneschi, N.C.; Braunschweig, A.B. Orthogonal Images Concealed Within a Responsive 6-Dimensional Hypersurface. Adv. Mater. 2021, 33, 803. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Pan, X.; Schmitt, M.; Wang, Z.; Bockstaller, M.R.; Matyjaszewski, K. Enhancing Initiation Efficiency in Metal-Free Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). ACS Macro Lett. 2016, 5, 661–665. [Google Scholar] [CrossRef]
- Pearson, R.M.; Lim, C.H.; McCarthy, B.G.; Musgrave, C.B.; Miyake, G.M. Organocatalyzed Atom Transfer Radical Polymerization Using N-Aryl Phenoxazines as Photoredox Catalysts. J. Am. Chem. Soc. 2016, 138, 11399–11407. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Li, N.; Zhu, J.; Chen, X. Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15. Polymers 2017, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Zeng, G.; Liu, M.; Shi, K.; Heng, C.; Mao, L.; Wan, Q.; Huang, H.; Deng, F.; Zhang, X.; Wei, Y. Surface Modification of Nanodiamond through Metal Free Atom Transfer Radical Polymerization. Appl. Surf. Sci. 2016, 390, 710–717. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, J.; Liu, C.; Lei, A. Direct Oxidative Esterification of Alcohols. Dalton Trans. 2014, 43, 13460–13470. [Google Scholar] [CrossRef]
- Teacă, C.A.; Tanasa, F. Wood Surface Modification-Classic and Modern Approaches in Wood Chemical Treatment by Esterification Reactions. Coatings 2020, 10, 629. [Google Scholar] [CrossRef]
- Belgacem, M.N.; Gandini, A. The Surface Modification of Cellulose Fibres for Use as Reinforcing Elements in Composite Materials. Compos. Interfaces 2005, 12, 41–75. [Google Scholar] [CrossRef]
- Zeng, G.; Liu, M.; Heng, C.; Huang, Q.; Mao, L.; Huang, H.; Hui, J.; Deng, F.; Zhang, X.; Wei, Y. Surface PolyPEGylation of Eu 3+ Doped Luminescent Hydroxyapatite Nanorods through the Combination of Ligand Exchange and Metal Free Surface Initiated Atom Transfer Radical Polymerization. Appl. Surf. Sci. 2017, 399, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Discekici, E.H.; Pester, C.W.; Treat, N.J.; Lawrence, J.; Mattson, K.M.; Narupai, B.; Toumayan, E.P.; Luo, Y.; McGrath, A.J.; Clark, P.G.; et al. Simple Benchtop Approach to Polymer Brush Nanostructures Using Visible-Light-Mediated Metal-Free Atom Transfer Radical Polymerization. ACS Macro Lett. 2016, 5, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Mansfeld, U.; Pietsch, C.; Hoogenboom, R.; Becer, C.R.; Schubert, U.S. Clickable Initiators, Monomers and Polymers in Controlled Radical Polymerizations—A Prospective Combination in Polymer Science. Polym. Chem. 2010, 1, 1560–1598. [Google Scholar] [CrossRef]
- Bellotti, V.; Simonutti, R. New Light in Polymer Science: Photoinduced Reversible Addition-Fragmentation Chain Transfer Polymerization (PET-RAFT) as Innovative Strategy for the Synthesis of Advanced Materials. Polymers 2021, 13, 1119. [Google Scholar] [CrossRef]
- Semsarilar, M.; Perrier, S. “Green” Reversible Addition-Fragmentation Chain-Transfer (RAFT) Polymerization. Nat. Chem. 2010, 2, 811–820. [Google Scholar] [CrossRef]
- Keddie, D.J.; Moad, G.; Rizzardo, E.; Thang, S.H. RAFT Agent Design and Synthesis. Macromolecules 2012, 45, 5321–5342. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, L.; Cui, Z.; Fu, P.; Liu, M.; Qiao, X.; Pang, X. Dual Roles of Amino-Functionalized Silicon Quantum Dots (SiQDs) for Visible-Light-Induced Surface-Initiated PET-RAFT Polymerization on Substrates. ACS Appl. Mater. Interfaces 2020, 12, 42161–42168. [Google Scholar] [CrossRef]
