The Bioanalytical and Biomedical Applications of Polymer Modified Substrates
Abstract
:1. Introduction
2. Branched Polymers
3. Polymer Brushes
3.1. Polymer Brush-Based Biosensors
3.2. Polymer Brush-Based Microarrays
3.3. Infection Resistance of Polymer Brush Modified Substrates
4. Polymer Hydrogels
4.1. Polymer Hydrogel-Based EC Biosensor
4.2. Polymer Hydrogel-Based Optical Biosensor
4.3. Polymer Hydrogel-Based Microarray
4.4. Polymer Hydrogel-Based Bioelectronics
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlmark, A.; Malmstrom, E.; Malkoch, M. Dendritic architectures based on bis-MPA: Functional polymeric scaffolds for application-driven research. Chem. Soc. Rev. 2013, 42, 5858–5879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yameen, B.; Farrukh, A. Polymer brushes: Promises and challenges. Chem. Asian J. 2013, 8, 1736–1753. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.K.; Chang, C.J. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review. Materials 2014, 7, 805–875. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698–725. [Google Scholar] [CrossRef]
- Gosecka, M.; Basinska, T. Hydrophilic polymers grafted surfaces: Preparation, characterization, and biomedical applications. Achievements and challenges. Polym. Adv. Technol. 2015, 26, 696–706. [Google Scholar] [CrossRef]
- Ribeiro, J.P.; Mendonça, P.V.; Coelho, J.F.; Matyjaszewski, K.; Serra, A.C. Glycopolymer brushes by reversible deactivation radical polymerization: Preparation, applications, and future challenges. Polymers 2020, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Hadjesfandiari, N.; Yu, K.; Mei, Y.; Kizhakkedathu, J.N. Polymer brush-based approaches for the development of infection-resistant surfaces. J. Mater. Chem. B 2014, 2, 4968–4978. [Google Scholar] [CrossRef]
- Wankar, J.; Kotla, N.G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y.A. Recent advances in host-guest self-assembled cyclodextrin carriers: Implications for responsive drug delivery and biomedical engineering. Adv. Funct. Mater. 2020, 30, 1909049. [Google Scholar] [CrossRef]
- Singh, V.; Sahebkar, A.; Kesharwani, P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur. Polym. J. 2021, 158, 110683. [Google Scholar] [CrossRef]
- Bilgic, T.; Klok, H.-A. Surface-initiated controlled radical polymerization enhanced DNA biosensing. Eur. Polym. J. 2015, 62, 281–293. [Google Scholar] [CrossRef] [Green Version]
- Bahadir, E.B.; Sezginturk, M.K. Poly(amidoamine) (PAMAM): An emerging material for electrochemical bio(sensing) applications. Talanta 2016, 148, 427–438. [Google Scholar] [CrossRef]
- Sanchez, A.; Villalonga, A.; Martinez-Garcia, G.; Parrado, C.; Villalonga, R. Dendrimers as soft nanomaterials for electrochemical immunosensors. Nanomaterials 2019, 9, 1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugesan, S.; Scheibel, T. Chitosan-based nanocomposites for medical applications. J. Polym. Sci. 2021, 59, 1610–1642. [Google Scholar] [CrossRef]
- Heggestad, J.T.; Fontes, C.M.; Joh, D.Y.; Hucknall, A.M.; Chilkoti, A. In pursuit of zero 2.0: Recent developments in nonfouling polymer brushes for immunoassays. Adv. Mater. 2020, 32, e1903285. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.; Macchione, M.A.; Mattea, F.; Strumia, M. The role of polymers in analytical medical applications. A review. Microchem. J. 2020, 159, 105366. [Google Scholar] [CrossRef]
- D’Agata, R.; Bellassai, N.; Jungbluth, V.; Spoto, G. Recent advances in antifouling materials for surface plasmon resonance biosensing in clinical diagnostics and food safety. Polymers 2021, 13, 1929. [Google Scholar] [CrossRef]
- Bhattu, M.; Verma, M.; Kathuria, D. Recent advancements in the detection of organophosphate pesticides: A review. Anal. Methods 2021, 13, 4390–4428. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Luan, S.; Song, L.; Yuan, S.; Yan, S.; Jin, J.; Yin, J. Facile fabrication of microsphere-polymer brush hierarchically three-dimensional (3D) substrates for immunoassays. Chem. Commun. 2015, 51, 6749–6752. [Google Scholar] [CrossRef]
- Chan, C.M.; Ko, T.M.; Hiraoka, H. Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 1996, 24, 1–54. [Google Scholar] [CrossRef]
- Jin, X.-S.; Pang, Y.-Y.; Ji, S.-X. From self-assembled monolayers to chemically patterned brushes: Controlling the orientation of block copolymer domains in films by substrate modification. Chin. J. Polym. Sci. 2016, 34, 659–678. [Google Scholar] [CrossRef]
- Hetemi, D.; Pinson, J. Surface functionalisation of polymers. Chem. Soc. Rev. 2017, 46, 5701–5713. [Google Scholar] [CrossRef] [PubMed]
- Flory, P.J. Molecular size distribution in three dimensional Polymers. VI. branched polymers containing A—R—Bf-1 type units. J. Am. Chem. Soc. 1952, 74, 2718–2723. [Google Scholar] [CrossRef]
- Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25, 453–571. [Google Scholar] [CrossRef]
- Kuznetsov, A.A.; Soldatova, A.E.; Tsegel’skaya, A.Y.; Semenova, G.K. Synthesis of branched polyimides of different topological structure. Polym. Sci. Ser. C 2020, 62, 124–144. [Google Scholar] [CrossRef]
