Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Cryoconcentrated Solutions
2.3. Encapsulation of Cryoconcentrated Solutions
2.4. TSSC
2.5. GA Content
2.6. Parameters of Encapsulation
2.6.1. Efficiency of Encapsulation (EE%)
2.6.2. Loading Capacity (LC%)
2.7. Characterization of Calcium Alginate Hydrogel Beads Filled with Cryoconcentrated Solution
2.7.1. Particle Size
2.7.2. Shape
2.7.3. Water Activity (aw)
2.7.4. Moisture Content
2.7.5. Bulk Density (ρB)
2.8. Experimental Design
2.9. Statistical Analysis
3. Results and Discussion
3.1. Efficiency of Encapsulation (EE%)
3.2. Loading Capacity (LC%)
3.3. Characterization of Calcium Alginate Hydrogel Beads
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoda, T.; Miyaki, H.; Saito, T. Effect of container shape on freeze concentration of apple juice. PLoS ONE 2021, 16, e0245606. [Google Scholar] [CrossRef]
- Adorno, W.T.; Rezzadori, K.; Arend, G.D.; Chaves, V.C.; Reginatto, F.H.; Di Luccio, M.; Petrus, J.C. Enhancement of phenolic compounds content and antioxidant activity of strawberry (Fragaria × ananassa) juice by block freeze concentration technology. Int. J. Food Sci. Technol. 2016, 52, 781–787. [Google Scholar] [CrossRef]
- Rezzadori, K.; Arend, G.D.; Jaster, H.; Díaz-De-Cerio, E.; Verardo, V.; Segura-Carretero, A.; Verruck, S.; Prudêncio, E.S.; Petrus, J.C.C. Bioavailability of bioactive compounds of guava leaves (Psidium guajava) aqueous extract concentrated by gravitational and microwave-assisted cryoconcentration. J. Food Process. Preserv. 2021, 46, e16241. [Google Scholar] [CrossRef]
- Bastías-Montes, J.M.; Vidal-San-Martín, C.; Tamarit-Pino, Y.; Muñoz-Fariña, O.; García-Figueroa, O.; Quevedo-León, R.; Wei, Z.-J.; Lv, X.; Cespedes-Acuña, C.L. Cryoconcentration by Centrifugation–Filtration: A Simultaneous, Efficient and Innovative Method to Increase Thermosensitive Bioactive Compounds of Aqueous Maqui (Aristotelia chilensis (Mol.) Stuntz) Extract. Processes 2021, 10, 25. [Google Scholar] [CrossRef]
- Haas, I.C.S.; de Espindola, J.S.; de Liz, G.R.; Luna, A.S.; Bordignon-Luiz, M.T.; Prudêncio, E.S.; de Gois, J.S.; Fedrigo, I.M.T. Gravitational assisted three-stage block freeze concentration process for producing enriched concentrated orange juice (Citrus sinensis L.): Multi-elemental profiling and polyphenolic bioactives. J. Food Eng. 2022, 315, 110802. [Google Scholar] [CrossRef]
- Meneses, D.; Ruiz, Y.; Hernandez, E.; Moreno, F. Multi-stage block freeze-concentration of green tea (Camellia sinensis) extract. J. Food Eng. 2020, 293, 110381. [Google Scholar] [CrossRef]
- Aider, M.; Ben Ounis, W. Skim milk cryoconcentration as affected by the thawing mode: Gravitational vs. microwave-assisted. Int. J. Food Sci. Technol. 2011, 47, 195–202. [Google Scholar] [CrossRef]
- Qin, F.G.; Ding, Z.; Peng, K.; Yuan, J.; Huang, S.; Jiang, R.; Shao, Y. Freeze concentration of apple juice followed by centrifugation of ice packed bed. J. Food Eng. 2020, 291, 110270. [Google Scholar] [CrossRef]
