Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CNF/Silica, HDTMS-Modified CNF/Silica, and HDTMS-Modified CNF Nanocomposites
2.3. FE-SEM and TEM Analysis
2.4. Zetasizer Analyzer and Zeta Potential Analysis
2.5. FTIR Spectroscopy and XPS Analysis
2.6. TGA
2.7. WCA and AFM Analysis
3. Results and Discussion
3.1. Effect of the Synthesis Conditions on the Morphology of the CNF/Silica Nanocomposites
3.2. Chemical Structure of the CNF, CNF/Silica, HDTMS-Modified CNF/Silica, and HDTMS-Modified CNF Nanocomposites
3.3. Characterization of the CNF, CNF/Silica, HDTMS-Modified CNF/Silica, and HDTMS-Modified CNF Nanocomposites
3.4. Thermal Degradation Properties of the CNF, CNF/Silica, HDTMS-Modified CNF/Silica, and HDTMS-Modified CNF Nanocomposites
3.5. Surface Properties of the CNF, CNF/Silica, HDTMS-Modified CNF/Silica, and HDTMS-Modified CNF Nanocomposites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalil, H.A.; Bhat, A.; Yusra, A.I. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 2012, 87, 963–979. [Google Scholar] [CrossRef]
- Kim, J.-H.; Shim, B.S.; Kim, H.S.; Lee, Y.-J.; Min, S.-K.; Jang, D.; Abas, Z.; Kim, J. Review of nanocellulose for sustainable future materials. Int. J. Precis. Eng. Manuf. Green Technol. 2015, 2, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley Online Library: Hoboken, NJ, USA, 2017. [Google Scholar]
- Dufresne, A. Nanocellulose: A new ageless bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Muhd Julkapli, N.; Bagheri, S. Nanocellulose as a green and sustainable emerging material in energy applications: A review. Polym. Adv. Technol. 2017, 28, 1583–1594. [Google Scholar] [CrossRef]
- Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735–764. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016, 93, 2–25. [Google Scholar] [CrossRef]
- Lindh, E.L.; Terenzi, C.; Salmén, L.; Furo, I. Water in cellulose: Evidence and identification of immobile and mobile adsorbed phases by 2 H MAS NMR. Phys. Chem. Chem. Phys. 2017, 19, 4360–4369. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Chen, Z.; Du, X.; Chen, L. Contribution of different state of adsorbed water to the sub-Tg dynamics of cellulose. Carbohydr. Polym. 2019, 210, 322–331. [Google Scholar] [CrossRef]
- Meriçer, Ç.; Minelli, M.; Baschetti, M.G.; Lindström, T. Water sorption in microfibrillated cellulose (MFC): The effect of temperature and pretreatment. Carbohydr. Polym. 2017, 174, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Kulasinski, K.; Guyer, R.; Keten, S.; Derome, D.; Carmeliet, J. Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules 2015, 48, 2793–2800. [Google Scholar] [CrossRef]
- Patel, D.K.; Dutta, S.D.; Lim, K.-T. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv. 2019, 9, 19143–19162. [Google Scholar] [CrossRef] [Green Version]
- Thakur, V.; Guleria, A.; Kumar, S.; Sharma, S.; Singh, K. Recent advances in nanocellulose processing, functionalization and applications: A review. Mater. Adv. 2021, 2, 1872–1895. [Google Scholar] [CrossRef]
- Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Super-water-repellent fractal surfaces. Langmuir 1996, 12, 2125–2127. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Jiang, L. Definition of superhydrophobic states. Adv. Mater. 2007, 19, 3423–3424. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Aitomäki, Y.; Berglund, L.A.; Oksman, K.; Bismarck, A. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 2014, 105, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Liu, S.; Feng, J.; Kimura, S.; Wada, M.; Kuga, S.; Zhang, L. Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem. 2012, 124, 2118–2121. [Google Scholar] [CrossRef]
