A Convenient and Simple Ionic Polymer-Metal Composite (IPMC) Actuator Based on a Platinum-Coated Sulfonated Poly(ether ether ketone)–Polyaniline Composite Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used in This Study
2.2. Preparation of the Reagent Solutions
2.3. Preparation of SPEEK Membrane
2.4. Fabrication of SPEEK-PANI Membrane
2.5. Proton Conductivity and Ion-Exchange Capacity
2.5.1. Proton Conductivity
2.5.2. Ion-Exchange Capacity
2.6. Chemical Plating
2.7. FTIR Analysis
2.8. Morphological Analysis
2.9. Wide-Angle X-ray Diffraction (WAXRD)
3. Results and Discussion
3.1. Fourier Transform Infrared (FT-IR) Spectroscopic Measurements
3.2. X-ray Diffraction (XRD) Studies
3.3. SEM and EDX Studies
3.4. Electro-Mechanical Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, L.; Chen, W. Biocompatible composite actuator: A supramolecular structure consisting of the biopolymer chitosan carbon nanotubes and an ionic liquid. Adv. Mater. 2010, 22, 3745–3748. [Google Scholar] [CrossRef]
- Wu, Y.; Alici, G.; Madden, J.D.W.; Spinks, G.M.; Wallace, G.G. Soft Mechanical Sensors through Reverse Actuation in Polypyrrole. Adv. Funct. Mater. 2007, 17, 3216–3222. [Google Scholar] [CrossRef]
- Shahinpoor, M. New effect in ionic polymeric gels: The ionic flexoelectric effect. Smart Struct. Mater. 1995, 2441, 42–53. [Google Scholar]
- Kamamichi, N.; Yamakita, M.; Asaka, K.; Luo, Z.W.; Mukai, T. Sensor property of a novel EAP device with ionic-liquid-based bucky gel. Sensors 2007, 2007, 221–224. [Google Scholar]
- Shahinpoor, M.; Kim, K.J. Ionic polymer-metal composites i fundamentals. Smart Mater. Struct. 2001, 10, 819. [Google Scholar] [CrossRef]
- Lu, J.; Kim, S.G.; Lee, S.; Oh, I.K. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF. Smart Mater. Struct. 2008, 17, 45002. [Google Scholar] [CrossRef]
- Luqman, M.; Lee, J.W.; Moon, K.K.; Yoo, Y.T. Sulfonated polystyrene-based ionic polymer–metal composite (IPMC) actuator. J. Ind. Eng. Chem. 2011, 17, 49–55. [Google Scholar] [CrossRef]
- Khan, A.; Inamuddin Luqman, A.M.; Dutta, A. Kraton based ionic polymer metal composite (IPMC) actuator. Sens. Actuators A Phys. 2014, 216, 295–300. [Google Scholar]
- Inamuddin Khan, A.; Jain, R.K.; Naushad, M. Development of sulfonated poly(vinyl alcohol)/polpyrrole based ionic polymer metal composite (IPMC) actuator and its characterization. Smart Mater. Struct. 2015, 24, 95003. [Google Scholar] [CrossRef]
- Khan, A.; Inamuddin Jain, R.K.; Naushad, M. Fabrication of a silver nano powder embedded kraton polymer actuator and its characterization. RSC Adv. 2015, 5, 91564–91573. [Google Scholar] [CrossRef]
- Khan, A.; Jain, R.K.; Banerjee, P.; Inamuddin Asiri, A.M. Soft actuator based on Kraton with GO/Ag/Pani composite electrodes for robotic applications. Mater. Res. Express 2017, 4, 115701. [Google Scholar] [CrossRef]
- Khan, A.; Inamuddin Jain, R.K.; Asiri, A.M. Thorium (IV) phosphate-polyaniline composite-based hydrophilic membranes for bending actuator application. Polym. Eng. Sci. 2017, 57, 258–267. [Google Scholar] [CrossRef]
- Khan, A.; Inamuddin Jain, R.K.; Luqman, M.; Asiri, A.M. Development of sulfonated poly(vinyl alcohol)/aluminium oxide/graphene based ionic polymer-metal composite (IPMC) actuator. Sens. Actuators A Phys. 2018, 280, 114–124. [Google Scholar] [CrossRef]