- Canella, M.H.M.; Dantas, A.; Blanco, M.; Raventós, M.; Hernandez, E.; Prudencio, E.S. Optimization of goat milk vacuum-assisted block freeze concentration using response surface methodology and NaCl addition influence. LWT-Food Sci. Technol. 2020, 124, 109133. [Google Scholar] [CrossRef]
- Bastías-Montes, J.M.; Martín, C.V.-S.; Muñoz-Fariña, O.; Petzold-Maldonado, G.; Quevedo-León, R.; Wang, H.; Yi, Y.; Céspedes-Acuña, C.L. Cryoconcentration procedure for aqueous extracts of maqui fruits prepared by centrifugation and filtration from fruits harvested in different years from the same localities. J. Berry Res. 2019, 9, 377–394. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P. Emerging technologies available for the enhancement of bioactives concentration in functional beverages. In Biotechnological Progress and Beverage Consumption, 1st ed.; Grumezescu, A., Holban, A.M., Eds.; Academic Press: New York, NY, USA, 2020; pp. 39–69. [Google Scholar]
- Ketnawa, S.; Reginio, F.C., Jr.; Thuengtung, S.; Ogawa, Y. Changes in bioactive compounds and antioxidant activity of plant-based foods by gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2021; in press. [Google Scholar] [CrossRef]
- Kurozawa, L.; Hubinger, M. Hydrophilic food compounds encapsulation by ionic gelation. Curr. Opin. Food Sci. 2017, 15, 50–55. [Google Scholar] [CrossRef]
- Benavides, S.; Cortés, P.; Parada, J.; Franco, W. Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chem. 2016, 204, 77–83. [Google Scholar] [CrossRef]
- Otálora, M.C.; Carriazo, J.G.; Osorio, C.; Nazareno, M.A. Encapsulation of cactus (Opuntia megacantha) betaxanthins by ionic gelation and spray drying: A comparative study. Food Res. Int. 2018, 111, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Calvo, T.R.A.; Perullini, M.; Santagapita, P.R. Encapsulation of betacyanins and polyphenols extracted from leaves and stems of beetroot in Ca(II)-alginate beads: A structural study. J. Food Eng. 2018, 235, 32–40. [Google Scholar] [CrossRef]
- Gorbunova, N.; Bannikova, A.; Evteev, A.; Evdokimov, I.; Kasapis, S. Alginate-based encapsulation of extracts from beta Vulgaris cv. beet greens: Stability and controlled release under simulated gastrointestinal conditions. LWT-Food Sci. Technol. 2018, 93, 442–449. [Google Scholar] [CrossRef]
- Moschona, A.; Liakopoulou-Kyriakides, M. Encapsulation of biological active phenolic compounds extracted from wine wastes in alginate-chitosan microbeads. J. Microencapsul. 2018, 35, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.G.D.S.; Machado, M.T.D.C.; Barros, H.D.D.F.Q.; Cazarin, C.B.B.; Junior, M.R.M.; Hubinger, M.D. Anthocyanins from jussara (Euterpe edulis Martius) extract carried by calcium alginate beads pre-prepared using ionic gelation. Powder Technol. 2019, 345, 283–291. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Kurek, M. Microencapsulation of Anthocyanins—Critical Review of Techniques and Wall Materials. Appl. Sci. 2021, 11, 3936. [Google Scholar] [CrossRef]
- Tzatsi, P.; Goula, A.M. Encapsulation of Extract from Unused Chokeberries by Spray Drying, Co-crystallization, and Ionic Gelation. Waste Biomass Valoriz. 2021, 12, 4567–4585. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 10th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 115–149. [Google Scholar]
