Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rheological and Tack Experiments
2.2.1. Rheology
2.2.2. Tack Experiments
3. Results
3.1. Small Amplitude Oscillatory Shear Measurements
3.2. Implications of Linear Viscoelastic Results on Immediate Adhesion or Tack
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Bioplastics, Bioplastics Market Data. 2020. Available online: https://www.european-bioplastics.org/market/ (accessed on 29 October 2021).
- Pospisil, J.; Nespurek, S. Highlights in chemistry and physics of polymer stabilization. Macromol. Symp. 1997, 115, 143–163. [Google Scholar] [CrossRef]
- Vert, M.; Santos, J.D.; Ponsart, S.; Alauzet, N.; Morgat, J.L.; Coudane, J.; Garreau, H. Degradable polymers in a living environment: Where do you end up? Polym. Int. 2002, 51, 840–844. [Google Scholar] [CrossRef]
- Ahvenainen, R. Novel Food Packaging Techniques; Woodhead Publishing: Sawston, UK, 2003. [Google Scholar]
- Halley, P. Biodegradable packaging for the food industry. Packag. Bottling Int. 2002, 4, 56–57. [Google Scholar]
- Ikinen, S.; Stolt, M.; Sodergard, A. Stability studies on blends of a lactic acid-based hot melt adhesive and starch. J. Appl. Polym. Sci. 2008, 110, 2467–2474. [Google Scholar] [CrossRef]
- Moyano, M.A.; París, R.; Martín-Martínez, J.M. Viscoelastic and adhesion properties of hot-melts made with blends of ethylene-co-n-butyl acrylate (EBA) and ethylene-co-vinyl acetate (EVA) copolymers. Int. J. Adhes. Adhes. 2019, 88, 34–42. [Google Scholar] [CrossRef]
- Park, Y.J.; Joo, H.S.; Kim, H.J.; Lee, Y.K. Adhesion and rheological properties of EVA-based hot-melt adhesives. Int. J. Adhes. Adhes. 2006, 26, 571–576. [Google Scholar] [CrossRef]
- Chu, H.H.; Huang, W.H.; Chuang, K.S.; Shen, B.H. Adhesion and viscoelastic property of poly(ethylene-co-vinyl acetate) based hot melt adhesives-Effects of tackifier and wax. Int. J. Adhes. Adhes. 2020, 99, 102586. [Google Scholar] [CrossRef]
- Jozef, R.; Lyda, R.; Igor, N.; Vladimír, V.; Jozef, P.; Ivica, J.; Ivan, C. Thermooxidative stability of hot melt adhesives based on metallocene polyolefins grafted with polar acrylic acid moieties. Polym. Test. 2020, 85, 106422. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chen, C.W.; Wei, T.F.; Rwei, S.P. Synthesis and characterization of low-temperature polyamide 6 (PA6) copolyamides used as hot melt adhesives and derived from the comonomer of novel aliphatic diamine bis(2-aminoethyl) adipamide and adipic acid. Int. J. Adhes. Adhes. 2020, 101, 102619. [Google Scholar] [CrossRef]
- Zheng-fen, C. Developments in polyester hot-melt garment adhesives. Int. J. Adhes. Adhes. 1985, 5, 178. [Google Scholar] [CrossRef]
- Legocka, I.; Zimek, Z.; Woźniak, A. Adhesive properties of hot-melt adhesives modified by radiation. Radiat. Phys. Chem. 1998, 52, 277–281. [Google Scholar] [CrossRef]
- Wu, M.; Liu, Y.; Du, P.; Wang, X.; Yang, B. Polyurethane hot melt adhesive based on Diels-Alder reaction. Int. J. Adhes. Adhes. 2020, 100, 102597. [Google Scholar] [CrossRef]
- Wongsamut, C.; Suwanpreedee, R.; Manuspiya, H. Thermoplastic polyurethane-based polycarbonate diol hot melt adhesives: The effect of hard-soft segment ratio on adhesion properties. Int. J. Adhes. Adhes. 2020, 102, 102677. [Google Scholar] [CrossRef]
- Pomposo, J.A.; Rodríguez, J.; Grande, H. Polypyrrole-based conducting hot melt adhesives for EMI shielding applications. Synth. Met. 1999, 104, 107–111. [Google Scholar] [CrossRef]