- Ahamed, M.I.; Inamuddin Asiri, A.M.; Luqman, M. Preparation, physicochemical characterization, and microrobotics applications of polyvinyl chloride-(PVC-) based PANI/PEDOT: PSS/ZrP composite cation-exchange membrane. Adv. Mater. Sci. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K.; Khan, A.; Inamuddin; Asiri, A.M. Design and development of non-perfluorinated ionic polymer metal composite-based flexible link manipulator for robotics assembly. Polym. Compos. 2019, 40, 2582–2593. [Google Scholar] [CrossRef]
- Jeon, J.H.; Kang, S.P.; Lee, S.; Oh, I.K. Novel biomimetic actuator based on {SPEEK} and {PVDF}. Sens. Actuators B Chem. 2009, 143, 357–364. [Google Scholar] [CrossRef]
- Jung, J.H.; Vadahanambi, S.; Oh, I.K. Electro-active nano-composite actuator based on fullerene-reinforced nafion. Compos. Sci. Technol. 2010, 70, 584–592. [Google Scholar] [CrossRef]
- Jeon, J.H.; Oh, I.K. Selective growth of platinum electrodes for {MDOF} {IPMC} actuators. Thin Solid Film. 2009, 517, 5288–5292. [Google Scholar] [CrossRef]
- Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 2003, 15, 481–494. [Google Scholar] [CrossRef]
- Deole, U.; Lumia, R. Measuring the Load-Carrying Capability of IPMC Microgripper Fingers. In Proceedings of the IECON 2006—32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 7–10 November 2006; pp. 2933–2938. [Google Scholar]
- Jain, R.K.; Majumder, S.; Dutta, A. SCARA based peg-in-hole assembly using compliant IPMC micro gripper. Rob. Auton. Syst. 2013, 61, 297–311. [Google Scholar] [CrossRef]
- Chuan, Y.S.; Huan, Z.; Xu-Dong, L.; Na, C. A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron-chromium redox flow battery. Ionics 2019, 25, 4219–4229. [Google Scholar]
- Kopitzke, R.W.; Linkous, C.A.; Nelson, G.L. Thermal stability of high temperature polymers and their sulfonated derivatives under inert and saturated vapor conditions. Polym. Deg. Stab. 2000, 67, 335–344. [Google Scholar] [CrossRef]
- Moulinié, P.; Paroli, R.M.; Wang, Z.Y. Characterization and comparison of poly (aryl ether ketone)s containing dibenzoylbiphenyl moieties: Effects of changes in biphenyl substitution pattern on thermal and mechanical properties. J. Polym. Sci. Part A Polym. Chem. 1995, 33, 2741–2752. [Google Scholar] [CrossRef]
- Fu, H.; Jia, L.; Xu, X.; Zhang, H.; Xu, J. Sulfonation of polyetheretherketone and its effects on permeation behavior to nitrogen and water vapor. J. Appl. Polym. Sci. 1996, 60, 1231–1237. [Google Scholar]
- Bishop, M.T.; Karasz, F.E.; Russo, P.S.; Kenneth, H. Solubility and properties of a poly (aryl ether ketone) in strong acids Langley. Macromol 1985, 18, 86–93. [Google Scholar] [CrossRef]
- Shibuya, N.; Porter, R.S. Kinetics of PEEK sulfonation in concentrated sulfuric acid. Macromolecules 1992, 25, 6495–6499. [Google Scholar] [CrossRef]
- Jin, X.; Bishop, M.T.; Ellis, T.S.; Karasz, F.B. A sulfonated poly (aryl-ether-ketone). Br. Polym. J. 1985, 17, 4–10. [Google Scholar] [CrossRef]
- Litter, M.I.; Marvel, C.S. Polyaromatic ether-ketones and polyaromatic ether-ketone sulfonamides from 4-phenoxybenzoyl chloride and from 4,4-dichloroformyldiphenyl ether. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 2205–2223. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Chen, T.; Xu, J. Synthesis of poly (ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics. Polymer 1999, 40, 795–799. [Google Scholar] [CrossRef]
- Ogawa, T.; Marvel, C.S. Polyaromatic ether-ketones and ether-keto-sulfones having various hydrophilic groups. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 1231–1241. [Google Scholar] [CrossRef]