- Nouira, S.; Hassine, T.; Fitoussi, J.; Shirinbayan, M.; Gamaoun, F.; Tcharkhtchi, A. Non-isothermal crystallization kinetics and its effect on the mechanical properties of homopolymer isotactic polypropylene. J. Polym. Res. 2021, 29, 1–13. [Google Scholar] [CrossRef]
- Singh, R.K.; Sudharshan, R.; Mehta, P.K.; Chandrawanshi, M.; Mishra, D. Optimization of annealing stack using design of experiment method in Batch Annealed HSLA Steel. Mater. Today Proc. 2018, 5, 7055–7060. [Google Scholar] [CrossRef]
- Yasin, S.; Curti, M.; Behary, N.; Perwuelz, A.; Giraud, S.; Rovero, G.; Guan, J.; Chen, G. Process optimization of eco-friendly flame retardant finish for cotton fabric: A response surface methodology approach. Surf. Rev. Lett. 2017, 24, 1750114. [Google Scholar] [CrossRef]
- Sohail, Y.; Parag, B.; Nemeshwaree, B.; Giorgio, R. Optimizing Organophosphorus Fire Resistant Finish for Cotton Fabric Using Box-Behnken Design. Int. J. Environ. Res. 2016, 10, 313–320. [Google Scholar] [CrossRef]
- Guerra-Valle, M.; Lillo-Perez, S.; Petzold, G.; Orellana-Palma, P. Effect of Freeze Crystallization on Quality Properties of Two Endemic Patagonian Berries Juices: Murta (Ugni molinae) and Arrayan (Luma apiculata). Foods 2021, 10, 466. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.L.; Raventós, M.; Hernández, E.; Ruiz, Y. Block Freeze-Concentration of Coffee Extract: Effect of Freezing and Thawing Stages on Solute Recovery and Bioactive Compounds. J. Food Eng. 2014, 120, 158–166. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Petzold, G.; Pierre, L.; Pensaben, J.M. Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration. Food Chem. Toxicol. 2017, 109, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Palma, P.; Petzold, G.; Guerra-Valle, M.; Astudillo-Lagos, M. Impact of block cryoconcentration on polyphenol retention in blueberry juice. Food Biosci. 2017, 20, 149–158. [Google Scholar] [CrossRef]
- Fathordoobady, F.; Jarzębski, M.; Pratap-Singh, A.; Guo, Y.; Abd-Manap, Y. Encapsulation of betacyanins from the peel of red dragon fruit (Hylocereus polyrhizus L.) in alginate microbeads. Food Hydrocoll. 2020, 113, 106535. [Google Scholar] [CrossRef]
- Juríková, T.; Mlček, J.; Balla, Š.; Ondrášová, M.; Dokoupil, L.; Sochor, J.; Ďurišová, L.; Eliáš, J.P.; Adámková, A.; Baroň, M.; et al. The Elucidation of Total Polyphenols, Individual Phenolic Compounds, Antioxidant Activity of Three Underutilized Fruit Species—Black Crowberry, Honeyberry, European Cranberry with Their Accumulation. Agronomy 2020, 11, 73. [Google Scholar] [CrossRef]
- Petzold, G.; Gianelli, M.P.; Bugueño, G.; Celan, R.; Pavez, C.; Orellana, P. Encapsulation of liquid smoke flavoring in ca-alginate and ca-alginate-chitosan beads. J. Food Sci. Technol. 2014, 51, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RSB, Research Services Branch. Available online: https://imagej.nih.gov (accessed on 25 July 2021).
