Poly(β-hydroxyl amine)s: Valuable Building Blocks for Supramolecular Elastomers with Tunable Mechanical Performance and Superior Healing Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization and Measurements
2.3. Synthesis of Polymer P1 via the Amine-Epoxy Polymerization
2.4. Preparation of the Hydrogen-Bonded Elastomer
2.5. Preparation of Dually Supramolecular Elastomers (P1-Cu-x/1)
2.6. Hot-Pressing of the Supramolecular Elastomers
2.7. Self-Healing Tests of the Supramolecular Elastomers
2.8. Preparation of the Photoluminescent Supramolecular Elastomer P1-Eu-x
2.9. Preparation of the Conductive Supramolecular Elastomer P1-MWCNT
3. Results
3.1. Synthesis and Characterization of Polymer P1
3.2. Hydrogen-Bonded and Metal-Coordinated Elastomers
3.3. Dynamic Properties of the Supramolecular Elastomers
3.4. Applications for Photoluminescent and Conductive Supramolecular Elastomers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kajita, T.; Noro, Y.; Matsushita, A. Design and properties of supramolecular elastomers. Polymer 2017, 128, 297–310. [Google Scholar] [CrossRef]
- Sijbesma, R.P.; Beijer, F.H.; Brunsveld, L.; Folmer, B.J.B.; Hirschberg, J.H.K.K.; Lange, R.F.M.; Lowe, J.K.L.; Meijer, E.W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601–1604. [Google Scholar] [CrossRef]
- Hentschel, J.; Kushner, A.M.; Ziller, J.; Guan, Z. Self-healing supramolecular block copolymers. Angew. Chem. Int. Ed. 2012, 51, 10561–10565. [Google Scholar] [CrossRef]
- Mozhdehi, D.; Ayala, S.; Cromwell, O.R.; Guan, Z.B. Self-healing multiphase polymers via dynamic metal-ligand interactions. J. Am. Chem. Soc. 2014, 136, 16128–16131. [Google Scholar] [CrossRef]
- Li, C.H.; Wang, C.; Keplinger, C.; Zuo, J.L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; et al. A Highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef]
- Nomimura, S.; Osaki, M.; Park, J.; Ikura, R.; Takashima, Y.; Yamaguchi, H.; Harada, A. Self-healing alkyl acrylate-based supramolecular elastomers cross-linked via host-guest interactions. Macromolecules 2019, 52, 2659–2668. [Google Scholar] [CrossRef]
- Hou, J.B.; Zhang, X.Q.; Wu, D.; Feng, J.F.; Ke, D.; Li, B.J.; Zhang, S. Tough self-healing elastomers based on the host-guest interaction of polycyclodextrin. ACS Appl. Mater. Interfaces 2019, 11, 12105–12113. [Google Scholar] [CrossRef] [PubMed]
- Hart, L.R.; Hunter, J.H.; Nguyen, N.A.; Harries, J.L.; Greenland, B.W.; Mackay, M.E.; Colquhoun, H.M.; Hayes, W. Multivalency in healable supramolecular polymers: The effect of supramolecular cross-link density on the mechanical properties and healing of non-covalent polymer networks. Polym. Chem. 2014, 5, 3680–3688. [Google Scholar] [CrossRef] [Green Version]
- Burattini, S.; Greenland, B.W.; Hayes, W.; Mackay, M.E.; Rowan, S.J.; Colquhoun, H.M. A supramolecular polymer based on tweezer-type π−π stacking interactions: Molecular design for healability and enhanced toughness. Chem. Mater. 2011, 23, 6–8. [Google Scholar] [CrossRef]
- Itano, M.; Kobayashi, Y.; Takashima, Y.; Harada, A.; Yamaguchi, H. Mechanical properties of supramolecular polymeric materials cross-linked by donor-acceptor interactions. Chem. Commun. 2019, 55, 3809–3812. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Liu, P.; Hou, C.; Cao, C.; Zhang, J.; Sun, H.; Yao, X. Dual-cross-linked supramolecular polysiloxanes for mechanically tunable, damage-healable and oil-repellent polymeric coatings. ACS Appl. Mater. Interfaces 2019, 11, 47382–47389. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, J.; Huang, J.; Yang, S. Robust, Stretchable, and self-healable supramolecular elastomers synergistically cross-linked by hydrogen bonds and coordination bonds. ACS Appl. Mater. Interfaces 2019, 11, 7387–7396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J.C.; Liu, L.; et al. An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system. Adv. Mater. 2018, 30, 1801435. [Google Scholar] [CrossRef]
- Tian, M.; Zuo, H.; Wang, J.; Ning, N.; Yu, B.; Zhang, L. A silicone elastomer with optimized and tunable mechanical strength and self-healing ability based on strong and weak coordination bonds. Polym. Chem. 2020, 11, 4047–4057. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Hirase, T.; Takashima, Y.; Harada, A.; Yamaguchi, H. Self-healing and shape-memory properties of polymeric materials cross-linked by hydrogen bonding and metal–ligand interactions. Polym. Chem. 2019, 10, 4519–4523. [Google Scholar] [CrossRef]