- Cuneo, T.; Gao, H. Recent advances on synthesis and biomaterials applications of hyperbranched polymers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1640. [Google Scholar] [CrossRef]
- Kotrchova, L.; Kostka, L.; Etrych, T. Drug carriers with star polymer structures. Physiol. Res. 2018, 67, S293–S303. [Google Scholar] [CrossRef] [PubMed]
- Şenel, M.; Çevik, E. A novel amperometric hydrogen peroxide biosensor based on pyrrole-PAMAM dendrimer modified gold electrode. Curr. Appl. Phys. 2012, 12, 1158–1165. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.; Hu, J.; Wang, X.; Zhu, M.; Liu, S. Hyperbranched self-immolative polymers (hSIPs) for programmed payload delivery and ultrasensitive detection. J. Am. Chem. Soc. 2015, 137, 11645–11655. [Google Scholar] [CrossRef] [PubMed]
- Soda, N.; Arotiba, O.A. A polyamidoamine dendrimer-streptavidin supramolecular architecture for biosensor development. Bioelectrochemistry 2017, 118, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, B.; Chen, G.; Tang, D. Redox and catalysis ‘all-in-one’ infinite coordination polymer for electrochemical immunosensor of tumor markers. Biosens. Bioelectron. 2015, 64, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.O.; Mabuba, N.; Arotiba, O.A. A dendrimer supported electrochemical immunosensor for the detection of alpha-feto protein—A cancer biomarker. Electroanalysis 2018, 30, 31–37. [Google Scholar] [CrossRef]
- Zhang, G.; Shan, D.; Dong, H.; Cosnier, S.; Al-Ghanim, K.A.; Ahmad, Z.; Mahboob, S.; Zhang, X. DNA-mediated nanoscale metal-organic frameworks for ultrasensitive photoelectrochemical enzyme-free immunoassay. Anal. Chem. 2018, 90, 12284–12291. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Yan, C.; Chen, W. A polyamidoamine dendrimer-based electrochemical immunosensor for label-free determination of epithelial cell adhesion molecule-expressing cancer cells. Sensors 2019, 19, 1879. [Google Scholar] [CrossRef] [Green Version]
- Samadi Pakchin, P.; Fathi, M.; Ghanbari, H.; Saber, R.; Omidi, Y. A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens. Bioelectron. 2020, 153, 112029. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Hou, Q.; Liu, Y.; Cai, Y.; Guo, Y.; Xiang, H.; Chen, S. On-line regeneration of electrochemical biosensor for in vivo repetitive measurements of striatum Cu(2+) under global cerebral ischemia/reperfusion events. Biosens. Bioelectron. 2019, 135, 111–119. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J. A sensitive and label-free electrochemical microRNA biosensor based on Polyamidoamine Dendrimer functionalized Polypyrrole nanowires hybrid. Mikrochim. Acta 2021, 188, 173. [Google Scholar] [CrossRef]
- Niu, X.; Huang, L.; Zhao, J.; Yin, M.; Luo, D.; Yang, Y. An ultrasensitive aptamer biosensor for the detection of codeine based on a Au nanoparticle/polyamidoamine dendrimer-modified screen-printed carbon electrode. Anal. Methods 2016, 8, 1091–1095. [Google Scholar] [CrossRef]
- Mejri-Omrani, N.; Miodek, A.; Zribi, B.; Marrakchi, M.; Hamdi, M.; Marty, J.L.; Korri-Youssoufi, H. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal. Chim. Acta 2016, 920, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Yeh, P.; Qin, Y.; Jiang, Y.; Qiu, Z.; Li, S.; Le, T.; Cao, X. Aptamer surface functionalization of microfluidic devices using dendrimers as multi-handled templates and its application in sensitive detections of foodborne pathogenic bacteria. Anal. Chim. Acta 2019, 1056, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-M.; Fang, Y.; Yuan, P.-X.; Wang, A.-J.; Luo, X.; Feng, J.-J. Construction of ultrasensitive label-free aptasensor for thrombin detection using palladium nanocones boosted electrochemiluminescence system. Electrochim. Acta 2019, 310, 195–202. [Google Scholar] [CrossRef]
- Tsekeli, T.R.; Sebokolodi, T.I.; Sipuka, D.S.; Olorundare, F.O.G.; Akanji, S.P.; Nkosi, D.; Arotiba, O.A. A poly (propylene imine) dendrimer—Carbon nanofiber based aptasensor for bisphenol A in water. J. Electroanal. Chem. 2021, 901, 115783. [Google Scholar] [CrossRef]
- Zhang, M.; Gorski, W. Electrochemical sensing based on redox mediation at carbon nanotubes. Anal. Chem. 2005, 77, 3960–3965. [Google Scholar] [CrossRef]
- Zhang, M.; Gorski, W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J. Am. Chem. Soc. 2005, 127, 2058–2059. [Google Scholar] [CrossRef] [PubMed]
- Stone, D.L.; Smith, D.K.; McGrail, P.T. Ferrocene encapsulated within symmetric dendrimers: A deeper understanding of dendritic effects on redox potential. J. Am. Chem. Soc. 2002, 124, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhou, H.; Sun, C. Synthesis of ferrocene-branched chitosan derivatives: Redox polysaccharides and their application to reagentless enzyme-based biosensors. Macromol. Rapid Commun. 2007, 28, 265–270. [Google Scholar] [CrossRef]
- Yang, W.; Fan, J.; Yu, Y.; Yin, G.; Li, H. Effect of film-forming solution pH on the properties of chitosan-ferrocene film electrodes. J. Electroanal. Chem. 2016, 767, 160–166. [Google Scholar] [CrossRef]