- Morales, E.; Rubilar, M.; Burgos-Díaz, C.; Acevedo, F.; Penning, M.; Shene, C. Alginate/Shellac beads developed by external gelation as a highly efficient model system for oil encapsulation with intestinal delivery. Food Hydrocoll. 2017, 70, 321–328. [Google Scholar] [CrossRef]
- Kaderides, K.; Goula, A.M. Encapsulation of pomegranate peel extract with a new carrier material from orange juice by-products. J. Food Eng. 2019, 253, 1–13. [Google Scholar] [CrossRef]
- Abdullah, E.C.; Geldart, D. The use of bulk density measurements as flowability indicators. Powder Technol. 1999, 102, 151–165. [Google Scholar] [CrossRef]
- Gaikwad, N.N.; Kalal, A.Y.; Suryavanshi, S.K.; Patil, P.G.; Sharma, D.; Sharma, J. Process optimization by response surface methodology for microencapsulation of pomegranate seed oil. J. Food Process. Preserv. 2021, 45, e15561. [Google Scholar] [CrossRef]
- Córdoba, A.L.; Deladino, L.; Martino, M. Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydr. Polym. 2013, 95, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Feltre, G.; Sartori, T.; Silva, K.F.C.; Dacanal, G.C.; Menegalli, F.C.; Hubinger, M.D. Encapsulation of wheat germ oil in alginate-gelatinized corn starch beads: Physicochemical properties and tocopherols’ stability. J. Food Sci. 2020, 85, 2124–2133. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Guerra-Valle, M.; Gianelli, M.P.; Petzold, G. Evaluation of freeze crystallization on pomegranate juice quality in comparison with conventional thermal processing. Food Biosci. 2021, 41, 101106. [Google Scholar] [CrossRef]
- Feltre, G.; Silva, C.A.; Lima, G.B.; Menegalli, F.C.; Dacanal, G.C. Production of Thermal-Resistant Cornstarch-Alginate Beads by Dripping Agglomeration. Int. J. Food Eng. 2017, 14, 20170296. [Google Scholar] [CrossRef]
- Singh, J.; Dartois, A.; Kaur, L. Starch digestibility in food matrix: A review. Trends Food Sci. Technol. 2010, 21, 168–180. [Google Scholar] [CrossRef]
- Deladino, L.; Anbinder, P.S.; Navarro, A.S.; Martino, M.N. Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr. Polym. 2008, 71, 126–134. [Google Scholar] [CrossRef]
- Arriola, N.D.A.; Chater, P.I.; Wilcox, M.; Lucini, L.; Rocchetti, G.; Dalmina, M.; Pearson, J.P.; Amboni, R.D.D.M.C. Encapsulation of stevia rebaudiana Bertoni aqueous crude extracts by ionic gelation—Effects of alginate blends and gelling solutions on the polyphenolic profile. Food Chem. 2018, 275, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajpai, S.; Tankhiwale, R. Investigation of dynamic release of vitamin B2 from calcium alginate/chitosan multilayered beads: Part II. React. Funct. Polym. 2006, 66, 1565–1574. [Google Scholar] [CrossRef]
- Chan, E.-S.; Lee, B.-B.; Ravindra, P.; Poncelet, D. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. J. Colloid Interface Sci. 2009, 338, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Dash, K.K.; Badwaik, L.S. Physicochemical and release behaviour of phytochemical compounds based on black jamun pulp extracts-filled alginate hydrogel beads through vibration dripping extrusion. Int. J. Biol. Macromol. 2021, 194, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Rohman, S.; Kaewtatip, K.; Kantachote, D.; Tantirungkij, M. Encapsulation of Rhodopseudomonas palustris KTSSR54 using beads from alginate/starch blends. J. Appl. Polym. Sci. 2020, 138, 50084. [Google Scholar] [CrossRef]
