High Performance Polymer Solar Cells Using Grating Nanostructure and Plasmonic Nanoparticles
Abstract
:1. Introduction
2. Mathematical Model
3. Proposed Solar Cell Structure
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, C.; Kothari, J.; Fu, X.; So, F. Interconnecting Layers for Tandem Organic Solar Cells. Mater. Today Energy 2012, 21, 100707. [Google Scholar] [CrossRef]
- Agnihotri, P.; Sahu, S.; Tiwri, S. Recent Advances & Perspectives in Electron Transport Layer of Organic Solar Cells for Efficient Solar Energy Harvesting. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, Tamil Nadu, India, 1–2 August 2017. [Google Scholar]
- Rafique, S.; Abdullah, S.; Shahid, M.; Ansari, M.; Sulaiman, K. Significantly Improved Photovoltaic Performance in Polymer Bulk Heterojunction Solar Cells with Graphene Oxide. Sci. Rep. J. 2017, 7, 39555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, D.; Huang, W.; Fan, P.; Zheng, Y.; Huang, J.; Yu, J. Preparation of Reduced Graphene Oxide:ZnO Hybrid Cathode Interlayer Using In Situ Thermal Reduction/Annealing for Interconnecting Nanostructure and Its Effect on Organic Solar Cell. ACS Appl. Mater. Interfaces 2017, 9, 4898–4907. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Gan, Q.; Kafafi, Z.; Bartoli, F. Polymeric Photovoltaics with Various Metallic Plasmonic Nanostructures. J. Appl. Phys. 2013, 113, 063109. [Google Scholar] [CrossRef]
- Chou, S.; Ding, W. Ultrathin, High-efficiency, Broad-band, Omni Acceptance, Organic Solar Cells Enhanced by Plasmonic Cavity with Subwavelength Hole Array. Opt. Express 2013, 21, A60–A76. [Google Scholar] [CrossRef] [Green Version]
- Elrashidi, A. Electrophotonic improvement of polymer solar cells by using graphene and plasmonic nanoparticles. Mater. Express 2017, 7, 305–311. [Google Scholar] [CrossRef]
- Liu, F.; Qu, D.; Xu, Q.; Pan, X.; Cui, K.; Feng, X.; Zhang, W.; Huang, Y. Efficiency Enhancement in Organic Solar Cells with Extended Resonance Spectrum of Localized Surface Plasmon. IEEE Photonics J. 2017, 5, 8400307. [Google Scholar]
- Williamson, A.; McClean, É.; Leipold, D.; Zerulla, D.; Runge, E. The Design of Efficient Surface-Plasmon-Enhanced Ultra-Thin Polymer-Based Solar Cells. Appl. Phys. Lett. 2011, 99, 093307. [Google Scholar] [CrossRef]
- Baruah, B.; Kelley, C.; Djokoto, G.; Hartnett, K. Polymer-capped Gold Nanoparticles and ZnO Nanorods form Binary Photocatalyst on Cotton Fabrics: Catalytic Breakdown of Dye. Front. Mater. Sci. 2021, 15, 431–447. [Google Scholar] [CrossRef]
- Zeng, H.; Cai, W.; Liu, P.; Liu, P.; Xu, X.; Zhou, H.; Klingshirn, C.; Kalt, H. ZnO-based Hollow Nanoparticles by Selective Etching: Elimination and Reconstruction of Metal-semiconductor Interface, Improvement of Blue Emission and Photocatalysis. ACS Nano 2008, 2, 1661–1670. [Google Scholar] [CrossRef]
- Gargas, D.; Gao, H.; Wang, H.; Wang, H.; Yang, P. High Quantum Efficiency of Band-edge Emission from ZnO Nanowires. Nano Lett. 2011, 11, 3792–3796. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Huang, L.; Harn, Y.; Harn, Y.; Lin, C.; Chang, J.; Wu, C.; Wu, J. High Density Unaggregated Au Nanoparticles on ZnO Nanorod Arrays Function as Efficient and Recyclable Photocatalysts for Environmental Purification. Small 2013, 9, 3169–3182. [Google Scholar] [CrossRef]