- Allegrezza, M.L.; Konkolewicz, D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett. 2021, 10, 433–446. [Google Scholar] [CrossRef]
- Ng, G.; Judzewitsch, P.; Li, M.; Pester, C.W.; Jung, K.; Boyer, C. Synthesis of Polymer Brushes Via SI-PET-RAFT for Photodynamic Inactivation of Bacteria. Macromol. Rapid Commun. 2021, 42, 2100106. [Google Scholar] [CrossRef]
- Xu, J.; Shanmugam, S.; Duong, H.T.; Boyer, C. Organo-Photocatalysts for Photoinduced Electron Transfer-Reversible Addition-Fragmentation Chain Transfer (PET-RAFT) Polymerization. Polym. Chem. 2015, 6, 5615–5624. [Google Scholar] [CrossRef]
- Kuzmyn, A.R.; Nguyen, A.T.; Teunissen, L.W.; Zuilhof, H.; Baggerman, J. Antifouling Polymer Brushes via Oxygen-Tolerant Surface-Initiated PET-RAFT. Langmuir 2020, 36, 4439–4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzmyn, A.R.; Teunissen, L.W.; Fritz, P.; van Lagen, B.; Smulders, M.M.J.; Zuilhof, H. Diblock and Random Antifouling Bioactive Polymer Brushes on Gold Surfaces by Visible-Light-Induced Polymerization (SI-PET-RAFT) in Water. Adv. Mater. Interfaces 2021, 2101784. [Google Scholar] [CrossRef]
- Zhu, Y.; Egap, E. PET-RAft Polymerization Catalyzed by Cadmium Selenide Quantum Dots (Qds):: Grafting-from Qds Photocatalysts to Make Polymer Nanocomposites. Polym. Chem. 2020, 11, 1018–1024. [Google Scholar] [CrossRef]
- Hu, L.; Hao, Q.; Wang, L.; Cui, Z.; Fu, P.; Liu, M.; Qiao, X.; Pang, X. Thein Situ“Grafting from” Approach for the Synthesis of Polymer Brushes on Upconversion NanoparticlesviaNIR-Mediated RAFT Polymerization. Polym. Chem. 2021, 12, 545–553. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Sun, X.T.; Xu, Z.R. One-Step Synthesis of Bifunctional PEGDA/TiO2 Composite Film by Photopolymerization for the Removal of Congo Red. Appl. Surf. Sci. 2018, 445, 437–444. [Google Scholar] [CrossRef]
- Yang, J.; Hou, L.; Xu, B.; Zhang, N.; Liang, Y.; Tian, W.; Dong, D. Polymer Brushes on Planar TiO2 Substrates. Macromol. Rapid Commun. 2014, 35, 1224–1229. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.J. Recent Advances in TiO2 Films Prepared by Sol-Gel Methods for Photocatalytic Degradation of Organic Pollutants and Antibacterial Activities. Coatings 2019, 9, 613. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Lu, Q.; Wang, X.; Joo, J.; Dahl, M.; Liu, B.; Gao, C.; Yin, Y. Photocatalytic Surface-Initiated Polymerization on TiO2 toward Well-Defined Composite Nanostructures. ACS Appl. Mater. Interfaces 2016, 8, 538–546. [Google Scholar] [CrossRef]
- Zivic, N.; Kuroishi, P.K.; Dumur, F.; Gigmes, D.; Dove, A.P.; Sardon, H. Recent Advances and Challenges in the Design of Organic Photoacid and Photobase Generators for Polymerizations. Angew. Chem.-Int. Ed. 2019, 58, 10410–10422. [Google Scholar] [CrossRef]
- Saway, J.; Salem, Z.M.; Badillo, J.J. Recent Advances in Photoacid Catalysis for Organic Synthesis. Synthesis 2021, 53, 489–497. [Google Scholar] [CrossRef]
- Dai, J.; Lowes, J.; Jones, C. Bottom-Up ConformalL Coating and Photopattering on PAG-Immobilized Surfaces. U.S. Patent Application 16/671,426, 7 May 2020. [Google Scholar]
- Kuznetsova, N.A.; Malkov, G.V.; Gribov, B.G. Photoacid Generators. Application and Current State of Development. Russ. Chem. Rev. 2020, 89, 173–190. [Google Scholar] [CrossRef]