- Zazzali, I.; Calvo, T.R.A.; Ruíz-Henestrosa, V.M.P.; Santagapita, P.R.; Perullini, M. Effects of pH, extrusion tip size and storage protocol on the structural properties of Ca(II)-alginate beads. Carbohydr. Polym. 2018, 206, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Aider, M.; de Halleux, D. Production of Concentrated Cherry and Apricot Juices by Cryoconcentration Technology. LWT-Food Sci. Technol. 2008, 41, 1768–1775. [Google Scholar] [CrossRef]
- Chan, E.-S.; Wong, S.-L.; Lee, P.-P.; Lee, J.S.; Ti, T.B.; Zhang, Z.; Poncelet, D.; Ravindra, P.; Phan, S.-H.; Yim, Z.-H. Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydr. Polym. 2011, 83, 225–232. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
Alginate (%, w/w) | 1 | 2 | 3 |
Cornstarch (%, w/w) | 0.5 | 1 | 2 |
Alginate Concentration (%, w/w) | Cornstarch Concentration (%, w/w) | Solution Encapsulated | EE (%) |
---|---|---|---|
1.0 | 0.5 | Initial solution | 12.50 ± 1.45 a |
Cycle 1 | 37.88 ± 0.94 c | ||
Cycle 2 | 59.39 ± 1.33 d | ||
Cycle 3 | 19.26 ± 2.65 b | ||
1.0 | Initial solution | 21.25 ± 2.01 a | |
Cycle 1 | 60.84 ± 1.41 c | ||
Cycle 2 | 64.62 ± 1.01 d | ||
Cycle 3 | 22.06 ± 1.59 ab | ||
2.0 | Initial solution | 25.83 ± 2.71 a | |
Cycle 1 | 64.42 ± 2.09 c | ||
Cycle 2 | 69.02 ± 1.78 d | ||
Cycle 3 | 32.21 ± 1.79 b | ||
2.0 | 0.5 | Initial solution | 47.67 ± 3.07 a |
Cycle 1 | 75.91 ± 1.39 c | ||
Cycle 2 | 82.92 ± 2.07 d | ||
Cycle 3 | 50.74 ± 1.15 ab | ||
1.0 | Initial solution | 52.27 ± 1.15 a | |
Cycle 1 | 83.50 ± 2.59 c | ||
Cycle 2 | 87.48 ± 3.52 cd | ||
Cycle 3 | 69.37 ± 2.11 b | ||
2.0 | Initial solution | 63.28 ± 1.54 a | |
Cycle 1 | 90.17 ± 3.15 c | ||
Cycle 2 | 97.73 ± 1.38 d | ||
Cycle 3 | 75.09 ± 3.01 b | ||
3.0 | 0.5 | Initial solution | 38.95 ± 4.42 a |
Cycle 1 | 52.12 ± 1.61 b | ||
Cycle 2 | 64.90 ± 0.99 c | ||
Cycle 3 | 40.01 ± 1.56 a | ||
1.0 | Initial solution | 41.47 ± 2.13 a | |
Cycle 1 | 60.58 ± 2.71 c | ||
Cycle 2 | 75.09 ± 2.11 d | ||
Cycle 3 | 47.85 ± 3.01 b | ||
2.0 | Initial solution | 57.22 ± 3.23 ab | |
Cycle 1 | 70.24 ± 4.66 c | ||
Cycle 2 | 83.52 ± 4.23 d | ||
Cycle 3 | 53.58 ± 1.85 a |
Sample | Particle Size (mm) | SF | aw | Moisture Content (%) | ρB (g/mL) |
---|---|---|---|---|---|
Initial solution | 3.09 ± 0.02 a | 0.02 ± 0.002 a | 0.98 ± 0.01 a | 86.1 ± 0.15 a | 1.04 ± 0.05 a |
Cycle 1 | 2.82 ± 0.02 b | 0.02 ± 0.003 ab | 0.97 ± 0.00 ab | 81.5 ± 0.56 b | 1.05 ± 0.05 ab |
Cycle 2 | 2.73 ± 0.03 c | 0.02 ± 0.004 ab | 0.95 ± 0.01 c | 80.0 ± 0.10 bc | 1.11 ± 0.03 bc |
Cycle 3 | 2.64 ± 0.02 d | 0.02 ± 0.002 a | 0.92 ± 0.01 d | 73.6 ± 0.23 d | 1.16 ± 0.11 abcd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra-Valle, M.; Petzold, G.; Orellana-Palma, P. Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study. Polymers 2022, 14, 1031. https://doi.org/10.3390/polym14051031
Guerra-Valle M, Petzold G, Orellana-Palma P. Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study. Polymers. 2022; 14(5):1031. https://doi.org/10.3390/polym14051031
Chicago/Turabian StyleGuerra-Valle, María, Guillermo Petzold, and Patricio Orellana-Palma. 2022. "Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study" Polymers 14, no. 5: 1031. https://doi.org/10.3390/polym14051031
APA StyleGuerra-Valle, M., Petzold, G., & Orellana-Palma, P. (2022). Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study. Polymers, 14(5), 1031. https://doi.org/10.3390/polym14051031