- Choi, W.Y.; Lee, C.M.; Park, H.J. Development of biodegradable hot-melt adhesive based on poly-ε-caprolactone and soy protein isolate for food packaging system. LWT Food Sci. Technol. 2006, 39, 591–597. [Google Scholar] [CrossRef]
- Ohtaki, A.; Sato, N.; Nakasaki, K. Biodegradation of poly-ε-caprolactone under controlled composting conditions. Polym. Degrad. Stab. 1998, 61, 499–505. [Google Scholar] [CrossRef]
- Safari, M.; Otaegi, I.; Aramburu, N.; Guerrica-Echevarria, G.; de Ilarduya, A.M.M.; Sardon, H.; Müller, A.J. Synthesis, Structure, Crystallization and Mechanical Properties of Isodimorphic PBS-ran-PCL Copolyesters. Polymers 2021, 13, 2263. [Google Scholar] [CrossRef]
- Safari, M.; Leon Boigues, L.; Shi, G.; Maiz, J.; Liu, G.; Wang, D.; Mijangos, C.; Müller, A.J. Effect of Nanoconfinement on the Isodimorphic Crystallization of Poly (butylene succinate-ran-caprolactone) Random Copolymers. Macromolecules 2020, 53, 6486–6497. [Google Scholar] [CrossRef]
- Safari, M.; Mugica, A.; Zubitur, M.; Martínez de Ilarduya, A.; Muñoz-Guerra, S.; Müller, A.J. Controlling the isothermal crystallization of isodimorphic PBS-ran-PCL random copolymers by varying composition and supercooling. Polymers 2020, 12, 17. [Google Scholar] [CrossRef] [Green Version]
- Safari, M.; Martínez de Ilarduya, A.; Mugica, A.; Zubitur, M.; Muñoz-Guerra, S.; Müller, A.J. Tuning the thermal properties and morphology of isodimorphic poly [(butylene succinate)-ran-(ε-caprolactone)] copolyesters by changing composition, molecular weight, and thermal history. Macromolecules 2018, 20, 589–9601. [Google Scholar] [CrossRef]
- Ciulik, C.; Safari, M.; de Ilarduya, A.M.; Morales-Huerta, J.C.; Iturrospe, A.; Arbe, A.; Müller, A.J.; Muñoz-Guerra, S. Poly (butylene succinate-ran-ε-caprolactone) copolyesters: Enzymatic synthesis and crystalline isodimorphic character. Eur. Polym. J. 2017, 95, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Penas, M.I.; Ocando, C.; Penott-Chang, E.; Safari, M.; Ezquerra, T.A.; Rebollar, E.; Nogales, A.; Hernandez, R.; Müller, J.A. Nanostructural organization of thin films prepared by sequential dip-coating deposition of poly (butylene succinate), poly (epsilon-caprolactone) and their copolyesters (PBS-ran-PCL). Polymer 2021, 226, 123812. [Google Scholar] [CrossRef]
- Abate, L.; Blanco, I.; Cicala, G.; La Spina, R.; Restuccia, C.L. Thermal and rheological behaviour of some random aromatic polyethersulfone/polyetherethersulfone copolymers. Polym. Degrad. Stab. 2006, 91, 924–930. [Google Scholar] [CrossRef]
- Andrady, A.L. Plastics and the Environment; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Pérez-Camargo, R.A.; Arandia, I.; Safari, M.; Cavallo, D.; Lotti, N.; Soccio, M.; Müller, A.J. Crystallization of isodimorphic aliphatic random copolyesters: Pseudo-eutectic behavior and double-crystalline materials. Eur. Polym. J. 2018, 101, 233–247. [Google Scholar] [CrossRef]
- Sangroniz, L.; Cavallo, D.; Müller, A.J. Self-Nucleation Effects on Polymer Crystallization. Macromolecules 2020, 53, 4581−4604. [Google Scholar] [CrossRef]
- Vinogradov, G.V.; Malkin, A. Rheology of Polymers: Viscoelasticity and Flow of Polymers; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sperling, L.H. Introduction to Physical Polymer Science, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2006. [Google Scholar]