- Li, H.; Zhao, F.; Yue, L.; Li, S.; Xiao, F. Nonenzymatic electrochemical biosensor based on novel hydrophilic ferrocene-terminated hyperbranched polymer and its application in glucose detection. Electroanalysis 2016, 28, 1003–1011. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Sek, J.P.; Kasprzak, A.; Poplawska, M.; Grudzinski, I.P.; Nowicka, A.M. Occlusion phenomenon of redox probe by protein as a way of voltammetric detection of non-electroactive C-reactive protein. Biosens. Bioelectron. 2018, 117, 232–239. [Google Scholar] [CrossRef]
- Gan, L.; Loke, F.W.L.; Cheong, W.C.; Ng, J.S.H.; Tan, N.C.; Zhu, Z. Design and development of ferrocene-containing chitosan-cografted-branched polyethylenimine redox conjugates for monitoring free flap failure after reconstructive surgery. Biosens. Bioelectron. 2021, 186, 113283. [Google Scholar] [CrossRef]
- Islam, N.; Gurgel, P.V.; Rojas, O.J.; Carbonell, R.G. Use of a branched linker for enhanced biosensing properties in IgG detection from mixed Chinese hamster ovary cell cultures. Bioconjugate Chem. 2019, 30, 815–825. [Google Scholar] [CrossRef]
- Liu, N.; Song, J.; Lu, Y.; Davis, J.J.; Gao, F.; Luo, X. Electrochemical aptasensor for ultralow fouling cancer cell quantification in complex biological media based on designed branched peptides. Anal. Chem. 2019, 91, 8334–8340. [Google Scholar] [CrossRef]
- Liu, N.; Ma, Y.; Han, R.; Lv, S.; Wang, P.; Luo, X. Antifouling biosensors for reliable protein quantification in serum based on designed all-in-one branched peptides. Chem. Commun. 2021, 57, 777–780. [Google Scholar] [CrossRef]
- Chen, M.; Song, Z.; Han, R.; Li, Y.; Luo, X. Low fouling electrochemical biosensors based on designed Y-shaped peptides with antifouling and recognizing branches for the detection of IgG in human serum. Biosens. Bioelectron. 2021, 178, 113016. [Google Scholar] [CrossRef]
- Song, Z.; Ma, Y.; Chen, M.; Ambrosi, A.; Ding, C.; Luo, X. Electrochemical biosensor with enhanced antifouling capability for COVID-19 nucleic acid detection in complex biological media. Anal. Chem. 2021, 93, 5963–5971. [Google Scholar] [CrossRef]
- Jeong, H.-C.; Choo, S.-S.; Kim, K.-T.; Hong, K.-S.; Moon, S.-H.; Cha, H.-J.; Kim, T.-H. Conductive hybrid matrigel layer to enhance electrochemical signals of human embryonic stem cells. Sens. Actuators B 2017, 242, 224–230. [Google Scholar] [CrossRef]
- Jia, L.; Shi, S.; Ma, R.; Jia, W.; Wang, H. Highly sensitive electrochemical biosensor based on nonlinear hybridization chain reaction for DNA detection. Biosens. Bioelectron. 2016, 80, 392–397. [Google Scholar] [CrossRef]
- Sobiepanek, A.; Milner-Krawczyk, M.; Lekka, M.; Kobiela, T. AFM and QCM-D as tools for the distinction of melanoma cells with a different metastatic potential. Biosens. Bioelectron. 2017, 93, 274–281. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhou, R.; Sun, R.; Zhang, X.; Cheng, Z.; Chen, C.; Zhu, Q. Nonlinear hybridization chain reaction-based functional DNA nanostructure assembly for biosensing, bioimaging applications. Biosens. Bioelectron. 2020, 173, 112814. [Google Scholar] [CrossRef]
- Chai, H.; Cheng, W.; Jin, D.; Miao, P. Recent progress in DNA hybridization chain reaction strategies for amplified biosensing. ACS Appl. Mater. Interfaces 2021, 13, 38931–38946. [Google Scholar] [CrossRef]
- Badoux, M.; Billing, M.; Klok, H.-A. Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization. Polym. Chem. 2019, 10, 2925–2951. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, F.J. Biomolecule-functionalized polymer brushes. Chem. Soc. Rev. 2013, 42, 3394–3426. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.G.; Chen, J.H.; Liu, K.T.; Luo, S.C. Engineering antifouling conducting polymers for modern biomedical applications. ACS Appl. Mater. Interfaces 2019, 11, 21294–21307. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wei, Q.; Wu, C.; Zhang, X.; Xue, Q.; Zheng, T.; Cao, M. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv. Colloid Interface Sci. 2020, 278, 102141. [Google Scholar] [CrossRef] [PubMed]
- Delcroix, M.F.; Laurent, S.; Huet, G.L.; Dupont-Gillain, C.C. Protein adsorption can be reversibly switched on and off on mixed PEO/PAA brushes. Acta Biomater. 2015, 11, 68–79. [Google Scholar] [CrossRef]
- Kwon, H.J.; Lee, Y.; Phuong, L.T.; Seon, G.M.; Kim, E.; Park, J.C.; Yoon, H.; Park, K.D. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomater. 2017, 61, 169–179. [Google Scholar] [CrossRef]
- Lin, S.; Li, Y.; Zhang, L.; Chen, S.; Hou, L. Zwitterion-like, charge-balanced ultrathin layers on polymeric membranes for antifouling property. Environ. Sci. Technol. 2018, 52, 4457–4463. [Google Scholar] [CrossRef]
- Jiang, W.; Lu, Y.; Wang, H.; Wang, M.; Yin, H. Amperometric biosensor for 5-hydroxymethylcytosine based on enzymatic catalysis and using spherical poly(acrylic acid) brushes. Microchim. Acta 2017, 184, 3789–3796. [Google Scholar] [CrossRef]
- Costantini, F.; Sberna, C.; Petrucci, G.; Reverberi, M.; Domenici, F.; Fanelli, C.; Manetti, C.; de Cesare, G.; DeRosa, M.; Nascetti, A.; et al. Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sens. Actuators B 2016, 230, 31–39. [Google Scholar] [CrossRef]
