Preparation of Citric Acid-Sewage Sludge Hydrochar and Its Adsorption Performance for Pb(II) in Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of SS-Derived Hydrochars
2.3. Characterization
2.4. Adsorption Experiment
2.4.1. Effects of Dm
2.4.2. Effects of Adsorption Parameters
2.4.3. Ion Exchange
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of SS-Derived Hydrochars
3.1.1. Ultimate and Proximate Analysis
3.1.2. DRIFT and Boehm Titration
3.1.3. XPS Analysis
3.1.4. SEM
3.1.5. Nitrogen Adsorption/Desorption
3.1.6. XRD Analysis
3.1.7. TG/DTG
3.2. Adsorption Study
3.2.1. Effect of Dose Ratio of Citric Acid
3.2.2. Effect of Initial pH
3.2.3. Adsorption Kinetics
3.2.4. Adsorption Isotherms
3.2.5. Adsorption Thermodynamics
3.3. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, N.; Li, Z.; Quan, C.; Miskolczi, N.; Egedy, A. A new method combining hydrothermal carbonization and mechanical compression in-situ for sewage sludge dewatering: Bench-scale verification. J. Anal. Appl. Pyrol. 2019, 139, 187–195. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Huang, H.; Yu, C.; Fang, H.; Zhou, C.; Yin, X.; Chen, W.; Guo, X. Efficient conversion of sewage sludge into hydrochar by microwave-assisted hydrothermal carbonization. Sci. Total Environ. 2022, 803, 149874. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Feng, L.; Luo, J.; Chen, Y. Dilemma of Sewage Sludge Treatment and Disposal in China. Environ. Sci. Technol. 2015, 49, 4781–4782. [Google Scholar] [CrossRef] [PubMed]
- Niinipuu, M.; Latham, K.G.; Boily, J.; Bergknut, M.; Jansson, S. The impact of hydrothermal carbonization on the surface functionalities of wet waste materials for water treatment applications. Environ. Sci. Pollut. R 2020, 27, 24369–24379. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Mohammed, D.; Zhou, P.; Lou, Z.; Qian, P.; Zhou, Q. Roof solar drying processes for sewage sludge within sandwich-like chamber bed. Renew. Energy 2019, 136, 1071–1081. [Google Scholar] [CrossRef]
- Danish, M.; Jing, H.; Pin, Z.; Ziyang, L.; Pansheng, Q. A new drying kinetic model for sewage sludge drying in presence of CaO and NaClO. Appl. Therm. Eng. 2016, 106, 141–152. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Peng, N.; Lang, Q.; Xia, Y.; Gai, C.; Zheng, Q.; Liu, Z. Heteroatoms doped porous carbon derived from hydrothermally treated sewage sludge: Structural characterization and environmental application. J. Environ. Manag. 2017, 197, 151–158. [Google Scholar] [CrossRef]
- Wang, L.; Chang, Y.; Li, A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sustain. Energy Rev. 2019, 108, 423–440. [Google Scholar] [CrossRef]
- Tasca, A.L.; Puccini, M.; Gori, R.; Corsi, I.; Galletti, A.M.R.; Vitolo, S. Hydrothermal carbonization of sewage sludge: A critical analysis of process severity, hydrochar properties and environmental implications. Waste Manag. 2019, 93, 1–13. [Google Scholar] [CrossRef]
- Shen, Y. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass Bioenergy 2020, 134, 105479. [Google Scholar] [CrossRef]
- Merzari, F.; Langone, M.; Andreottola, G.; Fiori, L. Methane production from process water of sewage sludge hydrothermal carbonization. A review. Valorising sludge through hydrothermal carbonization. Crit. Rev. Env. Sci. Tec. 2019, 49, 947–988. [Google Scholar] [CrossRef]
- Wang, R.; Wang, C.; Zhao, Z.; Jia, J.; Jin, Q. Energy recovery from high-ash municipal sewage sludge by hydrothermal carbonization: Fuel characteristics of biosolid products. Energy 2019, 186, 115848. [Google Scholar] [CrossRef]
- Ren, J.; Wang, F.; Zhai, Y.; Zhu, Y.; Peng, C.; Wang, T.; Li, C.; Zeng, G. Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil. Chemosphere 2017, 189, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kumar, A.; Naushad, M.; Thakur, B.; Vo, D.N.; Gao, B.; Al-Kahtani, A.A.; Stadler, F.J. Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel. J. Hazard. Mater. 2021, 416, 125714. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Pathania, D.; Naushad, M.; Kothiyal, N.C. Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from water. Chem. Eng. J. 2014, 251, 413–421. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, Q.; Zhao, X. The Hydrochar Characters of Municipal Sewage Sludge Under Different Hydrothermal Temperatures and Durations. J. Integr. Agr. 2014, 13, 471–482. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, W.; Fan, X. Char derived from sewage sludge of hydrothermal carbonization and supercritical water gasification: Comparison of the properties of two chars. Waste Manag. 2021, 123, 88–96. [Google Scholar] [CrossRef]