- White, R.P.; Lipson, J.E.G. Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49, 3987–4007. [Google Scholar] [CrossRef]
- Porter, R.S.; Johnson, J.F. Temperature dependence of polymer viscosity. The influence of polymer composition. J. Polym. Sci. Part C Polym. Symp. 1967, 15, 373–380. [Google Scholar] [CrossRef]
- Mavridis, H.; Shroff, R.N. Temperature Dependence of Polyolefin Melt Rheology. Polym. Eng. Sci. 1992, 32, 1778–1991. [Google Scholar] [CrossRef]
- Shroff, R.N.; Mavridis, H. New Measures of Polydispersity from Rheological Data on Polymer Melts. J. Appl. Polym. Sci. 1995, 57, 1605–1626. [Google Scholar] [CrossRef]
- Shroff, R.N.; Mavridis, H. Long-Chain-Branching Index for Essentially Linear Polyethylenes. Macromolecules 1999, 32, 8454–8464. [Google Scholar] [CrossRef]
- Trinkle, S.; Friedrich, C. Van Gurp-Palmen-plot: A way to characterize polydispersity of linear polymers. Rheol. Acta 2001, 40, 322–328. [Google Scholar] [CrossRef]
- Van Gurp, M.; Palmen, J. Time-temperature superposition for polymeric blends. In Proceedings of the XII the International Congress on Rheology, Quebec City, QC, Canada, 18–23 August 1996; pp. 134–135. [Google Scholar]
- Stadler, F.; Gabriel, C.; Münstedt, H. Influence of Short-Chain Branching of Polyethylenes on the Temperature Dependence of Rheological Properties in Shear. Macromol. Chem. Phys. 2007, 20, 2449–2454. [Google Scholar] [CrossRef]
- Vega, J.F.; Fernández, M.; Santamaría, A.; Muñoz-Escalona, A.; Lafuente, P. Rheological criteria to characterize metallocene catalyzed polyethylenes. Macromol. Chem. Phys. 1999, 200, 2257–2268. [Google Scholar] [CrossRef]
- Wang, J.S.; Porter, R.S.; Knox, J.R. Temperature coefficients for the viscosity of poly-1-olefins. J. Polym. Sci. C Polym. Lett. 1970, 8, 671–675. [Google Scholar] [CrossRef]
- Privalko, V.; Lipatov, Y.S. Activation energy for viscous flow and melt structure of linear polymers. J. Polym. Sci. B Polym. Phys. 1976, 14, 1725–1727. [Google Scholar] [CrossRef]
- García-Franco, C.; Harrington, B.; Lohse, D. Effect of Short-Chain Branching on the Rheology of Polyolefins. Macromolecules 2006, 39, 2710–2717. [Google Scholar] [CrossRef]
- Qian, Z.; McKenna, G.B. Expanding the application of the van Gurp-Palmen plot: New insights into polymer melt rheology. Polymer 2018, 155, 208–217. [Google Scholar] [CrossRef]
- García-Franco, C.A.; Lohse, D.J.; Robertson, C.G.; Georjon, O. Relative quantification of long chain branching in essentially linear polyethylenes. Eur. Polym. J. 2008, 44, 376–391. [Google Scholar] [CrossRef]
- Rojo, E.; Peña, E.; Muñoz, M.E.; Santamaría, A. A study of the use of oscillatory flow to characterize isotactic and syndiotactic poly(propylene)s. Macromol. Chem. Phys. 2006, 207, 1781–1788. [Google Scholar] [CrossRef]
- Vega, J.; Aguilar, M.; Peón, J.; Pastor, D.; Martínez-Salazar, J. Effect of long chain branching on linear-viscoelastic melt properties of polyolefins. e-Polymers 2002, 2. [Google Scholar] [CrossRef] [Green Version]
- Fleury, G.; Schlatter, G.; Muller, R. Non linear rheology for long chain branching characterization, comparison of two methodologies: Fourier transform rheology and relaxation. Rheol. Acta 2004, 44, 174–187. [Google Scholar] [CrossRef]