- Greene, G.W.; Ortiz, V.; Pozo-Gonzalo, C.; Moulton, S.E.; Wang, X.; Martin, L.L.; Michalczky, A.; Howlett, P.C. Lubricin antiadhesive coatings exhibit size-selective transport properties that inhibit biofouling of electrode surfaces with minimal loss in electrochemical activity. Adv. Mater. Interfaces 2018, 5, 1701296. [Google Scholar] [CrossRef]
- Ferhan, A.R.; Huang, Y.; Dandapat, A.; Kim, D.-H. Surface-floating gold nanorod super-aggregates with macroscopic uniformity. Nano Res. 2018, 11, 2379–2391. [Google Scholar] [CrossRef]
- Ma, J.; Song, L.; Shi, H.; Yang, H.; Ye, W.; Guo, X.; Luan, S.; Yin, J. Development of hierarchical Fe3O4 magnetic microspheres as solid substrates for high sensitive immunoassays. J. Mater. Chem. B 2018, 6, 3762–3769. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nevanen, T.K.; Paananen, A.; Kempe, K.; Wilson, P.; Johansson, L.S.; Joensuu, J.J.; Linder, M.B.; Haddleton, D.M.; Milani, R. Self-assembling protein-polymer bioconjugates for surfaces with antifouling features and low nonspecific binding. ACS Appl. Mater. Interfaces 2019, 11, 3599–3608. [Google Scholar] [CrossRef]
- Lin, F.P.; Hsu, H.L.; Chang, C.J.; Lee, S.C.; Chen, J.K. Surface lattice resonance of line array of poly (glycidyl methacrylate) with CdS quantum dots for label-free biosensing. Colloids Surf. B 2019, 179, 199–207. [Google Scholar] [CrossRef]
- Zhu, H.; Masson, J.-F.; Bazuin, C.G. Templating Gold Nanoparticles on Nanofibers Coated with a Block Copolymer Brush for Nanosensor Applications. ACS Appl. Nano Mater. 2019, 3, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Forinova, M.; Pilipenco, A.; Visova, I.; Lynn, N.S., Jr.; Dostalek, J.; Maskova, H.; Honig, V.; Palus, M.; Selinger, M.; Kocova, P.; et al. Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS Appl. Mater. Interfaces 2021, 13, 60612–60624. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yang, C.; Li, X.; Zhang, A.; He, G.; Wu, Q.; Liu, X.; Huang, S.; Huang, X.; Cui, G.; et al. Liquid-like polymer coating as a promising candidate for reducing electrode contamination and noise in complex biofluids. ACS Appl. Mater. Interfaces 2021, 13, 4450–4462. [Google Scholar] [CrossRef]
- Lamping, S.; Buten, C.; Ravoo, B.J. Functionalization and patterning of self-assembled monolayers and polymer brushes using microcontact chemistry. Acc. Chem. Res. 2019, 52, 1336–1346. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, J.; Liu, X.; Liu, D.; Wang, Z. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) brushes as peptide/protein microarray substrate for improving protein binding and functionality. ACS Appl. Mater. Interfaces 2016, 8, 10174–10182. [Google Scholar] [CrossRef]
- Joh, D.Y.; Hucknall, A.M.; Wei, Q.; Mason, K.A.; Lund, M.L.; Fontes, C.M.; Hill, R.T.; Blair, R.; Zimmers, Z.; Achar, R.K.; et al. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc. Natl. Acad. Sci. USA 2017, 114, E7054–E7062. [Google Scholar] [CrossRef] [Green Version]
- Gori, A.; Cretich, M.; Vanna, R.; Sola, L.; Gagni, P.; Bruni, G.; Liprino, M.; Gramatica, F.; Burastero, S.; Chiari, M. Multiple epitope presentation and surface density control enabled by chemoselective immobilization lead to enhanced performance in IgE-binding fingerprinting on peptide microarrays. Anal. Chim. Acta 2017, 983, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yang, M.; Zhao, Z.; Li, S.; Cheng, Z.; Zhu, J. Controlled hierarchical architecture in poly [oligo (ethylene glycol) methacrylate-b-glycidyl methacrylate] brushes for enhanced label-free biosensing. Appl. Surf. Sci. 2018, 450, 236–243. [Google Scholar] [CrossRef]
- Kumar, R.; Welle, A.; Becker, F.; Kopyeva, I.; Lahann, J. Substrate-independent micropatterning of polymer brushes based on photolytic deactivation of chemical vapor deposition based surface-initiated atom-transfer radical polymerization initiator films. ACS Appl. Mater. Interfaces 2018, 10, 31965–31976. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Wang, Y.; Gui, T.; Wang, K.; Gao, C. Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning. Biosens. Bioelectron. 2018, 102, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Colak, B.; di Cio, S.; Gautrot, J.E. Biofunctionalized Patterned Polymer Brushes via Thiol-Ene Coupling for the Control of Cell Adhesion and the Formation of Cell Arrays. Biomacromolecules 2018, 19, 1445–1455. [Google Scholar] [CrossRef]
- Hou, J.; Chen, R.; Liu, J.; Wang, H.; Shi, Q.; Xin, Z.; Wong, S.C.; Yin, J. Multiple microarrays of non-adherent cells on a single 3D stimuli-responsive binary polymer-brush pattern. J. Mater. Chem. B 2018, 6, 4792–4798. [Google Scholar] [CrossRef]
- Chen, L.; Li, P.; Lu, X.; Wang, S.; Zheng, Z. Binary polymer brush patterns from facile initiator stickiness for cell culturing. Faraday Discuss. 2019, 219, 189–202. [Google Scholar] [CrossRef]