- Burnstine-Townley, A.; Mondal, S.; Agam, Y.; Nandi, R.; Amdursky, N. Light-Modulated Cationic and Anionic Transport across Protein Biopolymers**. Angew. Chem.-Int. Ed. 2021, 60, 24676–24685. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.T.; Marchesan, S.; Evans, R.A.; Styan, K.E.; Such, G.K.; Postma, A.; McLean, K.M.; Muir, B.W.; Caruso, F. Photoinitiated Alkyne-Azide Click and Radical Cross-Linking Reactions for the Patterning of PEG Hydrogels. Biomacromolecules 2012, 13, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.T.; Muir, B.W.; Such, G.K.; Postma, A.; Evans, R.A.; Pereira, S.M.; McLean, K.M.; Caruso, F. Surface “Click” Chemistry on Brominated Plasma Polymer Thin Films. Langmuir 2010, 26, 3388–3393. [Google Scholar] [CrossRef] [PubMed]
- Michel, O.; Ravoo, B.J. Carbohydrate Microarrays by Microcontact “Click” Chemistry. Langmuir 2008, 24, 12116–12118. [Google Scholar] [CrossRef] [PubMed]
- el Zubir, O.; Barlow, I.; Ul-Haq, E.; Tajuddin, H.A.; Williams, N.H.; Leggett, G.J. Generic Methods for Micrometer- and Nanometer-Scale Surface Derivatization Based on Photochemical Coupling of Primary Amines to Monolayers of Aryl Azides on Gold and Aluminum Oxide Surfaces. Langmuir 2013, 29, 1083–1092. [Google Scholar] [CrossRef]
- Bou-Hamdan, F.R.; Lévesque, F.; O’Brien, A.G.; Seeberger, P.H. Continuous Flow Photolysis of Aryl Azides: Preparation of 3H-Azepinones. Beilstein J. Org. Chem. 2011, 7, 1124–1129. [Google Scholar] [CrossRef] [Green Version]
- Wollmann, E.; Kang, D.; Frisbie, D.; Lorcovic, I.; Wrighton, M. Photosensitive Self-Assembled Monolayers on Gold: Photochemistry of Surface-Confined Aryl Azide and Cyclopentadienylmanganese Tricarbonyl. Am. Chem. Soc. 1993, 116, 4395–4404. [Google Scholar] [CrossRef]
- Snell, K.E.; Ismaili, H.; Workentin, M.S. Photoactivated Nitrene Chemistry to Prepare Gold Nanoparticle Hybrids with Carbonaceous Materials. ChemPhysChem 2012, 13, 3185–3193. [Google Scholar] [CrossRef]
- Elender, G.; Kfihner, M.; Sackmann, E. Functionalisation of Si/Si02 and Glass Surfaces with Ultrathin Dextran Films and Deposition of Lipid Bilayers. Biosens. Bioelectron. 1996, 11, 565–577. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Z.; Wang, X.; Lin, T. Photoreactive Azido-Containing Silica Nanoparticle/Polycation Multilayers: Durable Superhydrophobic Coating on Cotton Fabrics. Langmuir 2012, 28, 6328–6335. [Google Scholar] [CrossRef] [PubMed]
- Muhr, N.; Puchleitner, R.; Kern, W. Nanoparticles Bearing a Photoreactive Shell: Interaction with Polymers and Polymer Surfaces. Eur. Polym. J. 2013, 49, 3114–3124. [Google Scholar] [CrossRef]
- Picu, C.R.; Krawczyk, K.K.; Wang, Z.; Pishvazadeh-Moghaddam, H.; Sieberer, M.; Lassnig, A.; Kern, W.; Hadar, A.; Constantinescu, D.M. Toughening in Nanosilica-Reinforced Epoxy with Tunable Filler-Matrix Interface Properties. Compos. Sci. Technol. 2019, 183, 107799. [Google Scholar] [CrossRef]
- Bartlettl, M.; Yan, M. Fabrication of Polymer Thin Films and Arrays with Spatial and Topographical Controls. Adv. Mater. 2001, 13, 1449–1451. [Google Scholar] [CrossRef]