- Auhl, D.; Stange, J.; Münstedt, H.; Krause, B.; Voigt, D.; Lederer, A.; Lappan, U.; Lunkwitz, K. Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 2004, 37, 9465–9472. [Google Scholar] [CrossRef]
- Lohse, D.J.; Milner, S.T.; Fetters, L.J.; Xenidou, M.; Garcia-Franco, C.A.; Lyon, M.K. Well-Defined, Model Long Chain Branched Polyethylene. 2. Melt Rheological Behavior. Macromolecules 2002, 35, 3066–3075. [Google Scholar] [CrossRef]
- Agrawal, P.; Silva, M.H.A.; Cavalcanti, S.N.; Freitas, D.M.G.; Araújo, J.P.; Oliveira, A.D.; Mélo, T.J.A. Rheological properties of high-density polyethylene/linear low-density polyethylene and high-density polyethylene/low-density polyethylene blends. Polym. Bull. 2021. [Google Scholar] [CrossRef]
- López-Barrón, C.R.; Macosko, C.W. Rheology of compatibilized immiscible blends with droplet-matrix and cocontinuous morphologies during coarsening. J. Rheol. 2014, 58, 1935. [Google Scholar] [CrossRef]
- Carrot, C.; Mbarek, S.; Jaziri, M.; Chalamet, Y.; Raveyre, C.; Prochazka, F. Immiscible Blends of PC and PET, Current Knowledge and New Results: Rheological Properties. Macromol. Mater. Eng. 2007, 292, 693–706. [Google Scholar] [CrossRef]
- Sangroniz, A.L.; Sangroniz, L.; Aranburu, N.; Fernández, M.; Santamaria, A.; Iriarte, M.; Etxeberria, A. Blends of biodegradable poly(butylene adipate-co-terephthalate) with poly (hydroxi amino ether) for packaging applications: Miscibility, rheology and transport properties. Eur. Polym. J. 2018, 105, 348–358. [Google Scholar] [CrossRef]
- Sangroniz, L.; Gancheva, T.; Favis, B.D.; Müller, A.J.; Santamaria, A. Rheology of complex biobased quaternary blends: Poly(lactic acid) [poly(ethylene oxide)]/poly(ether-b-amide)/poly(amide 11). J. Rheol. 2021, 65, 437. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Cao, Y.; Chen, J.; Wang, J. Rheological Characteristics and Morphologies of Styrene-Butadiene-Maleic Anhydride Block Copolymers. J. Appl. Polym. Sci. 2012, 123, 3234–3241. [Google Scholar] [CrossRef]
- Calafel, I.; Muñoz, M.E.; Santamaría, A.; Boix, M.; Conde, J.I.; Pascual, B. PVC/PBA random copolymers prepared by Living Radical Polymerization (SET–DTLRP): Entanglements and chain dimensions. Eur. Polym. J. 2015, 73, 202–211. [Google Scholar] [CrossRef]
- Benvenuta, J.J.; Tenorio-López, J.A.; Martínez-Estrada, A.; Guerrero-Sánchez, C. Application of RAFT-synthesized reactive tri-block copolymers for the recycling of post-consumer R-PET by melt processing. Mater. Chem. Phys. 2019, 229, 474–481. [Google Scholar] [CrossRef]
- Arevalillo, A.; Muñoz, M.E.; Santamaría, A.; Fraga, L.; Barrio, J.A. Novel rheological features of molten SEBS copolymers: Mechanical relaxation at low frequencies and flow split. Eur. Polym. J. 2008, 44, 3213–3221. [Google Scholar] [CrossRef]
- Lakrout, H.; Sergot, P.; Creton, C. Direct observation of cavitation and fibrillation in a probe tack experiment on model acrylic pressure-sensitive adhesive. J. Adhes. 1999, 69, 307–359. [Google Scholar] [CrossRef]
- Verdier, C.; Piau, J.M. Effect of non linear viscoelastic properties on tack. J. Polym. Sci. B Polym. Phys. 2003, 41, 3139–3149. [Google Scholar] [CrossRef] [Green Version]
- Patrick, R.L. Treatise on Adhesion and Adhesives: Materials; Marcel Dekker: New York, NY, USA, 1969; Volume 2. [Google Scholar]
- Chang, E.P. Viscoelastic windows of pressure-sensitive adhesives. J. Adhes. 1991, 34, 189–200. [Google Scholar] [CrossRef]