- Zhao, H.; Sha, J.; Wu, T.; Chen, T.; Chen, X.; Ji, H.; Wang, Y.; Zhu, H.; Xie, L.; Ma, Y. Spatial modulation of biomolecules immobilization by fabrication of hierarchically structured PEG-derived brush micropatterns: An versatile cellular microarray platform. Appl. Surf. Sci. 2020, 529, 147056. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Y.; Zhao, C.; Ma, Y.; Yang, W. Highly Transparent Cyclic Olefin Copolymer Film with a Nanotextured Surface Prepared by One-Step Photografting for High-Density DNA Immobilization. ACS Appl. Mater. Interfaces 2019, 11, 28690–28698. [Google Scholar] [CrossRef]
- Fontes, C.M.; Achar, R.K.; Joh, D.Y.; Ozer, I.; Bhattacharjee, S.; Hucknall, A.; Chilkoti, A. Engineering the surface properties of a zwitterionic polymer brush to enable the simple fabrication of inkjet-printed point-of-care immunoassays. Langmuir 2019, 35, 1379–1390. [Google Scholar] [CrossRef]
- Valles, D.J.; Zholdassov, Y.S.; Korpanty, J.; Uddin, S.; Naeem, Y.; Mootoo, D.R.; Gianneschi, N.C.; Braunschweig, A.B. Glycopolymer microarrays with sub-femtomolar avidity for glycan binding proteins prepared by grafted-to/grafted-from photopolymerizations. Angew. Chem. Int. Ed. 2021, 60, 20350–20357. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Liu, Y.; Chen, T.; Liu, Y.; Li, C.M. Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. Adv. Mater. 2015, 27, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tian, R.; Liu, D.; Wang, Z. Development of sphere-polymer brush hierarchical nanostructure substrates for fabricating microarrays with high performance. ACS Appl. Mater. Interfaces 2017, 9, 38101–38108. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.F.; Fontes, C.M.; Semeniak, D.; Huang, J.; Hucknall, A.; Chilkoti, A.; Mikkelsen, M.H. Ultrabright fluorescence readout of an inkjet-printed immunoassay using plasmonic nanogap cavities. Nano Lett. 2020, 20, 4330–4336. [Google Scholar] [CrossRef] [PubMed]
- Jian, M.; Su, M.; Gao, J.; Wang, Z. Peptide microarray-based fluorescence assay for quantitatively monitoring the tumor-associated matrix metalloproteinase-2 activity. Sens. Actuators B 2020, 304, 127320. [Google Scholar] [CrossRef]
- Jian, M.; Zhang, H.; Li, X.; Wang, Z. Profiling of multiple matrix metalloproteinases activities in the progression of osteosarcoma by peptide microarray-based fluorescence assay on polymer brush coated zinc oxide nanorod substrate. Sens. Actuators B 2021, 330, 129361. [Google Scholar] [CrossRef]
- Ibanescu, S.A.; Nowakowska, J.; Khanna, N.; Landmann, R.; Klok, H.A. Effects of grafting density and film thickness on the adhesion of staphylococcus epidermidis to poly(2-hydroxy ethyl methacrylate) and poly(poly(ethylene glycol)methacrylate) brushes. Macromol. Biosci. 2016, 16, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Song, L.; Luan, S.; Xin, Z.; Du, S.; Shi, H.; Yuan, S.; Yang, Y.; Yin, J. A hierarchical polymer brush coating with dual-function antibacterial capability. Colloids Surf. B 2017, 150, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Sae-Ung, P.; Kolewe, K.W.; Bai, Y.; Rice, E.W.; Schiffman, J.D.; Emrick, T.; Hoven, V.P. Antifouling stripes prepared from clickable zwitterionic copolymers. Langmuir 2017, 33, 7028–7035. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Li, P.; Zhao, H.; Chen, Y.; Jiang, L.; Ma, P.X. Methacrylate-ended polypeptides and polypeptoids for antimicrobial and antifouling coatings. Polym. Chem. 2017, 8, 6386–6397. [Google Scholar] [CrossRef]
- Skovdal, S.M.; Jorgensen, N.P.; Petersen, E.; Jensen-Fangel, S.; Ogaki, R.; Zeng, G.; Johansen, M.I.; Wang, M.; Rohde, H.; Meyer, R.L. Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome. Acta Biomater. 2018, 76, 46–55. [Google Scholar] [CrossRef]
- Yoo, J.; Birke, A.; Kim, J.; Jang, Y.; Song, S.Y.; Ryu, S.; Kim, B.S.; Kim, B.G.; Barz, M.; Char, K. Cooperative catechol-functionalized polypept(o)ide brushes and Ag nanoparticles for combination of protein resistance and antimicrobial activity on metal oxide surfaces. Biomacromolecules 2018, 19, 1602–1613. [Google Scholar] [CrossRef]
- Su, X.; Hao, D.; Li, Z.; Guo, X.; Jiang, L. Design of hierarchical comb hydrophilic polymer brush (HCHPB) surfaces inspired by fish mucus for anti-biofouling. J. Mater. Chem. B 2019, 7, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, J.; Zhang, D.; Chen, F.; Fan, P.; Zhong, M.; Xiao, S.; Chang, Y.; Gong, X.; Yang, J.; et al. Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. J. Mater. Chem. B 2019, 7, 5762–5774. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, S.; Joshi, A.; Singh, N.; Saha, S. Infection resistant polymer brush coating on the surface of biodegradable polyester. Mater. Sci. Eng. C 2021, 118, 111465. [Google Scholar] [CrossRef]
- Encinas, N.; Yang, C.Y.; Geyer, F.; Kaltbeitzel, A.; Baumli, P.; Reinholz, J.; Mailander, V.; Butt, H.J.; Vollmer, D. Submicrometer-sized roughness suppresses bacteria adhesion. ACS Appl. Mater. Interfaces 2020, 12, 21192–21200. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Raju, C.; Hou, Z.; Si, Z.; Xu, C.; Pranantyo, D.; Marimuthu, K.; De, P.P.; Ng, O.T.; Pethe, K.; et al. Mixed-charge pseudo-zwitterionic copolymer brush as broad spectrum antibiofilm coating. Biomaterials 2021, 273, 120794. [Google Scholar] [CrossRef] [PubMed]