- Liu, L.; Qin, Y.; Guo, Z.-X.; Zhu, D. Reduction of solubilized multi-walled carbon nanotubes. Carbon N. Y. 2003, 41, 331–335. [Google Scholar] [CrossRef]
- Zhang, J. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J. Phys. Chem. 2003, 107, 3712–3718. [Google Scholar] [CrossRef]
- Hamon, M.A. Dissolution of single-walled carbon nanotubes. Adv. Mater. 1999, 11, 834–840. [Google Scholar] [CrossRef]
- Liu, X.; He, S.J.; Shi, Z.Z.; Zhang, L.Q.; Lin, J. Effect of residual casting solvent content on the structure and properties of sulfonated poly(ether ether ketone) membranesmbrane. J. Membr. Sci. 2015, 492, 48–57. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Erce, Ş.; Hülya, E.; Gültekin, A.; Hayrettin, Y.; Nurcan, B. Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. Int. J. Hydrogen Energy 2009, 34, 4645–4652. [Google Scholar] [CrossRef]
Tip Deflection (mm) | |||||
---|---|---|---|---|---|
Voltage | 0 V | 0.5V | 1.0V | 1.5V | 2.0V |
Trial 1 | 0 | 8.0 | 12.0 | 18.0 | 21.0 |
Trial 2 | 0 | 7.3 | 12.8 | 17.8 | 21.9 |
Trial 3 | 0 | 7.5 | 12.5 | 17.5 | 21.5 |
Trial 4 | 0 | 7.6 | 12.8 | 17.9 | 21.2 |
Trial 5 | 0 | 7.9 | 12.2 | 17.8 | 21.7 |
Trial 6 | 0 | 8.0 | 12.4 | 18.1 | 21.8 |
Trial 7 | 0 | 7.8 | 12.1 | 17.9 | 21.5 |
Trial 8 | 0 | 7.7 | 12.3 | 18.1 | 21.8 |
Trial 9 | 0 | 7.8 | 12.1 | 17.8 | 21.7 |
Trial 10 | 0 | 7.9 | 12.4 | 18.0 | 21.9 |
Voltage (V) | F1 (mN) | F2 (mN) | F3 (mN) | F4 (mN) | F5 (mN) | F6 (mN) | F7 (mN) | F8 (mN) | F9 (mN) | F10 (mN) | Average Force Value (F) in mN |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.5 | 0.052 | 0.048 | 0.052 | 0.051 | 0.049 | 0.05 | 0.051 | 0.049 | 0.048 | 0.050 | 0.05 |
1.0 | 0.106 | 0.108 | 0.109 | 0.11 | 0.107 | 0.109 | 0.106 | 0.107 | 0.108 | 0.110 | 0.108 |
1.5 | 0.203 | 0.208 | 0.21 | 0.209 | 0.205 | 0.207 | 0.204 | 0.205 | 0.207 | 0.206 | 0.2064 |
2.0 | 0.305 | 0.307 | 0.309 | 0.308 | 0.306 | 0.308 | 0.309 | 0.307 | 0.308 | 0.310 | 0.3077 |
Mean | 0.13442 | ||||||||||
Standard Deviation | 0.110544623 | ||||||||||
Repeatability | 88.94% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luqman, M.; Shaikh, H.M.; Anis, A.; Al-Zahrani, S.M.; Alam, M.A. A Convenient and Simple Ionic Polymer-Metal Composite (IPMC) Actuator Based on a Platinum-Coated Sulfonated Poly(ether ether ketone)–Polyaniline Composite Membrane. Polymers 2022, 14, 668. https://doi.org/10.3390/polym14040668
Luqman M, Shaikh HM, Anis A, Al-Zahrani SM, Alam MA. A Convenient and Simple Ionic Polymer-Metal Composite (IPMC) Actuator Based on a Platinum-Coated Sulfonated Poly(ether ether ketone)–Polyaniline Composite Membrane. Polymers. 2022; 14(4):668. https://doi.org/10.3390/polym14040668
Chicago/Turabian StyleLuqman, Mohammad, Hamid M. Shaikh, Arfat Anis, Saeed M. Al-Zahrani, and Mohammad Asif Alam. 2022. "A Convenient and Simple Ionic Polymer-Metal Composite (IPMC) Actuator Based on a Platinum-Coated Sulfonated Poly(ether ether ketone)–Polyaniline Composite Membrane" Polymers 14, no. 4: 668. https://doi.org/10.3390/polym14040668
APA StyleLuqman, M., Shaikh, H. M., Anis, A., Al-Zahrani, S. M., & Alam, M. A. (2022). A Convenient and Simple Ionic Polymer-Metal Composite (IPMC) Actuator Based on a Platinum-Coated Sulfonated Poly(ether ether ketone)–Polyaniline Composite Membrane. Polymers, 14(4), 668. https://doi.org/10.3390/polym14040668