Investigations on the Morphological, Mechanical, Ablative, Physical, Thermal, and Electrical Properties of EPDM-Based Composites for the Exploration of Enhanced Thermal Insulation Potential
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of EPDM-Based Composites
2.3. Morphological Analysis
2.4. Mechanical Analysis
2.5. Ablation Analysis
2.6. Analysis for Physical Properties
2.6.1. Density
2.6.2. Swelling Index
2.7. Thermal Analysis
2.8. Analysis for Electrical Properties
3. Results and Discussion
3.1. EPDM-Based Composites
3.2. Morphological Studies by SEM and EDS
3.3. Mechanical Properties
3.4. Ablative Properties
3.5. Physical Properties
3.5.1. Density
3.5.2. Swelling Index (SI)
3.6. Thermogravimetric Studies (TGA)
3.7. Electrical Properties
3.8. Comparative Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Obinna, U.; Hamidreza, N. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects. Acta Astronaut. 2020, 176, 341–356. [Google Scholar]
- Shaojun, W.; Shuangkun, Z.; Raheel, A.; Abbas, Y.; Bowen, W.; Zhongqiang, H.; Zhanpeng, W.; Dezhen, W. EPDM-based heat-shielding materials modified by hybrid elastomers of silicone or polyphosphazene. High Perform. Polym. 2019, 31, 1112–1121. [Google Scholar]
- Marco, R.; Ivan, P.; Luigi, T.; Maurizio, N. Thermal and ablation properties of EPDM based heat shielding materials modified with density reducer fillers. Compos. Part A Appl. Sci. Manuf. 2018, 112, 71–80. [Google Scholar]
- Ilyas, R.A.; Sapuan, S.M.; Asyraf, M.R.M.; Dayana, D.A.Z.N.; Amelia, J.J.N.; Rani, M.S.A.; Norrrahim, M.N.F.; Nurazzi, N.M.; Aisyah, H.A.; Sharma, S.; et al. Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers 2021, 13, 1701. [Google Scholar] [CrossRef]
- Rakesh, K.K.; Balesh, R.; Himanshu, S.; Prashant, S.A. Studies on Heat Flux Imparted on Thermal Insulation Inside Rocket Motor Containing Double Base Propellant. J. Aerosp. Technol. Manag. 2019, 11, e3019. [Google Scholar]
- Elsadig, O.E.; Farayi, M.; El-Sadig, M. Review: Severity of corrosion under insulation (CUI) to structures and strategies to detect it. Corros. Rev. 2019, 37, 553–564. [Google Scholar]
- Nemr, K.F.; Balboul, M.R.; Ali, M.A. Electrical and Mechanical Properties of Manganese Dioxide (Magnetite) Filled NBR Rubber Blends. Arab. J. Nucl. Sci. Appl. 2014, 47, 75–85. [Google Scholar]
- Fröhlich, J.; Niedermeier, W.; Luginsland, H.-D. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. Part A Appl. Sci. Manuf. 2005, 36, 449–460. [Google Scholar] [CrossRef]
- Bhuvaneswari, C.M.; Sureshkumar, M.S.; Kakade, S.D.; Manoj, G. Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors. Def. Sci. J. 2006, 56, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Qin, Y.; Peng, Z.; Li, Z. Influence of composite structure design on the ablation performance of ethylene propylene diene monomer composites. e-Polymers 2021, 21, 151–159. [Google Scholar]
- Artemis, P.; Afroditi, K.; Evi, C.; Panagiotis, A.K.; Konstantinos, N.K.; Apostolos, K.; Dimitrios, N.B.; Panagiotis, B. Low Molecular Weight Oligomers of Poly(alkylene succinate) Polyesters as Plasticizers in Poly(vinyl alcohol) Based Pharmaceutical Applications. Polymers 2021, 13, 146. [Google Scholar]
- Tan, J.; Chao, Y.; Wang, H.; Gong, J.; Van Zee, J. Chemical and mechanical stability of EPDM in a PEM fuel cell environment. Polym. Degrad. Stab. 2009, 94, 2072–2078. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.M.; Basfar, A.A. Thermal Stability of Radiation Vulcanized EPDM Rubber. In Proceedings of the 8th Arab International Conference on Polymer Science & Technology, Cairo-Sharm El-Shiekh, Egypt, 27–30 November 2005. [Google Scholar]