- Garay-Sarmiento, M.; Witzdam, L.; Vorobii, M.; Simons, C.; Herrmann, N.; de los Santos Pereira, A.; Heine, E.; El-Awaad, I.; Lütticken, R.; Jakob, F.; et al. Kill&repel coatings: The marriage of antifouling and bactericidal properties to mitigate and treat wound infections. Adv. Funct. Mater. 2021, 2106656. [Google Scholar] [CrossRef]
- Jiang, R.; Yi, Y.; Hao, L.; Chen, Y.; Tian, L.; Dou, H.; Zhao, J.; Ming, W.; Ren, L. Thermoresponsive nanostructures: From mechano-bactericidal action to bacteria release. ACS Appl. Mater. Interfaces 2021, 13, 60865–60877. [Google Scholar] [CrossRef]
- Spychalska, K.; Zajac, D.; Baluta, S.; Halicka, K.; Cabaj, J. Functional polymers structures for (bio)sensing application—A review. Polymers 2020, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, S.; Ramanavicius, A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers 2020, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Tria, S.A.; Lopez-Ferber, D.; Gonzalez, C.; Bazin, I.; Guiseppi-Elie, A. Microfabricated biosensor for the simultaneous amperometric and luminescence detection and monitoring of Ochratoxin A. Biosens. Bioelectron. 2016, 79, 835–842. [Google Scholar] [CrossRef]
- Geleta, G.S.; Zhao, Z.; Wang, Z. A sensitive electrochemical aptasensor for detection of Aflatoxin B2 based on a polyacrylamide/phytic acid/polydopamine hydrogel modified screen printed carbon electrode. Anal. Methods 2018, 10, 4689–4694. [Google Scholar] [CrossRef]
- Li, W.; Shu, D.; Han, H.; Ma, Z. An amperometric immunoprobe based on multifunctional nanogel for sensitive detection of tumor marker. Sens. Actuators B 2018, 273, 1451–1455. [Google Scholar] [CrossRef]
- You, Z.; Qiu, Q.; Chen, H.; Feng, Y.; Wang, X.; Wang, Y.; Ying, Y. Laser-induced noble metal nanoparticle-graphene composites enabled flexible biosensor for pathogen detection. Biosens. Bioelectron. 2020, 150, 111896. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Han, R.; Chen, M.; Luo, X. Antifouling peptide hydrogel based electrochemical biosensors for highly sensitive detection of cancer biomarker HER2 in human serum. Anal. Chem. 2021, 93, 7355–7361. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Mao, X.; Cong, H.; Li, X.; Sun, J.; Wang, M.; Wang, H. A robust composite hydrogel consisting of polypyrrole and beta-cyclodextrin-based supramolecular complex for the label-free amperometric immunodetection of motilin with well-defined dual signal response and high sensitivity. Biosens. Bioelectron. 2020, 173, 112810. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ren, X.; Yang, T.; Xu, C.; Ye, Y.; Sun, Z.; Kong, L.; Wang, B.; Luo, Z. Polypyrrole/sulfonated multi-walled carbon nanotubes conductive hydrogel for electrochemical sensing of living cells. Chem. Eng. J. 2021, 418, 129483. [Google Scholar] [CrossRef]
- Mondal, S.; Das, S.; Nandi, A.K. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020, 16, 1404–1454. [Google Scholar] [CrossRef]
- Sadat Ebrahimi, M.-M.; Dohm, N.; Müller, M.; Jansen, B.; Schönherr, H. Self-reporting hydrogels rapidly differentiate among enterohemorrhagic Escherichia coli (EHEC) and non-virulent Escherichia coli (K12). Eur. Polym. J. 2016, 81, 257–265. [Google Scholar] [CrossRef]
- Yin, M.J.; Yao, M.; Gao, S.; Zhang, A.P.; Tam, H.Y.; Wai, P.K. Rapid 3D patterning of poly(acrylic acid) ionic hydrogel for miniature pH sensors. Adv. Mater. 2016, 28, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Noh, K.-G.; Park, S.-Y. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer. Adv. Funct. Mater. 2018, 28, 1707562. [Google Scholar] [CrossRef]
- Makhsin, S.R.; Goddard, N.J.; Gupta, R.; Gardner, P.; Scully, P.J. Optimization synthesis and biosensing performance of an acrylate-based hydrogel as an optical waveguiding sensing film. Anal. Chem. 2020, 92, 14907–14914. [Google Scholar] [CrossRef] [PubMed]
- Toppi, A.; Busk, L.L.; Hu, H.; Dogan, A.A.; Jonsson, A.; Taboryski, R.J.; Dufva, M. Photolithographic patterning of fluoracryl for biphilic microwell-based digital bioassays and selection of bacteria. ACS Appl. Mater. Interfaces 2021, 13, 43914–43924. [Google Scholar] [CrossRef]
- Coyle, R.; Jia, J.; Mei, Y. Polymer microarray technology for stem cell engineering. Acta Biomater. 2016, 34, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chen, P.; Wang, Y.; Yan, S.; Feng, X.; Du, W.; Koehler, S.A.; Demirci, U.; Liu, B.F. Rapid assembly of heterogeneous 3D cell microenvironments in a microgel array. Adv. Mater. 2016, 28, 3543–3548. [Google Scholar] [CrossRef]
- Brittain, W.J.; Brandsetter, T.; Prucker, O.; Ruhe, J. The surface science of microarray generation—A critical inventory. ACS Appl. Mater. Interfaces 2019, 11, 39397–39409. [Google Scholar] [CrossRef]
- Lifson, M.A.; Carter, J.A.; Miller, B.L. Functionalized polymer microgel particles enable customizable production of label-free sensor arrays. Anal. Chem. 2015, 87, 7887–7893. [Google Scholar] [CrossRef] [Green Version]