- Khoshbouy, R.; Takahashi, F.; Yoshikawa, K. Preparation of high surface area sludge-based activated hydrochar via hydrothermal carbonization and application in the removal of basic dye. Environ. Res. 2019, 175, 457–467. [Google Scholar] [CrossRef]
- Qian, W.; Luo, X.; Wang, X.; Guo, M.; Li, B. Removal of methylene blue from aqueous solution by modified bamboo hydrochar. Ecotox. Environ. Safe 2018, 157, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Meas, A.; Shan, S.; Yang, R.; Gai, X.; Wang, H.; Tsend, N. Hydrochars from bamboo sawdust through acid assisted and two-stage hydrothermal carbonization for removal of two organics from aqueous solution. Bioresour. Technol. 2018, 261, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zimmerman, A.R.; Hu, X.; Gao, B. Removal of aqueous Cr(VI) by Zn- and Al-modified hydrochar. Chemosphere 2020, 260, 127610. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Kannan, S.; Raghavan, V. Uncatalyzed and acid-aided microwave hydrothermal carbonization of orange peel waste. Waste Manag. 2021, 126, 106–118. [Google Scholar] [CrossRef]
- Becker, G.C.; Wüst, D.; Köhler, H.; Lautenbach, A.; Kruse, A. Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization. J. Environ. Manag. 2019, 238, 119–125. [Google Scholar] [CrossRef]
- Sang, S.; Yang, S.; Guo, A.; Gao, X.; Wang, Y.; Zhang, C.; Cui, F.; Yang, X. Hydrothermal Synthesis of Carbon Nano—Onions from Citric Acid. Chem.—Asian J. 2020, 15, 3428–3431. [Google Scholar] [CrossRef]
- Faradilla, R.F.; Lucia, L.; Hakovirta, M. Remarkable Physical and Thermal Properties of Hydrothermal Carbonized Nanoscale Cellulose Observed from Citric Acid Catalysis and Acetone Rinsing. Nanomaterials 2020, 10, 1049. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Cole, I.; Li, Q. Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon 2015, 82, 304–313. [Google Scholar] [CrossRef] [Green Version]
- Fiol, N.; Villaescusa, I. Determination of sorbent point zero charge: Usefulness in sorption studies. Environ. Chem. Lett. 2009, 7, 79–84. [Google Scholar] [CrossRef]
- Boehm, H. Chapter Thirteen—Surface Chemical Characterization of Carbons from Adsorption Studies. In Adsorption by Carbons; Elsevier: Amsterdam, The Netherlands, 2008; pp. 301–327. [Google Scholar]
- Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’Ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kumar, A.; Ghfar, A.A.; García-Peñas, A.; Naushad, M.; Stadler, F.J. Fabrication and Characterization of Xanthan Gum-cl-poly(acrylamide-co-alginic acid) Hydrogel for Adsorption of Cadmium Ions from Aqueous Medium. Gels 2022, 8, 23. [Google Scholar] [CrossRef]
- Ebadi, A.; Soltan Mohammadzadeh, J.S.; Khudiev, A. What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption 2009, 15, 65–73. [Google Scholar] [CrossRef]
- Lima, E.C.; Sher, F.; Saeb, M.R.; Abatal, M.; Seliem, M.K. Comments on Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J. Mol. Liq. 2021, 334, 116542. [Google Scholar] [CrossRef]
- Cao, J.; Li, L.; Morishita, K.; Xiao, X.; Zhao, X.; Wei, X.; Takarada, T. Nitrogen transformations during fast pyrolysis of sewage sludge. Fuel 2013, 104, 1–6. [Google Scholar] [CrossRef]
- Francioso, O.; Rodriguez-Estrada, M.T.; Montecchio, D.; Salomoni, C.; Caputo, A.; Palenzona, D. Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production. J. Hazard. Mater. 2010, 175, 740–746. [Google Scholar] [CrossRef]
- Li, X.; Zheng, H.; Gao, B.; Zhao, C.; Sun, Y. UV-initiated polymerization of acid- and alkali-resistant cationic flocculant P(AM-MAPTAC): Synthesis, characterization, and application in sludge dewatering. Sep. Purif. Technol. 2017, 187, 244–254. [Google Scholar] [CrossRef]
- He, C.; Giannis, A.; Wang, J. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Appl. Energy 2013, 111, 257–266. [Google Scholar] [CrossRef]