- Shi, J.; Lu, L.; Guo, W.; Zhang, J.; Cao, Y. Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels. Carbohydr. Polym. 2013, 98, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, Y.; Liu, L.; Yuan, W. Environmental-friendly and magnetic/silanized ethyl cellulose sponges as effective and recyclable oil-absorption materials. Carbohydr. Polym. 2017, 173, 422–430. [Google Scholar] [CrossRef]
- Feng, J.; Le, D.; Nguyen, S.T.; Nien, V.T.C.; Jewell, D.; Duong, H.M. Silica cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 298–305. [Google Scholar] [CrossRef]
- Baidya, A.; Ganayee, M.A.; Jakka Ravindran, S.; Tam, K.C.; Das, S.K.; Ras, R.H.; Pradeep, T. Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 2017, 11, 11091–11099. [Google Scholar] [CrossRef]
- Zou, Y.; Zhao, J.; Zhu, J.; Guo, X.; Chen, P.; Duan, G.; Liu, X.; Li, Y. A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation. ACS Appl. Mater. Interfaces 2021, 13, 7617–7624. [Google Scholar] [CrossRef]
- Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, A.V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod. 2021, 6, 75–81. [Google Scholar] [CrossRef]
- Fatima, A.; Yasir, S.; Khan, M.S.; Manan, S.; Ullah, M.W.; Ul-Islam, M. Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. J. Bioresour. Bioprod. 2021, 6, 26–32. [Google Scholar] [CrossRef]
- Darmanin, T.; Guittard, F. Superoleophobic surfaces with short fluorinated chains? Soft Matter 2013, 9, 5982–5990. [Google Scholar] [CrossRef]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Berendjchi, A.; Khajavi, R.; Yazdanshenas, M.E. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Res. Lett. 2011, 6, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Wang, L.; Shen, Y.; Ding, Y.; Cai, Z. Preparation of hexadecyltrimethoxysilane-modified silica nanocomposite hydrosol and superhydrophobic cotton coating. Fibers Polym. 2015, 16, 1082–1091. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Facile preparation of stable superhydrophobic coatings on wood surfaces using silica-polymer nanocomposites. BioResources 2015, 10, 2585–2596. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 2015, 5, 30647–30653. [Google Scholar] [CrossRef]
- Manatunga, D.C.; de Silva, R.M.; de Silva, K.N. Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Appl. Surf. Sci. 2016, 360, 777–788. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, Q. Preparation and Properties of Hydrophobically Modified Nano-SiO2 with Hexadecyltrimethoxysilane. ACS Omega 2021, 6, 9764–9770. [Google Scholar] [CrossRef]
- Vidal, K.; Gómez, E.; Goitandia, A.M.; Angulo-Ibáñez, A.; Aranzabe, E. The synthesis of a superhydrophobic and thermal stable silica coating via sol-gel process. Coatings 2019, 9, 627. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Choi, S.U.; Yu, W.; Pradeep, T. Nanofluids: Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Butler, T.; MacCraith, B.; McDonagh, C. Leaching in sol–gel-derived silica films for optical pH sensing. J. Non-Cryst. Solids 1998, 224, 249–258. [Google Scholar] [CrossRef]
- Kim, G.H.; Hwang, S.W.; Kang, D.H.; Jung, B.N.; Lee, M.J.; Shim, J.K.; Seo, K.H. Controllable synthesis of silica nanoparticle size and packing efficiency onto PVP-functionalized PMMA via a sol–gel method. J. Polym. Sci. 2020, 58, 662–672. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, H.; Wang, Y.; Ray, U.; Zhu, S.; Dai, J.; Chen, C.; Fu, K.; Jang, S.H.; Henderson, D. Cellulose-Nanofiber-Enabled 3D Printing of a Carbon-Nanotube Microfiber Network. Small Methods 2017, 1, 1700222. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Feng, Y.; Huang, C.; Pan, Y.; Yao, J. Temperature-induced formation of cellulose nanofiber film with remarkably high gas separation performance. Cellulose 2017, 24, 5649–5656. [Google Scholar] [CrossRef]