- Appel, E.A.; Larson, B.L.; Luly, K.M.; Kim, J.D.; Langer, R. Non-cell-adhesive substrates for printing of arrayed biomaterials. Adv. Healthcare Mater. 2015, 4, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Coyle, R.C.; Richards, D.J.; Berry, C.L.; Barrs, R.W.; Biggs, J.; James Chou, C.; Trusk, T.C.; Mei, Y. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications. Acta Biomater. 2016, 45, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Mabry, K.M.; Payne, S.Z.; Anseth, K.S. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials 2016, 74, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Duffy, C.; Venturato, A.; Callanan, A.; Lilienkampf, A.; Bradley, M. Arrays of 3D double-network hydrogels for the high-throughput discovery of materials with enhanced physical and biological properties. Acta Biomater. 2016, 34, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Beyer, A.; Cialla-May, D.; Weber, K.; Popp, J. Hydrogel decorated chips for convenient DNA test. Macromol. Chem. Phys. 2016, 217, 959–965. [Google Scholar] [CrossRef]
- Beyer, A.; Pollok, S.; Rudloff, A.; Cialla-May, D.; Weber, K.; Popp, J. Fast-track, one-step E. coli detection: A miniaturized hydrogel array permits specific direct PCR and DNA hybridization while amplification. Macromol. Biosci. 2016, 16, 1325–1333. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Jung, S.H.; Jung, Y.M.; Kim, Y.M.; Ghandehari, H.; Ha, K.S. Array-based high-throughput analysis of silk-elastinlike protein polymer degradation and c-peptide release by proteases. Anal. Chem. 2016, 88, 5398–5405. [Google Scholar] [CrossRef]
- Sharma, S.; Floren, M.; Ding, Y.; Stenmark, K.R.; Tan, W.; Bryant, S.J. A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments. Biomaterials 2017, 143, 17–28. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, M.; Li, S.; Zhu, J. Surface plasmon resonance imaging validation of small molecule drugs binding on target protein microarrays. Appl. Surf. Sci. 2018, 450, 328–335. [Google Scholar] [CrossRef]
- Herrmann, A.; Kaufmann, L.; Dey, P.; Haag, R.; Schedler, U. Bioorthogonal in situ hydrogels based on polyether polyols for new biosensor materials with high sensitivity. ACS Appl. Mater. Interfaces 2018, 10, 11382–11390. [Google Scholar] [CrossRef]
- Tsougeni, K.; Ellinas, K.; Koukouvinos, G.; Petrou, P.S.; Tserepi, A.; Kakabakos, S.E.; Gogolides, E. Three-dimensional (3D) plasma micro-nanotextured slides for high performance biomolecule microarrays: Comparison with epoxy-silane coated glass slides. Colloids Surf. B 2018, 165, 270–277. [Google Scholar] [CrossRef]
- Scherag, F.D.; Mader, A.; Zinggeler, M.; Birsner, N.; Kneusel, R.E.; Brandstetter, T.; Ruhe, J. Blocking-free and substrate-independent serological microarray immunoassays. Biomacromolecules 2018, 19, 4641–4649. [Google Scholar] [CrossRef]
- Diaz-Betancor, Z.; Banuls, M.J.; Maquieira, A. Photoclick chemistry to create dextran-based nucleic acid microarrays. Anal. Bioanal. Chem. 2019, 411, 6745–6754. [Google Scholar] [CrossRef]
- Tian, R.; Zhang, H.; Chen, H.; Liu, G.; Wang, Z. Uncovering the binding specificities of lectins with cells for precision colorectal cancer diagnosis based on multimodal imaging. Adv. Sci. 2018, 5, 1800214. [Google Scholar] [CrossRef]
- Piya, R.; Zhu, Y.; Soeriyadi, A.H.; Silva, S.M.; Reece, P.J.; Gooding, J.J. Micropatterning of porous silicon Bragg reflectors with poly(ethylene glycol) to fabricate cell microarrays: Towards single cell sensing. Biosens. Bioelectron. 2019, 127, 229–235. [Google Scholar] [CrossRef]
- Movilli, J.; di Iorio, D.; Rozzi, A.; Hiltunen, J.; Corradini, R.; Huskens, J. “Plug-n-Play” Polymer Substrates: Surface Patterning with Reactive-Group-Appended Poly-l-lysine for Biomolecule Adhesion. ACS Appl. Polym. Mater. 2019, 1, 3165–3173. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, G.; Venkateswaran, S.; Lopez-Ruiz, E.; Peran, M.; Pernagallo, S.; Diaz-Monchon, J.J.; Canadas, R.F.; Antich, C.; Oliveira, J.M.; Callanan, A.; et al. A soft 3D polyacrylate hydrogel recapitulates the cartilage niche and allows growth-factor free tissue engineering of human articular cartilage. Acta Biomater. 2019, 90, 146–156. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, S.Y. Optical multisensor array with functionalized photonic droplets by an interpenetrating polymer network for human blood analysis. ACS Appl. Mater. Interfaces 2020, 12, 47342–47354. [Google Scholar] [CrossRef]
- Shrestha, B.; Pipatpanukul, C.; Houngkamhang, N.; Brandstetter, T.; Rühe, J.; Srikhirin, T. Application of printable antibody ink for solid-phase immobilization of ABO antibody using photoactive hydrogel for surface plasmon resonance imaging. Sens. Actuators B 2020, 320, 128358. [Google Scholar] [CrossRef]
- Ramadon, D.; Permana, A.D.; Courtenay, A.J.; McCrudden, M.T.C.; Tekko, I.A.; McAlister, E.; Anjani, Q.K.; Utomo, E.; McCarthy, H.O.; Donnelly, R.F. Development, evaluation, and pharmacokinetic assessment of polymeric microarray patches for transdermal delivery of vancomycin hydrochloride. Mol. Pharming 2020, 17, 3353–3368. [Google Scholar] [CrossRef]
- Hageneder, S.; Jungbluth, V.; Soldo, R.; Petri, C.; Pertiller, M.; Kreivi, M.; Weinhausel, A.; Jonas, U.; Dostalek, J. Responsive hydrogel binding matrix for dual signal amplification in fluorescence affinity biosensors and peptide microarrays. ACS Appl. Mater. Interfaces 2021, 13, 27645–27655. [Google Scholar] [CrossRef]