- Li, C.H.; Zuo, J.L. Self-healing polymers based on coordination bonds. Adv. Mater. 2020, 32, 1903762. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Kang, Y.; Wang, Z.; Zhang, X. 25th Anniversary article: Reversible and adaptive functional supramolecular materials: “non-covalent interaction” matters. Adv. Mater. 2013, 25, 5530–5548. [Google Scholar] [CrossRef]
- Wang, S.; Urban, M.W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583. [Google Scholar] [CrossRef]
- Saha, A.; De, S.; Stuparu, M.C.; Khan, A. Facile and general preparation of multifunctional main-chain cationic polymers through application of robust, efficient, and orthogonal click chemistries. J. Am. Chem. Soc. 2012, 134, 17291–17297. [Google Scholar] [CrossRef]
- Yu, J.; Su, Z.; Xu, H.; Ma, X.; Yin, J.; Jiang, X. One-pot approach to synthesize hyperbranched poly(thiol–ether amine) (hPtEA) through sequential “thiol–ene” and “epoxy–amine” click reactions. Polym. Chem. 2015, 6, 6946–6954. [Google Scholar] [CrossRef]
- Wilfong, W.C.; Kail, B.W.; Bank, T.L.; Howard, B.H.; Gray, M.L. Recovering rare earth elements from aqueous solution with porous amine–epoxy networks. ACS Appl. Mater. Interfaces 2017, 9, 18283–18294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhao, Q.; Yang, L.; Zou, W.; Xi, X.; Xie, T. Exploring dynamic equilibrium of diels–alder reaction for solid state plasticity in remoldable shape memory polymer network. ACS Macro Lett. 2016, 5, 805–808. [Google Scholar] [CrossRef]
- Oh, J.; Jung, K.I.; Jung, H.W.; Khan, A. A modular and practical synthesis of zwitterionic hydrogels through sequential amine-epoxy “click” chemistry and n-alkylation reaction. Polymers 2019, 11, 1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Wang, L.; Li, L.; Feng, S. Novel clickable and fluorescent poly(siloxane amine)s for reusable adhesives and reprocessable elastomers. Polym. Chem. 2020, 11, 4780–4786. [Google Scholar] [CrossRef]
- Wang, Z.; Urban, M.W. Facile UV-healable polyethylenimine–copper (C2H5N–Cu) supramolecular polymer networks. Polym. Chem. 2013, 4, 4897–4901. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, X.; Zhuo, R. Polymeric micelles stabilized by polyethylenimine–copper (C2H5N–Cu) coordination for sustained drug release. RSC Adv. 2016, 6, 22964–22968. [Google Scholar] [CrossRef]
- Lu, H.; Feng, L.; Li, S.; Zhang, J.; Lu, H.; Feng, S. Unexpected strong blue photoluminescence produced from the aggregation of unconventional chromophores in novel siloxane–poly(amidoamine) dendrimers. Macromolecules 2015, 48, 476–482. [Google Scholar] [CrossRef]
- Cao, J.; Zuo, Y.; Lu, H.; Yang, Y.; Feng, S. An unconventional chromophore in water-soluble polysiloxanes synthesized via thiol-ene reaction for metal ion detection. J. Photochem. Photobiol. A 2018, 350, 152–163. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Liu, Z.H.; Wu, X.L.; Guan, Q.B.; You, Z.W. A highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 2019, 31, 1901402. [Google Scholar] [CrossRef]
- Mureseanu, M.; Puscasu, M.; Somacescu, S.; Carja, G. CuII(sal-ala)/CuAlLDH hybrid as novel efficient catalyst for artificial superoxide dismutase (SOD) and cyclohexene oxidation by H2O2. Catal. Lett. 2015, 145, 1529–1540. [Google Scholar] [CrossRef]
- Yang, C.Y.; Srdanov, V.; Robinson, M.R.; Bazan, G.C.; Heeger, A.J. Orienting Eu(dnm)3phen by tensile drawing in polyethylene: Polarized Eu3+ emission. Adv. Mater. 2002, 14, 980–983. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Pan, Q.; Wang, D.; Li, S.; Wang, G.; Chen, Y.; Zhu, P.; Qin, W. Dual-mode light-emitting lanthanide metal−organic frameworks with high water and thermal stability and their application in white LEDs. ACS Appl. Mater. Interfaces 2020, 12, 18934–18943. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhou, J.; Li, L.; Feng, S. Poly(β-hydroxyl amine)s: Valuable Building Blocks for Supramolecular Elastomers with Tunable Mechanical Performance and Superior Healing Capacity. Polymers 2022, 14, 699. https://doi.org/10.3390/polym14040699
Wang L, Zhou J, Li L, Feng S. Poly(β-hydroxyl amine)s: Valuable Building Blocks for Supramolecular Elastomers with Tunable Mechanical Performance and Superior Healing Capacity. Polymers. 2022; 14(4):699. https://doi.org/10.3390/polym14040699
Chicago/Turabian StyleWang, Linlin, Jie Zhou, Lei Li, and Shengyu Feng. 2022. "Poly(β-hydroxyl amine)s: Valuable Building Blocks for Supramolecular Elastomers with Tunable Mechanical Performance and Superior Healing Capacity" Polymers 14, no. 4: 699. https://doi.org/10.3390/polym14040699
APA StyleWang, L., Zhou, J., Li, L., & Feng, S. (2022). Poly(β-hydroxyl amine)s: Valuable Building Blocks for Supramolecular Elastomers with Tunable Mechanical Performance and Superior Healing Capacity. Polymers, 14(4), 699. https://doi.org/10.3390/polym14040699