- Gopal, N.; Narasimhulu, K.; Rao, J. EPR, optical, infrared and Raman spectral studies of Actinolite mineral. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si (OR) 4 and R′′ Si (OR′) 3 precursors. J. Mol. Struct. 2009, 919, 140–145. [Google Scholar] [CrossRef]
- Ma, W.-S.; Li, J.; Deng, B.-J.; Zhao, X.-S. Preparation and characterization of long-chain alkyl silane-functionalized graphene film. J. Mater. Sci. 2013, 48, 156–161. [Google Scholar] [CrossRef]
- Ray, S.; Maiti, C.; Lahiri, S.; Chakrabarti, N. Properties of silicon dioxide films deposited at low temperatures by microwave plasma enhanced decomposition of tetraethylorthosilicate. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1992, 10, 1139–1150. [Google Scholar] [CrossRef]
- Pan, P.; Nesbit, L.; Douse, R.; Gleason, R. The composition and properties of PECVD silicon oxide films. J. Electrochem. Soc. 1985, 132, 2012. [Google Scholar] [CrossRef]
- Wang, T.-H.; Gole, J.L.; White, M.G.; Watkins, C.; Street, S.C.; Fang, Z.; Dixon, D.A. The surprising oxidation state of fumed silica and the nature of water binding to silicon oxides and hydroxides. Chem. Phys. Lett. 2011, 501, 159–165. [Google Scholar] [CrossRef]
- Zhong, Y.; Qiu, X.; Gao, J.; Guo, Z. Chemical structure of Si–O in silica fume from ferrosilicon production and its reactivity in alkali dissolution. ISIJ Int. 2019, 59, 1098–1104. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.Z.; Zhang, W.X.; Zhang, W.L. XPS studies of charging effect induced by X-ray irradiation on amorphous SiO2 thin films. IOP Conf. Ser.Mater. Sci. Eng. 2019, 490, 022079. [Google Scholar]
- Orrabalis, C.; Rodríguez, D.; Pampillo, L.G.; Londoño-Calderón, C.; Trinidad, M.; Martínez-García, R. Characterization of Nanocellulose Obtained from Cereus Forbesii (a South American cactus). Mater. Res. 2019, 22, e20190243. [Google Scholar] [CrossRef]
- Fisher, T.; Hajaligol, M.; Waymack, B.; Kellogg, D. Pyrolysis behavior and kinetics of biomass derived materials. J. Anal. Appl. Pyrolysis 2002, 62, 331–349. [Google Scholar] [CrossRef]
- Burhenne, L.; Messmer, J.; Aicher, T.; Laborie, M.-P. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 177–184. [Google Scholar] [CrossRef]
- Ray, S.S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar]
- Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Camino, G.; Sgobbi, R.; Zaopo, A.; Colombier, S.; Scelza, C. Investigation of flame retardancy in EVA. Fire Mater. 2000, 24, 85–90. [Google Scholar] [CrossRef]
- Böhm, L.; Cherdron, H.; Fleißner, M.; Kreuder, W.; Schneller, A. Comprehensive Polymer Science: The Synthesis, Characterization, Reactions and Applications of Polymers.(7 Bde.). Herausgegeben von G. Allen und JC Bevington. Pergamon Press, Oxford 1989. 5367 S., geb. $1995.00.–ISBN 0-08-032516-5. Angew. Chem. 1990, 102, 345. [Google Scholar] [CrossRef]
- Perera, H.J.; Latifi, R.; Blum, F.D. Development of structure in hexadecyltrimethoxysilane adsorbed on silica. J. Phys. Chem. C 2019, 123, 19005–19012. [Google Scholar] [CrossRef]
- Ni, L.; Rigolet, S.; Chemtob, A.; Croutxé-Barghorn, C.; Brendlé, J.; Vidal, L. Head-to-head and head-to-tail multilayer n-alkylsilsesquioxane films. Comptes Rendus Chim. 2013, 16, 897–905. [Google Scholar] [CrossRef]
- Dhôtel, A.; Li, H.; Fernandez-Ballester, L.; Delbreilh, L.; Youssef, B.; Zeng, X.C.; Tan, L. Supramolecular nanolayer reconfiguration after molecular intercalation. J. Phys. Chem. C 2011, 115, 10351–10356. [Google Scholar] [CrossRef] [Green Version]
- Keene, M.T.; Gougeon, R.D.; Denoyel, R.; Harris, R.K.; Rouquerol, J.; Llewellyn, P.L. Calcination of the MCM-41 mesophase: Mechanism of surfactant thermal degradation and evolution of the porosity. J. Mater. Chem. 1999, 9, 2843–2849. [Google Scholar] [CrossRef]