- Juneja, S.; Madhavan, A.; Ghosal, A.; Moulick, R.; Bhattacharya, J. Synthesis of Graphenized Au/ZnO Plasmonic Nanocomposites for Simultaneous Sunlight Mediated Photo-catalysis and Anti-microbial Activity. J. Hazard. Mater. 2018, 347, 378–389. [Google Scholar] [CrossRef]
- She, P.; Xu, K.; Yin, S.; Shang, Y.; He, Q.; Zeng, S.; Sun, H.; Liu, Z. Bioinspired Self-standing Macroporous Au/ZnO Sponges for Enhanced Photocatalysis. J. Colloid Interface Sci. 2018, 514, 40–48. [Google Scholar] [CrossRef]
- Baruah, B. In Situ and Facile Synthesis of Silver Nanoparticles on Baby Wipes and their Applications in Catalysis and SERS. RSC Adv. 2016, 6, 5016–5023. [Google Scholar] [CrossRef]
- Manna, J.; Goswami, S.; Shilpa, N.; Sahu, N.; Rana, R. Biomimetic Method to Assemble Nanostructured Ag@ZnO on Cotton Fabrics: Application as Self-cleaning Flexible Materials with Visible-light Photocatalysis and Antibacterial Activities. ACS Appl. Mater. Interfaces 2015, 7, 8076–8082. [Google Scholar] [CrossRef]
- Baruah, B.; Downer, L.; Agyeman, D. Fabric-based Composite Materials Containing ZnO-NRs and ZnO-NRs-AuNPs and their Application in Photocatalysis. Mater. Chem. Phys. 2019, 231, 252–259. [Google Scholar] [CrossRef]
- Wen, C.; Liao, F.; Liu, S.; Kang, Z.; Zhang, X.; Shao, M. Bi-functional ZnO-RGO-Au Substrate: Photocatalysts for Degrading Pollutants and SERS Substrates for Real-time Monitoring. Chem. Commun. 2013, 49, 3049–3051. [Google Scholar] [CrossRef]
- She, P.; Xu, K.; He, Q.; Zeng, S.; Sun, H.; Liu, Z. Controlled Preparation and Visible Light Photocatalytic Activities of Corn Cob-like Au-ZnO Nanorods. J. Mater. Sci. 2017, 52, 3478–3489. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Z.; Wang, T.; Zhang, D.; Li, X.; Xue, Z.; Shana, D.; Lu, X. High-throughput and Ultratrace Naked-eye Colorimetric Detection of Au3+ Based on the Gold Amalgam-stimulated Peroxidase Mimetic Activity in Aqueous Solutions. Chem. Commun. 2017, 53, 5056–5058. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Nan, T.; Zeng, H.; Liang, W.; Liu, S.; Wang, Z.; Huang, W.; Yang, W.; Chen, C.; Lin, Y. Growth Behavior and Photoluminescence Properties of ZnO Nanowires on Gold nano-particle Coated Si Surfaces. J. Cryst. Growth 2012, 340, 83–86. [Google Scholar] [CrossRef]
- Kang, Z.; Gu, S.; Yan, Q.; Bai, M.; Liu, H.; Liu, S.; Zhang, H.; Zhang, Z.; Zhang, J.; Zhang, Y. Enhanced Photoelectrochemical Property of ZnO Nanorods Array Synthesized on Reduced Graphene Oxide for Self-powered Biosensing Application. Biosens. Bioelectron. 2015, 64, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Yan, Q.; Wang, F.; Bai, M.; Liu, C.; Zhang, Z.; Lin, P.; Zhang, H.; Yuan, G.; Zhang, J.; et al. Electronic Structure Engineering of Cu2O Film/ZnO Nanorods Array All-oxide p-n Heterostructure for Enhanced Photoelectrochemical Property and Self-powered Biosensing Application. Sci. Rep. 2015, 5, 7882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, C.; Chen, F.; Liao, C.; Huang, M.; Hus, C. Plasmonic-Enhanced Performance for Polymer Solar Cells Prepared with Inverted Structures. Appl. Phys. Lett. 2012, 101, 193902. [Google Scholar] [CrossRef] [Green Version]