- Gdalin, B.E.; Shandryuk, G.A.; Feldstein, M.M. Effect of temperature on probe tack adhesion: Extension of the Dahlquist criterion of tack. J. Adhes. 2011, 87, 111–138. [Google Scholar] [CrossRef]
- Lindner, A.; Lestriez, B.; Mariot, S.; Creton, C.; Maevis, T.; Lühmann, B.; Brummer, R. Adhesive and rheological properties of lightly crosslinked model acrylic networks. J. Adhes. 2006, 82, 267–310. [Google Scholar] [CrossRef]
- Callies, X.; Fonteneau, C.; Pensec, S.; Bouteiller, L.; Ducoureta, G.; Creton, C. Adhesion and non-linear rheology of adhesives with supramolecular crosslinking points. Soft Matter 2016, 12, 7174—7185. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Creton, C.; Doi, M. Simple model on debonding of soft adhesives. Soft Matter 2018, 14, 6206–6213. [Google Scholar] [CrossRef]
- Brown, K.; Hooker, J.C.; Creton, C. Micromechanisms of Tack of Soft Adhesives Based on Styrenic Block Copolymers. Macromol. Mater. Eng. 2002, 287, 163–179. [Google Scholar] [CrossRef]
- Creton, C.; Ciccotti, M. Fracture and adhesion of soft materials: A review. Rep. Prog. Phys. 2016, 79, 046601. [Google Scholar] [CrossRef] [PubMed]
- Chiche, A.; Dollhofer, J.; Creton, C. Cavity growth in soft adhesives. Eur. Phys. J. E 2005, 17, 389–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Composition a | Molecular Weight b (g/mol) | Tg c | Tm d | |||
---|---|---|---|---|---|---|
Polyester | (BS/CL mol/mol) | Mw | Mn | P.I. | (°C) | (°C) |
PBS | 100/0 | 70,300 | 32,700 | 2.2 | −31.7 | 114.6 |
BS68CL32 | 68/32 | 91,300 | 34,000 | 2.7 | −42.8 | 78.3 |
BS51CL49 | 51/49 | 87,850 | 23,200 | 3.8 | −45.3 | 53.8 |
BS46CL54 | 46/54 | 60,700 | 26,000 | 2.3 | −47.3 | 40 & 15 |
BS15CL85 | 15/85 | 53,100 | 26,350 | 2.0 | −55.1 | 31.2 |
PCL | 0/100 | 60,000 | 31,000 | 1.9 | −60.1 | 56.8 |
Characteristic Parameters | |||||
---|---|---|---|---|---|
Material | (Tm + 10) °C | ||||
PBS | 125 | 154.7 ± 5.7 | 223.7 ± 7.6 | 69.0 ± 0.9 | 22.8 ± 0.6 |
BS68CL32 | 88 | 154.1 ± 7.1 | 312.1 ± 2.8 | 72.1 ± 1.7 | 37.0 ± 0.1 |
BS51CL49 | 64 | 185.6 ± 0.1 | 323.7 ± 2.9 | 82.1 ± 1.3 | 51.1 ± 1.4 |
BS46CL54 | 50 | 191.0 ± 5.9 | 324.2 ± 0.6 | 85.4 ± 0.8 | 52.0 ± 0.5 |
BS15CL85 | 41 | 184.4 ± 9.5 | 328.4 ± 0.2 | 83.6 ± 0.6 | 62.3 ± 3.6 |
PCL | 67 | 142.1 ± 4.7 | 154.8 ± 2.8 | 62.8 ± 0.9 | 18.1 ± 0.3 |
Valco | 70 | 179.2 ± 20.2 | 313.3 ± 9.0 | 92.6 ± 0.5 | 47.5 ± 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval, A.J.; Fernández, M.M.; Candal, M.V.; Safari, M.; Santamaria, A.; Müller, A.J. Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives. Polymers 2022, 14, 623. https://doi.org/10.3390/polym14030623
Sandoval AJ, Fernández MM, Candal MV, Safari M, Santamaria A, Müller AJ. Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives. Polymers. 2022; 14(3):623. https://doi.org/10.3390/polym14030623
Chicago/Turabian StyleSandoval, Aleida J., María Mercedes Fernández, María Virginia Candal, Maryam Safari, Antxon Santamaria, and Alejandro J. Müller. 2022. "Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives" Polymers 14, no. 3: 623. https://doi.org/10.3390/polym14030623
APA StyleSandoval, A. J., Fernández, M. M., Candal, M. V., Safari, M., Santamaria, A., & Müller, A. J. (2022). Rheology and Tack Properties of Biodegradable Isodimorphic Poly(butylene succinate)-Ran-Poly(ε-caprolactone) Random Copolyesters and Their Potential Use as Adhesives. Polymers, 14(3), 623. https://doi.org/10.3390/polym14030623