- Spataru, C.I.; Purcar, V.; Ghiurea, M.; Radovici, C.; Stanga, G.; Donescu, D. Effects of the nanoassociation of hexadecyltrimethoxysilane precursors on the sol–gel process. J. Sol-Gel Sci. Technol. 2013, 65, 344–352. [Google Scholar] [CrossRef]
- Guo, M.; Yang, G.; Zhang, S.; Zhang, Y.; Gao, C.; Zhang, C.; Zhang, P. Co-modification of Bentonite by CTAB and Silane and its Performance in Oil-Based Drilling Mud. Clays Clay Miner. 2020, 68, 646–655. [Google Scholar] [CrossRef]
- Chaikeaw, C.; Srikulkit, K. In situ synthesis of ABS containing hydrophobic silica nanoparticles and their effects on mechanical properties. J. Sol-Gel Sci. Technol. 2017, 81, 774–781. [Google Scholar] [CrossRef]
Samples | CNF (g) | TEOS (mL) | EtOH (mL) | NH4OH (mL) | H2O (mL) | NH4OH (M) | |
---|---|---|---|---|---|---|---|
CNF/silica-1 | 0.20 | 2.00 | 95.00 | 3.00 | - | 11.96 | 0.44 |
CNF/silica-2 | 0.20 | 2.00 | 85.50 | 3.00 | 9.50 | 70.39 | 0.44 |
CNF/silica-3 | 0.20 | 2.00 | 87.50 | 1.00 | 9.50 | 62.42 | 0.15 |
CNF/silica-4 | 0.80 | 4.00 | 230.00 | 6.00 | - | 11.96 | 0.36 |
Samples | CNF (g) | CNF/Silica (g) | TEOS (mL) | HDTMS (mL) | NH4OH (mL) | H2O (mL) | |
---|---|---|---|---|---|---|---|
1 Step | CNF/silica | 0.8 | - | 4.0 | - | 6.0 | 230.0 |
2 Step | h-sCNF 0.1 | - | 0.5 | - | 0.1 | 2.5 | 97.4 |
h-sCNF 0.5 | - | 0.5 | - | 0.5 | 2.5 | 97.0 | |
h-sCNF 1.0 | - | 0.5 | - | 1.0 | 2.5 | 96.5 | |
h-sCNF 2.0 | - | 0.5 | - | 2.0 | 2.5 | 95.5 | |
Control | h-CNF 0.4 | 0.2 | - | - | 0.4 | 2.5 | 97.1 |
h-CNF 0.8 | 0.2 | - | - | 0.8 | 2.5 | 96.7 |
Samples | Particle Size | Silica Content (wt%) (c) | |
---|---|---|---|
Size (nm) (a) | Size (nm) (b) | ||
CNF/silica-1 | 10 ~ 30 | 166.1 | 57.93 |
CNF/silica-2 | 13 ~ 90 | 96.57 | 70.00 |
CNF/silica-3 | 16 ~ 78 | 57.02 | 67.81 |
CNF/silica-4 | 10 ~ 30 | 85.07 | 57.67 |
Samples | Atomic Percentage (%) | Amount (%) | FWHM | ||||
---|---|---|---|---|---|---|---|
C | O | Si | CNF | Silica | HDTMS | ||
CNF | 56.20 | 43.80 | - | 100.00 | - | - | - |
CNF/silica | 29.20 | 54.65 | 16.15 | 44.85 | 55.15 | - | 1.96 |
h-sCNF 0.1 | 33.94 | 50.97 | 15.05 | 40.65 | 51.18 | 8.17 | 1.98 |
h-sCNF 0.5 | 52.82 | 35.78 | 11.40 | 30.14 | 34.04 | 35.82 | 2.11 |
h-sCNF 1.0 | 57.14 | 31.85 | 11.01 | 24.98 | 31.09 | 43.92 | 2.18 |
h-sCNF 2.0 | 64.82 | 25.66 | 9.52 | 20.29 | 23.53 | 56.18 | 2.37 |
h-CNF 0.4 | 67.30 | 30.55 | 2.15 | 60.53 | - | 39.46 | 1.82 |
h-CNF 0.8 | 66.71 | 31.37 | 1.92 | 65.27 | - | 34.73 | 1.76 |
Samples | T10 (°C) | a Tinf, 1 (°C) | a Tinf, 2 (°C) | b Tmax (wt%) | Inorganic HDTMS (wt%) | Organic HDTMS (wt%) |
---|---|---|---|---|---|---|
CNF | 311.23 | 346.87 | 560.01 | 0.88 | - | - |
CNF/silica | 337.64 | 357.39 | - | 57.41 | - | - |
h-sCNF 0.1 | 341.63 | 360.87 | - | 55.02 | 1.58 | 6.59 |
h-sCNF 0.5 | 353.85 | 370.49 | 508.44 | 50.77 | 14.47 | 21.35 |
h-sCNF 1.0 | 357.16 | 367.86 | 512.58 | 46.54 | 13.19 | 30.73 |
h-sCNF 2.0 | 355.69 | 365.05 | 506.00 | 38.03 | 12.24 | 43.94 |
h-CNF 0.4 | 329.88 | 357.91 | 500.05 | 14.34 | 13.46 | 26.00 |
h-CNF 0.8 | 331.74 | 356.59 | 500.82 | 17.93 | 17.05 | 17.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.-H.; Kang, D.-H.; Jung, B.-N.; Shim, J.-K. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane. Polymers 2022, 14, 833. https://doi.org/10.3390/polym14040833
Kim G-H, Kang D-H, Jung B-N, Shim J-K. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane. Polymers. 2022; 14(4):833. https://doi.org/10.3390/polym14040833
Chicago/Turabian StyleKim, Gi-Hong, Dong-Ho Kang, Bich-Nam Jung, and Jin-Kie Shim. 2022. "Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane" Polymers 14, no. 4: 833. https://doi.org/10.3390/polym14040833
APA StyleKim, G. -H., Kang, D. -H., Jung, B. -N., & Shim, J. -K. (2022). Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane. Polymers, 14(4), 833. https://doi.org/10.3390/polym14040833