- Liu, L.; Yan, M. A General Approach to the Covalent Immobilization of Single Polymers. Angew. Chem.-Int. Ed. 2006, 45, 6207–6210. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Engelhard, M.H.; Yan, M. Surface and Interface Control on Photochemically Initiated Immobilization. J. Am. Chem. Soc. 2006, 128, 14067–14072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, M.; Bartlett, M. Polymeric Structures, Particularly Microstructures, and Methods for Making Same. U.S. Patent Application 0242023 A1, 30 January 2004. [Google Scholar]
- Yan, M.; Ren, J. Covalent Immobilization of Polypropylene Thin Films. J. Mater. Chem. 2005, 15, 523–527. [Google Scholar] [CrossRef]
- Pei, Y.; Yu, H.; Pei, Z.; Theurer, M.; Ammer, C.; André, S.; Gabius, H.J.; Yan, M.; Ramström, O. Photoderivatized Polymer Thin Films at Quartz Crystal Microbalance Surfaces: Sensors for Carbohydrate-Protein Interactions. Anal. Chem. 2007, 79, 6897–6902. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ramström, O.; Yan, M. Quantitative Analysis of Multivalent Ligand Presentation on Gold Glyconanoparticles and the Impact on Lectin Binding. Anal. Chem. 2010, 82, 9082–9089. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Yu, H.; Theurer, M.; Waldén, A.; Nilsson, P.; Yan, M.; Ramström, O. Photogenerated Carbohydrate Microarrays. ChemBioChem 2007, 8, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.H.; Dietsch, H.; Schurtenberger, P.; Yan, M. Photoinitiated Coupling of Unmodified Monosaccharides to Iron Oxide Nanoparticles for Sensing Proteins and Bacteria. Bioconjugate Chem. 2009, 20, 1349–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, T.; Wang, X.; Tong, Q.; Yan, M. Polymer-Based Photocoupling Agent for the Efficient Immobilization of Nanomaterials and Small Molecules. Langmuir 2011, 27, 9372–9378. [Google Scholar] [CrossRef] [Green Version]
- Delaittre, G.; Goldmann, A.S.; Mueller, J.O.; Barner-Kowollik, C. Effiziente Photochemische Verfahren Für Die Räumlich Aufgelöste Oberflächenfunktionalisierung. Angew. Chem. 2015, 127, 11548–11564. [Google Scholar] [CrossRef]
- Dietrich, M.; Delaittre, G.; Blinco, J.P.; Inglis, A.J.; Bruns, M.; Barner-Kowollik, C. Photoclickable Surfaces for Profluorescent Covalent Polymer Coatings. Adv. Funct. Mater. 2012, 22, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Emmenegger, C.; Preuss, C.M.; Yameen, B.; Pop-Georgievski, O.; Bachmann, M.; Mueller, J.O.; Bruns, M.; Goldmann, A.S.; Bastmeyer, M.; Barner-Kowollik, C. Controlled Cell Adhesion on Poly(Dopamine) Interfaces Photopatterned with Non-Fouling Brushes. Adv. Mater. 2013, 25, 6123–6127. [Google Scholar] [CrossRef] [PubMed]
- Kotzyba-Hibert, F.; Kapfer, I.; Goeldner, M. Neue Entwicklungen Bei Der Photoaffinitatsmarkierung. Angew. Chem. 1995, 107. [Google Scholar] [CrossRef]
- Ismaili, H.; Lee, S.; Workentin, M.S. Diazirine-Modified Gold Nanoparticle: Template for Efficient Photoinduced Interfacial Carbene Insertion Reactions. Langmuir 2010, 26, 14958–14964. [Google Scholar] [CrossRef] [PubMed]
- Ismaili, H.; Workentin, M.S. Covalent Diamond-Gold Nanojewel Hybrids via Photochemically Generated Carbenes. Chem. Commun. 2011, 47, 7788–7790. [Google Scholar] [CrossRef]
- Ismaili, H.; Lagugné-Labarthet, F.; Workentin, M.S. Covalently Assembled Gold Nanoparticle-Carbon Nanotube Hybrids via a Photoinitiated Carbene Addition Reaction. Chem. Mater. 2011, 23, 1519–1525. [Google Scholar] [CrossRef]
- Ismaili, H.; Geng, D.; Sun, A.X.; Kantzas, T.T.; Workentin, M.S. Light-Activated Covalent Formation of Gold Nanoparticle-Graphene and Gold Nanoparticle-Glass Composites. Langmuir 2011, 27, 13261–13268. [Google Scholar] [CrossRef] [PubMed]