- Park, S.-H. Types and Health Hazards of Fibrous Materials Used as Asbestos Substitutes. Saf. Health Work 2018, 9, 360–364. [Google Scholar] [CrossRef]
- Vishvanathperumal, S.; Anand, G. Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. Silicon 2021, 13, 3473–3497. [Google Scholar] [CrossRef]
- Subham, K.; Bishnu, P.P.; Smita, M.; Sanjay, K.N. Effect of silicon carbide on the mechanical and thermal properties of ethylene propylene diene monomer-based carbon fiber composite material for heat shield application. J. Appl. Polym. Sci. 2020, 137, e49097. [Google Scholar]
- Zahra, E.; Miraidin, M. Compatibilizing effect and reinforcing efficiency of nanosilica on ethylene-propylene diene monomer/chloroprene rubber blends. Polym. Compos. 2021, 42, 1809–1817. [Google Scholar]
- ASTM D3187-06; Standard Test Methods for Rubber—Evaluation of NBR (Acrylonitrile-Butadiene Rubber), Revision Edition. ASTM International (ASTM): West Conshohocken, PA, USA, 2021; 5p. [CrossRef]
- Khaled, F.E.; Medhat, M.H.; Emad, M.M.; Eman, M.A.; Zohor, A.H. Ablation and thermal properties of ethylene propylene diene rubber/carbon fiber composites cured by ionizing radiation for heat shielding applications. Egypt. J. Chem. 2021, 64, 1471–1479. [Google Scholar]
- DIN 53504; 2017 Edition, Testing of Rubber—Determination of Tensile Strength at Break, Tensile Stress at Yield, Elongation at Break and Stress Values in a Tensile Test. Deutsches Institut fur Normung E.V. (DIN): Berlin, Germany, 2017; 20p.
- ASTM E285-08; Standard Test Method for Oxyacetylene Ablation Testing of Thermal Insulation Materials. ASTM International (ASTM): West Conshohocken, PA, USA, 2020; 6p. [CrossRef]
- Amiri, A.; Triplett, Z.; Moreira, A.; Brezinka, N.; Alcock, M.; Ulven, C.A. Standard density measurement method development for flax fiber. Ind. Crops Prod. 2017, 96, 196–202. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hwang, E.S.; Jeon, E.S. Optimization of shape design of grommet through analysis of physical properties of EPDM materials. Appl. Sci. 2019, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, A.; Muhammad, A.C. Preparation and characterization of EPDM-silica nano/micro composites for high voltage insulation applications. Mater. Sci.-Pol. 2015, 33, 213–219. [Google Scholar]
- Raiati, M.; Kalaee, M.; Mazinani, S. Effect of filler type and content on physical and mechanical properties of NR/SBR nanocomposite blend. Rubber Chem. Technol. 2017, 90, 751–764. [Google Scholar] [CrossRef]
- Ninik, L.E.W.; Bambang, S. The effects of particle size and content on Morphology and Mechanical Properties of Rice Straw and Coal Fly Ash filled Polypropylene Composites. J. Phys. Conf. Ser. 2019, 1175, 012282. [Google Scholar]
- Seyger, R.; Resink, S.; Harms, H.; Hibberd, R. The Future of Swelling Elastomers: An Elastomer Manufacturer’s View of Swelling Elastomer Developments and Market Trends. J. Eng. Res.—TJER 2013, 10, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.; Shaikh, S.N.; Nudrat, Z.R.; Khaula, S. Cure characteristics, mechanical and swelling properties of marble sludge filled EPDM modified chloroprene rubber blends. Adv. Mater. Phys. Chem.-AMPC 2012, 2, 90–97. [Google Scholar]
