The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization of Polymers
2.3. Characterization of LCMVPQs and MVPQs
2.4. Synthesis of SHSO-g-MBB
2.5. Synthesis of Silicone Oils with Different Phenyl Content
2.6. Fabrication of LCMVPQs and MVPQs
3. Results and Discussion
3.1. Synthesis and Characterization of SHSO-g-MBB, Silicone Oils with Different Phenyl Content, LCMVPQs and MVPQs
3.2. Characterization of POM, SAXS and Rheological Properties
3.3. Determination of Cross-Linking Density
3.4. The Thermal Stability and the Thermal Properties Characterization of All the LCMVPQs and MVPQs
3.5. Stress-Strain Behavior
3.6. Dynamic Thermomechanical Analysis (DMA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donovan, B.R.; Fowler, H.E.; Matavulj, V.M.; White, T.J. Mechanotropic Elastomers. Angew. Chem. Int. Ed. 2019, 58, 13744–13748. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Oh, J.Y.; Xu, J.; Tran, H.; Bao, Z.A. Skin-Inspired Electronics: An Emerging Paradigm. Acc. Chem. Res. 2018, 51, 1033–1045. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.N.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, E.A.; Gludovatz, B.; Schaible, E.; Dave, N.K.N.; Yang, W.; Meyers, M.A.; Ritchie, R.O. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 2013, 4, 3634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancia, F.; Ryabchun, A.; Nguindjel, A.-D.; Kwangmettatam, S.; Katsonis, N. Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat. Commun. 2019, 10, 4819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmuganathan, K.; Capadona, J.R.; Rowan, S.J.; Weder, C. Biomimetic mechanically adaptive nanocomposites. Prog. Polym. Sci. 2010, 35, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Ware, T.H.; McConney, M.E.; Wie, J.J.; Tondiglia, V.P.; White, T.J. Voxelated liquid crystal elastomers. Science 2015, 347, 982–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrucci, G. Rubber elasticity theory. A network of entangled chains. Macromolecules 2002, 14, 434–442. [Google Scholar] [CrossRef]
- Shimamura, A.; Priimagi, A.; Mamiya, J.-i.; Ikeda, T.; Yu, Y.; Barrett, C.J.; Shishido, A. Simultaneous Analysis of Optical and Mechanical Properties of Cross-Linked Azobenzene-Containing Liquid-Crystalline Polymer Films. Acs Appl. Mater. Interfaces 2011, 3, 4190–4196. [Google Scholar] [CrossRef]
- Wang, Z.J.; Tian, H.M.; He, Q.G.; Cai, S.Q. Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds. Acs App.l Mater. Interfaces 2017, 9, 33119–33128. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, R. Liquid crystal elastomers, networks and gels: Advanced smart materials. J. Mater. Chem. A 2005, 15, 2529–2550. [Google Scholar] [CrossRef]
- Mitchell, G.R.; Davis, F.J.; Guo, W. Strain-induced transitions in liquid-crystal elastomers. Phys. Rev. Lett. 1993, 71, 2947–2950. [Google Scholar] [CrossRef]
- Marshall, J.E.; Gallagher, S.; Terentjev, E.M.; Smoukov, S.K. Anisotropic Colloidal Micromuscles from Liquid Crystal Elastomers. J. Am. Chem. Soc. 2013, 136, 474–479. [Google Scholar] [CrossRef]
- Herbert, K.M.; Fowler, H.E.; McCracken, J.M.; Schlafmann, K.R.; Koch, J.A.; White, T.J. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 2022, 7, 23–38. [Google Scholar] [CrossRef]
- Biggins, J.S.; Warner, M.; Bhattacharya, K. Elasticity of polydomain liquid crystal elastomers. J. Mech. Phys. Solids 2012, 60, 573–590. [Google Scholar] [CrossRef] [Green Version]
- Ennis, R.; Malacarne, L.C.; Palffy-Muhoray, P.; Shelley, M. Nonlocal model for nematic liquid-crystal elastomers. Phys. Rev. E 2006, 74, 061802. [Google Scholar] [CrossRef] [Green Version]
- Ware, T.H.; Biggins, J.S.; Shick, A.F.; Warner, M.; White, T.J. Localized soft elasticity in liquid crystal elastomers. Nat. Commun. 2016, 7, 10781. [Google Scholar] [CrossRef]