- Kanoh, N.; Kumashiro, S.; Simizu, S.; Kondoh, Y.; Hatakeyama, S.; Tashiro, H.; Osada, H. Immobilization of Natural Products on Glass Slides by Using a Photoaffinity Reaction and the Detection of Protein–Small-Molecule Interactions. Angew. Chem. 2003, 115, 5742–5745. [Google Scholar] [CrossRef]
Photoinitiator | Substrate | Reference |
---|---|---|
Type I photoinitiators | ||
Silicon substrate | [27,28,29] | |
Silica nanoparticles | [31,32] | |
Silica nanoparticles | [33] | |
Cellulosic material | [34] | |
Cellulose nanocrystals | [41] | |
Glass surface | [36] | |
Silica microparticles | [37] | |
Silica nanoparticles | [32,35,38] | |
Silica nanoparticles | [31] | |
Silica nanoparticles | [39] | |
Titanium oxide, ferrite | [42,43] | |
Ferrite | [42] | |
Silica particles | [42,43,44,46,47] | |
Silicon substrate | [46,48,49] | |
Gold | [48,50,51,52,53,54] | |
Silicon substrate | [48] | |
Gold | [55] | |
Type II photoinitiators | ||
Silicon substrate | [67,68,74] | |
Indium tin oxide coated glass | [69,77] | |
Silica fibers | [70] | |
Glass substrate | [71,72] | |
Gold | [75,76,77,78,79] | |
Stainless steel | [76,77] | |
Glassy carbon | [77] | |
Cellulose | [80] | |
Cellulose nanocrystals | [81] | |
Sodium montmorillonite Cloisite Na+ | [82] | |
Polypropylene | [57,58,59,64,65] | |
Cellulose acetate, poly (vinylidene)fluoride, polystyrene | [58] | |
Poly(lactide acid) | [61] | |
Derived from BP via hydrogen abstraction from the surface according to Scheme 4 | Poly(dimethylsiloxane) | [60] |
Silica nanoparticles | [87] | |
Glass oligonucleotide biochip | [86] | |
Cells | [88,89] | |
Polyamine | [90] | |
Cellulose | [91] | |
Glass and silicon substrates | [85,92] | |
Silicon substrate | [96,97] | |
Silica nanoparticles | [98,99] | |
Polystyrene | [103] | |
LDPE | [100,101,102] | |
Derived from thioxanthone via hydrogen abstraction from the surface according to Scheme 10 | ||
Poly(amid) fibers | [104] | |
Cellulose | [105] | |
Synergist immobilization (tert. amine) for type II photoinitiators | ||
PP | [107] | |
PET | [109] | |
Hydrophilized PP | [106,108] | |
Gold | [110,111] | |
Silica nanoparticles | [112,113] |
Photoiniferter | Substrate | Reference |
---|---|---|
PS | [119,120] | |
Glass substrate | [121] | |
Poly(urethane) | [122] | |
Cellulose membrane | [124] | |
Cycloolefine substrate | [125] | |
Silica microparticles | [123] | |
Magnetic microspheres (Fe3O4) | [126] | |
Hydrophilized PP | [127] | |
Silicon substrate | [128,129,130,131,132,133] | |
Gold | [135,136,137,138,143] | |
Iron oxide nanoparticles | [139,142] | |
Aluminum nanoparticles | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mueller, M.; Bandl, C.; Kern, W. Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers 2022, 14, 608. https://doi.org/10.3390/polym14030608
Mueller M, Bandl C, Kern W. Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers. 2022; 14(3):608. https://doi.org/10.3390/polym14030608
Chicago/Turabian StyleMueller, Matthias, Christine Bandl, and Wolfgang Kern. 2022. "Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions" Polymers 14, no. 3: 608. https://doi.org/10.3390/polym14030608
APA StyleMueller, M., Bandl, C., & Kern, W. (2022). Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers, 14(3), 608. https://doi.org/10.3390/polym14030608