- Wu, F.; Pang, Y.; Liu, J. Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nat. Commun. 2020, 11, 4502. [Google Scholar] [CrossRef] [PubMed]
- Gurushanth, B.V.; Viresh, B.S.; Devaraj, P.S. Effect of Filler Materials on Thermal Properties of Polymer Composite Materials: A Review. Int. J. Eng. Res. Technol. 2021, 10, 1–5. [Google Scholar]
- Wu, W.L.; Li, J.K. Study on carbon fiber reinforced chloroprene rubber composites. Adv. Mater. Res. 2014, 1052, 254–257. [Google Scholar] [CrossRef]
- Dipen, K.R.; Durgesh, D.P.; Pradeep, L.M.; Emanoil, L. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar]
- Sangita, S.; Guchhait, P.K.; Bandyopadhyay, G.G.; Chaki, T.K. Development of polyimide–nanosilica filled EPDM based light rocket motor insulator compound: Influence of polyimide–nanosilica loading on thermal, ablation, and mechanical properties. Compos. Part A 2013, 44, 8–15. [Google Scholar]
- Li, J.; Xi, K.; Lv, X.; Li, Q.; Wang, S.X. Characteristics and Formation Mechanism of Compact/Porous Structures in Char Layers of EPDM Insulation Materials. Carbon 2018, 127, 498–509. [Google Scholar] [CrossRef]
- El-Dakhakhny, A.; Ahmed, A.F.; Rutkevicˇius, M.; El-Marsafy, S.; Abadeer, E. Effects of aramid fibers and colloidal particle fillers in composite ethylene propylene diene monomer rubber thermal insulators for rocket motor insulation. J. Compos. Mater. 2017, 52, 1989–1995. [Google Scholar] [CrossRef]
- Natali, M.; Rallini, M.; Puglia, D.; Kenny, J.; Torre, L. EPDM based heat shielding materials for Solid Rocket Motors: A comparative study of different fibrous reinforcements. Polym. Degrad. Stab. 2013, 98, 2131–2139. [Google Scholar] [CrossRef]
- Rane, A.V.; Abitha, V.K. Study of Mechanical, Thermal and Micro structural Properties of EPDM/Polypropylene/Nano clay Composites with Variable Compatibilizer Dosage. J. Mater. Environ. Sci. 2015, 6, 60–69. [Google Scholar]
Phase-1 Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|
Materials | EPV1 | EPV2 | EPV3 | EPA1 | EPA2 | EPA3 | EPC1 | EPC2 | EPC3 |
EPDM-Esprene | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 |
EPDM-Keltan | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
Vulkasil-C | 30 | 60 | 90 | - | - | - | - | - | - |
Asbestos | - | - | - | 30 | 60 | 90 | - | - | - |
Carbon Fiber | - | - | - | - | - | - | 30 | 60 | 90 |
Phase-2 samples | |||||||||
Materials | E0K100VA | E15K85VA | E30K70VA | E60K40VA | E75K25VA | E85K15VA | E100K0VA | - | - |
EPDM-Esprene | 0 | 45 | 90 | 180 | 225 | 255 | 300 | -- | - |
EPDM-Keltan | 300 | 255 | 210 | 120 | 75 | 45 | 0 | - | - |
Vulkasil-C | 30 | 30 | 30 | 30 | 30 | 30 | 30 | - | - |
Asbestos | 90 | 90 | 90 | 90 | 90 | 90 | 90 | - | - |
Phase-3 samples | |||||||||
Materials | EV0A0 | EV20A50 | EV15A45 | KV0A0 | KV20A50 | - | - | - | - |
EPDM-Esprene | 150 | 150 | 150 | 0 | 0 | - | - | - | - |
EPDM-Keltan | 0 | 0 | 0 | 150 | 150 | - | - | - | - |
Vulkasil-C | 0 | 20 | 15 | 0 | 20 | - | - | - | - |
Asbestos | 0 | 50 | 45 | 0 | 50 | - | - | - | - |
Other ingredients in constant quantities for all samples | |||||||||
Zinc oxide | Sulphur | Steric acid | Diphenyl guanidine | Dioctyl phthalate | 2-Mercapto-benzothiazole | N-Phenyl-2-naphthylamine | |||
15 | 4.5 | 2.4 | 1.8 | 24 | 1.2 | 03 |
Curing Conditions | Ablation Test | Sample ID | ||||
---|---|---|---|---|---|---|
E0K100VA | E15K85VA | E30K70VA | E75K25VA | E100K0VA | ||
135 °C at 10 MPa for 6 h | Linear (mm/s) | 0.08 | 0.1 | 0.12 | 0.16 | 0.1 |
Mass (g/s) | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | |
160 °C at 10 MPa for 50 min | Linear (mm/s) | 0.09 | 0.11 | 0.15 | 0.11 | 0.13 |
Mass (g/s) | 0.04 | 0.04 | 0.05 | 0.05 | 0.07 | |
Curing Conditions | Ablation Test | EV0A0 | EV20A50 | EV15A45 | KV0A0 | KV20A50 |
135 °C at 10 MPa for 6 h | Linear (mm/s) | 0.08 | 0.1 | 0.12 | 0.16 | 0.1 |
Mass (g/s) | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | |
160 °C at 10 MPa for 50 min | Linear (mm/s) | 0.09 | 0.11 | 0.15 | 0.11 | 0.13 |
Mass (g/s) | 0.04 | 0.04 | 0.05 | 0.05 | 0.07 |
Sample ID | EPC-1 | EPC-2 | EPC-3 | EPV-1 | EPV-2 |
---|---|---|---|---|---|
Conductivity (S cm−1) | 1.32 × 10−11 | 8.55 × 10−11 | 1.03 × 10−04 | 4.88 × 10−11 | 5.25 × 10−12 |
Composites | Mechanical | Ablative | Thermal Property | References | ||
---|---|---|---|---|---|---|
Property | Property | |||||
Tensile Stress (MPa) | Tensile Stress (%) | Linear mm/s | Massg/s | TGA; Material Left % (Temp. °C) | ||
E100K0VA | 3.89 | 774 | 0.1 | 0.05 | 91.0 at (500) | [Current study] |
EPDM-silica nano/micro composites | ||||||
NE (Neat EPDM) | 1.11 | 244.5 | - | - | 5.70 at (467) | [24] |
EMC (EPDM micro composite) | 1.9 | 223.4 | - | - | 10.18 at (472) | [24] |
ENC (EPDM nano composite) | 2.04 | 220.2 | - | - | 16.42 at (474) | [24] |
HEC (EPDM hybrid composite) | 2.34 | 216.1 | - | - | 19.2 at (475) | [24] |
Polyimide–silica filled EPDM nanocomposites | ||||||
EP1S5 | 3.27 | 325.1 | - | - | [33] | |
EP3S5 | 3.79 | 357.4 | - | - | [33] | |
EP5S7 | 3.86 | 375 | - | 18 at (485) | [33] | |
EP10S10 | 6.67 | 405 | 0.14–0.17 | - | 23 at (480) | [33] |
EP5S10 | 4.56 | 385 | - | 23 at (462) | [33] | |
Aramid fiber-silica-ZnO/EPDM (1–6) | - | - | 0.11–0.12 | - | - | [34] |
20% phr KP + 5% alumina +5% silica + 40%dechhlorane + 20% Sb2O3/EPDM | 8.5 | 16 | 0.1 | - | 5.32 at (500) | [35] |
EPDM/silica composite (SIL) | 6.8 ± 0.5 | 172.9 ± 17.7 | - | - | 19 at (480) | [36] |
EPDM/Polypropylene/nanoclay nanocomposites | ||||||
C0 | 3.7 | 145 | - | - | 1.8 at (464) | [37] |
C2 | 4.3 | 135 | - | - | 3.1 at (465) | [37] |
C4 | 4.8 | 125 | - | - | 3.7 at (467.2) | [37] |
C6 | 5.4 | 115 | - | - | 4.9 at (472) | [37] |
C8 | 4.8 | 135 | - | - | 5.8 at (472.8) | [37] |
C10 | 4.5 | 130 | - | - | 6.6 at (473) | [37] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, N.; Qasim, G.; Beagan, A.M. Investigations on the Morphological, Mechanical, Ablative, Physical, Thermal, and Electrical Properties of EPDM-Based Composites for the Exploration of Enhanced Thermal Insulation Potential. Polymers 2022, 14, 863. https://doi.org/10.3390/polym14050863
Arshad N, Qasim G, Beagan AM. Investigations on the Morphological, Mechanical, Ablative, Physical, Thermal, and Electrical Properties of EPDM-Based Composites for the Exploration of Enhanced Thermal Insulation Potential. Polymers. 2022; 14(5):863. https://doi.org/10.3390/polym14050863
Chicago/Turabian StyleArshad, Nasima, Ghulam Qasim, and Abeer M. Beagan. 2022. "Investigations on the Morphological, Mechanical, Ablative, Physical, Thermal, and Electrical Properties of EPDM-Based Composites for the Exploration of Enhanced Thermal Insulation Potential" Polymers 14, no. 5: 863. https://doi.org/10.3390/polym14050863
APA StyleArshad, N., Qasim, G., & Beagan, A. M. (2022). Investigations on the Morphological, Mechanical, Ablative, Physical, Thermal, and Electrical Properties of EPDM-Based Composites for the Exploration of Enhanced Thermal Insulation Potential. Polymers, 14(5), 863. https://doi.org/10.3390/polym14050863