- Yuan, C.; Roach, D.J.; Dunn, C.K.; Mu, Q.; Kuang, X.; Yakacki, C.M.; Wang, T.J.; Yu, K.; Qi, H.J. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 2017, 13, 5558–5568. [Google Scholar] [CrossRef]
- Hanzon, D.W.; Traugutt, N.A.; McBride, M.K.; Bowman, C.N.; Yakacki, C.M.; Yu, K. Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions. Soft Matter 2018, 14, 951–960. [Google Scholar] [CrossRef]
- Ambulo, C.P.; Burroughs, J.J.; Boothby, J.M.; Kim, H.; Shankar, M.R.; Ware, T.H. Four-dimensional Printing of Liquid Crystal Elastomers. Acs Appl. Mater. Interfaces 2017, 9, 37332–37339. [Google Scholar] [CrossRef]
- Sawada, J.; Aoki, D.; Sun, Y.; Nakajima, K.; Takata, T. Effect of Coexisting Covalent Cross-Links on the Properties of Rotaxane-Cross-Linked Polymers. ACS Appl. Polym. Mater. 2019, 2, 1061–1064. [Google Scholar] [CrossRef]
- Xu, J.; Chen, W.; Wang, C.; Zheng, M.; Ding, C.; Jiang, W.; Tan, L.; Fu, J. Extremely Stretchable, Self-Healable Elastomers with Tunable Mechanical Properties: Synthesis and Applications. Chem. Mater. 2018, 30, 6026–6039. [Google Scholar] [CrossRef]
- Wang, J.J.; Feng, L.J.; Lei, A.L.; Yan, A.J.; Wang, X.J. Thermal stability and mechanical properties of room temperature vulcanized silicone rubbers. J. Appl. Polym. Sci. 2012, 125, 505–511. [Google Scholar] [CrossRef]
- Marshall, J.E.; Terentjev, E.M. Photo-sensitivity of dye-doped liquid crystal elastomers. Soft Matter 2013, 9, 8547–8551. [Google Scholar] [CrossRef]
- Tian, H.M.; Wang, Z.J.; Chen, Y.L.; Shao, J.Y.; Gao, T.; Cai, S.Q. Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. Acs Appl. Mater. Interfaces 2018, 10, 8307–8316. [Google Scholar] [CrossRef]
- Cordoyiannis, G.; Lebar, A.; Rožič, B.; Zalar, B.; Kutnjak, Z.; Žumer, S.; Brömmel, F.; Krause, S.; Finkelmann, H. Controlling the Critical Behavior of Paranematic to Nematic Transition in Main-Chain Liquid Single-Crystal Elastomers. Macromolecules 2009, 42, 2069–2073. [Google Scholar] [CrossRef]
- Ware, T.H.; Perry, Z.P.; Middleton, C.M.; Iacono, S.T.; White, T.J. Programmable Liquid Crystal Elastomers Prepared by Thiol–Ene Photopolymerization. Acs Macro Lett. 2015, 4, 942–946. [Google Scholar] [CrossRef]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, M.-X.; Yao, Y.-W.; Tao, P.-Y.; Lin, B.-P.; Keller, P.; Zhang, X.-Q.; Sun, Y.; Guo, L.-X. Polysiloxane-Based Liquid Crystalline Polymers and Elastomers Prepared by Thiol–Ene Chemistry. Macromolecules 2013, 46, 3406–3416. [Google Scholar] [CrossRef]
- Nguyen, K.D.Q.; Megone, W.V.; Kong, D.; Gautrot, J.E. Ultrafast diffusion-controlled thiol–ene based crosslinking of silicone elastomers with tailored mechanical properties for biomedical applications. Polym. Chem. 2016, 7, 5281–5293. [Google Scholar] [CrossRef]
- Zlatanic, A.; Radojcic, D.; Wan, X.; Messman, J.M.; Dvornic, P.R. Monitoring of the Course of the Silanolate-Initiated Polymerization of Cyclic Siloxanes. A Mechanism for the Copolymerization of Dimethyl and Diphenyl Monomers. Macromolecules 2018, 51, 895–905. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, S.; Zhang, J. Facile and Efficient Synthesis of Carbosiloxane Dendrimers via Orthogonal Click Chemistry Between Thiol and Ene. Macromol. Rapid Commun. 2016, 37, 318–322. [Google Scholar] [CrossRef]
- Liu, B.; Quirk, R.P.; Wesdemiotis, C.; Yol, A.M.; Foster, M.D. Precision Synthesis of ω-Branch, End-Functionalized Comb Polystyrenes Using Living Anionic Polymerization and Thiol–Ene “Click” Chemistry. Macromolecules 2012, 45, 9233–9242. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, X.; Zhou, C.; Zhang, C.; Zhao, S. Room Temperature Self-Healing Methyl Phenyl Silicone Rubbers Based on the Metal-Ligand Cross-Link: Synthesis and Characterization. Macromol. Chem. Phys. 2017, 218, 1600519. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, J.; Wang, D.; Feng, S.; Zhou, C. Construction of Self-Healing Disulfide-Linked Silicone Elastomers by Thiol Oxidation Coupling Reaction. Polymers 2021, 13, 3729. [Google Scholar] [CrossRef]