- Gasparini, N.; Lucera, L.; Salvador, M.; Prosa, M.; Spyropoulos, G.; Kubis, P.; Egelhaaf, H.; Brabec, C.; Ameri, T. High-performance Ternary Organic Solar Cells with Thick Active Layer Exceeding 11% Efficiency. Energy Environ. Sci. J. 2017, 10, 885–892. [Google Scholar] [CrossRef]
- Rahman, D.; Hameed, M.; Obayya, S. Light Harvesting Improvement of Polymer Solar Cell through Nanohole Photoactive Layer. Opt. Quantum Electron. 2015, 47, 1443–1449. [Google Scholar] [CrossRef]
- Tumbleston, J.; Ko, D.; Samulski, E.; Lopez, R. Electrophotonic Enhancement of Bulk Hetero Junction Organic Solar Cells through Photonic Crystal Photoactive Layer. Appl. Phys. Lett. 2009, 94, 043305. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Z.; Han, W.; Liu, Q.; Lu, S.; Wen, Y.; Houc, J.; Huang, F.; Peng, S.; He, D.; et al. High Performance Silicon–organic Hybrid Solar Cells via Improving Conductivity of PEDOT: PSS with Reduced Graphene Oxide. Appl. Surf. Sci. J. 2017, 407, 398–404. [Google Scholar] [CrossRef]
ZnO Gratings, d (nm) | Jsc (mA/cm2) | Efficiency (%) |
---|---|---|
Flat | 13.50 | 7.05 |
50 | 14.05 | 7.34 |
60 | 13.98 | 7.30 |
70 | 14.31 | 7.47 |
80 | 14.21 | 7.43 |
90 | 14.17 | 7.40 |
100 | 14.47 | 7.56 |
110 | 14.33 | 7.49 |
120 | 14.37 | 7.51 |
130 | 14.65 | 7.66 |
140 | 14.54 | 7.55 |
150 | 14.36 | 7.50 |
AuNP Radius (nm) | Jsc (mA/cm2) | Efficiency (%) |
---|---|---|
No AuNPs | 13.50 | 7.05 |
5 | 15.16 | 7.92 |
10 | 15.42 | 8.02 |
20 | 15.55 | 8.12 |
30 | 15.44 | 8.07 |
40 | 15.93 | 8.33 |
50 | 13.00 | 6.79 |
HTL Gratings, d1 (nm) | Jsc (mA/cm2) | Efficiency (%) | Jsc (mA/cm2) | Efficiency (%) |
---|---|---|---|---|
R = 30 nm | R = 40 nm | |||
Flat | 15.44 | 8.07 | 15.93 | 8.32 |
300 | 16.41 | 8.57 | 16.71 | 8.73 |
250 | 16.93 | 8.85 | 17.28 | 9.03 |
200 | 17.04 | 8.9 | 17.45 | 9.12 |
150 | 17.53 | 9.16 | 17.97 | 9.39 |
100 | 17.44 | 9.11 | 18.11 | 9.46 |
Light Incident Angle | Jsc (mA/cm2) | Efficiency (%) |
---|---|---|
0° | 18.11 | 9.46 |
10° | 17.98 | 9.39 |
20° | 17.82 | 9.31 |
30° | 17.39 | 9.08 |
40° | 16.66 | 8.71 |
50° | 15.73 | 8.22 |
60° | 14.97 | 7.82 |
70° | 15.19 | 7.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elrashidi, A.; Elleithy, K. High Performance Polymer Solar Cells Using Grating Nanostructure and Plasmonic Nanoparticles. Polymers 2022, 14, 862. https://doi.org/10.3390/polym14050862
Elrashidi A, Elleithy K. High Performance Polymer Solar Cells Using Grating Nanostructure and Plasmonic Nanoparticles. Polymers. 2022; 14(5):862. https://doi.org/10.3390/polym14050862
Chicago/Turabian StyleElrashidi, Ali, and Khaled Elleithy. 2022. "High Performance Polymer Solar Cells Using Grating Nanostructure and Plasmonic Nanoparticles" Polymers 14, no. 5: 862. https://doi.org/10.3390/polym14050862
APA StyleElrashidi, A., & Elleithy, K. (2022). High Performance Polymer Solar Cells Using Grating Nanostructure and Plasmonic Nanoparticles. Polymers, 14(5), 862. https://doi.org/10.3390/polym14050862