- Zhang, S.; Hubis, E.; Tomasello, G.; Soliveri, G.; Kumar, P.; Cicoira, F. Patterning of Stretchable Organic Electrochemical Transistors. Chem. Mater. 2017, 29, 3126–3132. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, T.; Zhang, Y.; Qu, G.; Wei, S.; Liu, Z.; Kong, T. Ultrastretchable and wireless bioelectronics based on all-hydrogel microfluidics. Adv. Mater. 2019, 31, e1902783. [Google Scholar] [CrossRef]
- Zhang, S.; Ling, H.; Chen, Y.; Cui, Q.; Ni, J.; Wang, X.; Hartel, M.C.; Meng, X.; Lee, K.; Lee, J.; et al. Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics. Adv. Funct. Mater. 2019, 30, 1906016. [Google Scholar] [CrossRef]
- Aggas, J.R.; Abasi, S.; Phipps, J.F.; Podstawczyk, D.A.; Guiseppi-Elie, A. Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics. Biosens. Bioelectron. 2020, 168, 112568. [Google Scholar] [CrossRef]
- Ren, X.; Yang, M.; Yang, T.; Xu, C.; Ye, Y.; Wu, X.; Zheng, X.; Wang, B.; Wan, Y.; Luo, Z. Highly conductive PPy-PEDOT:PSS hybrid hydrogel with superior biocompatibility for bioelectronics application. ACS Appl. Mater. Interfaces 2021, 13, 25374–25382. [Google Scholar] [CrossRef]
Polymers | Modification Methods | Detection Method | Analytes | Linear Ranges | Limit of Detection | Ref. |
---|---|---|---|---|---|---|
Poly(propylene imine) | Electrodeposition | SWV and EIS | AFP | 0.005 to 500 ng mL−1 | 0.0022 ng mL−1 (SWV) and 0.00185 ng mL−1 (EIS) | [31] |
Polyethyleneimine | Covalent modification | DPV | Cu2+ | 0.05 to 12 μM | 13 nM | [35] |
Polyamidoamine | Covalent modification | Fluorescence | E. coli O157:H7 | - | 1 × 102 cells mL−1 | [39] |
Poly(propylene imine) | Covalent modification | EIS, DPV and CV | BPA | 1 to 10 nM | 0.03 nM (DPV) and 0.06 nM (EIS) | [41] |
Polyurethane | Drop-casting | CV | Glucose | 0.1 to 40 mM | 60 μM | [47] |
Polyethylenimine | Electrodeposition | CV and ESI | CRP | 1 to 5 × 104 ng mL−1 | 0.5 ng mL−1 (CV) and 2.5 ng mL−1 (ESI) | [48] |
Polyaniline | Electrodeposition | DPV | MCF-7 | 50 to 1 × 106 cells mL−1 | 20 cells mL−1 | [51] |
Poly(3,4-ethylenedioxythiophene | Electrodeposition | DPV | IgG | 0.1 to 1 × 107 ng mL−1 | 4.5 × 10−2 ng mL−1 | [52] |
Branched arginyl-glycyl-aspartic acid peptides | Covalent modification | DPV | Human embryonic stem cells | 2.5 × 104 to 8.9 × 104 cells | 2.5 × 104 cells | [55] |
Polymers | Modification Methods | Detection Method | Analytes | Linear Ranges | Limit of Detection | Ref. |
---|---|---|---|---|---|---|
Poly(2-hydroxyethtyl methacrylate) | SI-ATRP | Electrochemiluminescence | OTA | 0 to 10 ng mL−1 | 0.82 ng mL−1 | [68] |
Poly(oligo ethylene glycol methacrylate) | SI-ATRP | SERS | Rhodamine 6G | - | 0.1 fM | [70] |
Polydimethylsiloxane | Covalent modification | CV | ROS | - | - | [76] |
Polycarboxybetaine methacrylate and polysulfobetaine methacrylate | SIPP | Fluorescence | BSA | - | 10 ng mL−1 | [83] |
Poly(glycidyl methacrylate) | SI-ATRP | Fluorescence | biomolecules | - | - | [92] |
Poly(oligo(ethylene glycol) methyl ether methacrylate | SI-ATRP | Fluorescence | BNP | - | 0.02 ng mL-1 | [93] |
Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) | SI-ATRP | Fluorescence | MMPs | - | 10 pM (MMP-1) | [95] |
Polymers | Modification Methods | Detection Method | Analytes | Linear Ranges | Limit of Detection | Ref. |
---|---|---|---|---|---|---|
Polyacrylamide and polydopamine | Drop-casting | DPV | Aflatoxin B2 | 1 × 10−4 to 100 ng mL−1 | 1 × 10−4 ng mL−1 | [112] |
Poly(3,4-ethylenedioxythiophene) | Self-assembly | DPV | HER2 | 0.1 to 1 × 103 ng mL−1 | 4.5 × 10−2 ng mL−1 | [115] |
Polypyrrole | Drop-casting | EIS and SWV | Motilin | 1 × 10−2 to 100 ng mL−1 | 2.73 × 10−3 ng mL−1 | [116] |
Polypyrrole | Drop-casting | Chronoamperometry | Biomolecules | - | - | [117] |
Polyacrylic acid | UV-curing | Absorption spectra | Urea | - | - | [121] |
PEG diacrylate, PEG methyl ether acrylate and acrylate-PEG2000-NHS | Covalent modification | Single-mode waveguide | Glycerol | - | 2.2 × 10−6 RIU | [122] |
Dextran T-2000 | Spin-coating | SPRi | drugs | - | - | [136] |
Dextran methacrylate | Photopolymerization | Fluorescence | miR-182 | - | 2.92 ng mL−1 | [140] |
Polyacrylamide | SI-ATRP | Fluorescence | Glycans | - | - | [141] |
Poly(Nisopropylacrylamide) | Spin-coating | Fluorescence | Human IgG antibodies against the Epstein−Barr virus | - | - | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Sun, X.; Li, X.; Wang, Z. The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers 2022, 14, 826. https://doi.org/10.3390/polym14040826
Liu G, Sun X, Li X, Wang Z. The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers. 2022; 14(4):826. https://doi.org/10.3390/polym14040826
Chicago/Turabian StyleLiu, Guifeng, Xudong Sun, Xiaodong Li, and Zhenxin Wang. 2022. "The Bioanalytical and Biomedical Applications of Polymer Modified Substrates" Polymers 14, no. 4: 826. https://doi.org/10.3390/polym14040826
APA StyleLiu, G., Sun, X., Li, X., & Wang, Z. (2022). The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers, 14(4), 826. https://doi.org/10.3390/polym14040826