- Ehlers, G.F.L.; Fisch, K.R.; Powell, W.R. Thermal degradation of polymers with phenylene units in the chain. I. Polyphenylenes and poly(phenylene oxides). J. Polym. Sci. Part A Polym. Chem. 1969, 7, 2931–2953. [Google Scholar] [CrossRef]
- Grassie, N.; Francey, K.F.; Macfarlane, I.G. The thermal degradation of polysiloxanes—Part 4: Poly(dimethyl/diphenyl siloxane). Polym. Degrad. Stab. 1980, 2, 67–83. [Google Scholar] [CrossRef]
No. | D4 (g) | Dn (g) | D4vi (g) | MMvi (g) | Mv | Apparent Viscosity (mPa·s, 25 °C) |
---|---|---|---|---|---|---|
1 | 222 | 0 | 0 | 0.93 | 51,498 a | 10,239 b |
2 | 211 | 20.43 | 0 | 0.93 | 52,098 a | 10,531 b |
3 | 200 | 40.86 | 0 | 0.93 | 56,218 a | 12,736 b |
3 | 178 | 81.74 | 0.5 | 0.93 | 62,541 a | 13,735 b |
4 | 133 | 163 | 1.1 | 0.93 | 65,128 a | 17,100 b |
No. | Silicone Oil (g) | SHSO (g) | MBB (g) | H2000 (Nano Silica) (g) |
---|---|---|---|---|
LCMVPQ 1 | 20 a | 1.03 | 0.84 | 6 |
LCMVPQ 2 | 20 b | 0.95 | 0.84 | 6 |
LCMVPQ 3 | 20 c | 1.03 | 0.84 | 6 |
LCMVPQ 4 | 20 d | 0.81 | 0.84 | 6 |
LCMVPQ 5 | 20 e | 0.85 | 0.84 | 6 |
MVPQ 1 | 20 a | 0.26 | 0 | 6 |
MVPQ 2 | 20 b | 0.25 | 0 | 6 |
MVPQ 3 | 20 c | 0.25 | 0 | 6 |
MVPQ 4 | 20 d | 0.21 | 0 | 6 |
MVPQ 5 | 20 e | 0.21 | 0 | 6 |
No. | Proportion of Cross-Linking Chains (%) | Proportion of Dangling Chains (%) | Proportion of Free Chains (%) | Cross-Linking Density (×10−4 mol/mL) |
---|---|---|---|---|
LCMVPQ1 | 26.07 | 47.69 | 26.24 | 0.83 |
LCMVPQ2 | 31.33 | 42.13 | 26.54 | 0.83 |
LCMVPQ3 | 32.36 | 41.32 | 26.32 | 0.82 |
LCMVPQ4 | 29.93 | 45.01 | 25.06 | 0.84 |
LCMVPQ5 | 24.94 | 46.96 | 28.10 | 0.81 |
MVPQ1 | 35.69 | 38.58 | 25.73 | 0.82 |
MVPQ2 | 36.23 | 36.76 | 27.01 | 0.82 |
MVPQ3 | 34.90 | 38.02 | 27.08 | 0.82 |
MVPQ4 | 40.89 | 30.00 | 29.10 | 0.84 |
MVPQ5 | 36.49 | 39.35 | 24.16 | 0.84 |
No. | 5% Weight Loss Temperature (°C) | 10% Weight Loss Temperature (°C) | Maximum Weight Loss Temperature (°C) | 800 °C Residual Weight (%) |
---|---|---|---|---|
LCMVPQ 1 | 362 | 415 | 613 | 45 |
LCMVPQ 2 | 364 | 419 | 614 | 46 |
LCMVPQ 3 | 364 | 420 | 625 | 42 |
LCMVPQ 4 | 373 | 429 | 670 | 44 |
LCMVPQ 5 | 307 | 368 | 746 | 43 |
MVPQ 1 | 390 | 435 | 621 | 49 |
MVPQ 2 | 392 | 439 | 621 | 51 |
MVPQ 3 | 394 | 441 | 630 | 49 |
MVPQ 4 | 385 | 430 | 674 | 50 |
MVPQ 5 | 296 | 382 | 791 | 49 |
No. | Tensile Strength (MPa) | Elongation at Break (%) | Shore Hardness (HA) |
---|---|---|---|
LCMVPQ 1 | 2.73 | 998 | 12 |
LCMVPQ 2 | 3.57 | 973 | 15 |
LCMVPQ 3 | 4.39 | 915 | 14 |
LCMVPQ 4 | 3.5 | 513 | 14 |
LCMVPQ 5 | 2.21 | 392 | 15 |
MVPQ 1 | 3.38 | 863 | 11 |
MVPQ 2 | 4.57 | 861 | 14 |
MVPQ 3 | 4.73 | 854 | 14 |
MVPQ 4 | 3.27 | 500 | 15 |
MVPQ 5 | 1.83 | 364 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, H.; Zhou, C. The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability. Polymers 2022, 14, 903. https://doi.org/10.3390/polym14050903
Liu Z, Wang H, Zhou C. The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability. Polymers. 2022; 14(5):903. https://doi.org/10.3390/polym14050903
Chicago/Turabian StyleLiu, Zhe, Hua Wang, and Chuanjian Zhou. 2022. "The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability" Polymers 14, no. 5: 903. https://doi.org/10.3390/polym14050903
APA StyleLiu, Z., Wang, H., & Zhou, C. (2022). The Effect of Phenyl Content on the Liquid Crystal-Based Organosilicone Elastomers with Mechanical Adaptability. Polymers, 14(5), 903. https://doi.org/10.3390/polym14050903