- He, C.; Zhao, J.; Yang, Y.; Wang, J. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water. Bioresour. Technol. 2016, 211, 486–493. [Google Scholar] [CrossRef]
- Ma, X.; Shan, Y.; Duan, P.; Liao, J.; Chen, D.; Xu, Z. Fe(NO3)3 assisted hydrothermal carbonization of sewage sludge: Focusing on characteristics of hydrochar and aqueous phase. Mol. Catal. 2021, 514, 111823. [Google Scholar] [CrossRef]
- Zhuang, X.; Huang, Y.; Song, Y.; Zhan, H.; Yin, X.; Wu, C. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment. Bioresour. Technol. 2017, 245, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Q.; Ma, Q. Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes. J. Colloid. Interf. Sci. 2012, 370, 32–38. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Williams, R.T. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorpt. Sci. Technol. 2004, 22, 773–782. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Qian, F.; Zhou, C.; Zhang, S.; Chen, J. Role of Hydrochar Properties on the Porosity of Hydrochar-based Porous Carbon for Their Sustainable Application. ACS Sustain. Chem. Eng. 2015, 3, 833–840. [Google Scholar] [CrossRef]
- Mouni, L.; Merabet, D.; Bouzaza, A.; Belkhiri, L. Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone. Desalination 2011, 276, 148–153. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, T.; Zhu, N.; Li, D.; Chen, Z.; Lang, Q.; Liu, Z.; Jiao, W. Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis. Bioresour. Technol. 2019, 288, 121593. [Google Scholar] [CrossRef]
- Xue, Y.; Gao, B.; Yao, Y.; Inyang, M.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2012, 200–202, 673–680. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Su, M.; Ren, Y.; Li, Y.; Chen, J.; Li, L. Fabrication of carbon/SiO2 composites from the hydrothermal carbonization process of polysaccharide and their adsorption performance. Carbohyd. Polym. 2016, 153, 320–328. [Google Scholar] [CrossRef]
- Luo, X.; Huang, Z.; Lin, J.; Li, X.; Qiu, J.; Liu, J.; Mao, X. Hydrothermal carbonization of sewage sludge and in-situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb(II). J. Clean Prod. 2020, 258, 120991. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, J.; Jin, Q.; Li, Z.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, H. Sludge-based biochar activation to enhance Pb(II) adsorption. Fuel 2019, 252, 101–108. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, S.; Chen, H.; Huang, L.; Qiu, R. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour. Technol. 2013, 147, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.; Chen, Y.; Yang, Z.; Nagarajan, D.; Chang, J.; Ren, N. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge. Bioresour. Technol. 2017, 246, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Pathania, D.; Naushad, M. Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline zirconium(IV) selenotungstophosphate for the separation of toxic metal ions. Ionics 2015, 21, 1045–1055. [Google Scholar] [CrossRef]
SS | SSHC | AHC0.1 | AHC0.5 | |
---|---|---|---|---|
C (%) | 26.53 | 19.45 | 18.64 | 21.65 |
H (%) | 6.47 | 3.23 | 2.99 | 2.78 |
O (%) | 17.42 | 10.13 | 11.88 | 9.26 |
N (%) | 4.72 | 1.58 | 1.39 | 1.22 |
S (%) | 0.72 | 0.48 | 0.42 | 0.49 |
H/C | 2.93 | 1.99 | 1.92 | 1.54 |
O/C | 0.49 | 0.39 | 0.48 | 0.32 |
Volatile Content (%) | 50.19 | 29.11 | 30.62 | 28.71 |
Fixed Carbon Content (%) | 5.66 | 5.82 | 4.62 | 6.69 |
Ash Content (%) | 44.15 | 65.07 | 64.76 | 64.60 |
Hydrochars | Phenolic Groups ueq·g−1 | Lactone Groups ueq·g−1 | Carboxyl Groups ueq·g−1 | pHpzc |
---|---|---|---|---|
SSHC | 350 | 316 | 83 | 6.07 |
AHC0.1 | 400 | 700 | 450 | 5.34 |
AHC0.5 | 167 | 373 | 110 | 6.05 |
SSHC | AHC0.1 | AHC0.5 | [email protected] | |||||
---|---|---|---|---|---|---|---|---|
Species | BE ev | Contents at.% | BE ev | Contents at.% | BE ev | Contents at% | BE ev | Contents at.% |
C−C | 284.80 | 76.55 | 284.80 | 74.91 | 284.80 | 82.03 | 284.80 | 76.88 |
C−O/C−N | 286.34 | 13.33 | 286.11 | 11.53 | 286.34 | 7.84 | 286.23 | 13.00 |
C=O | 287.67 | 4.55 | 287.12 | 4.00 | 287.38 | 3.91 | 287.91 | 4.25 |
O=C−O | 288.67 | 5.57 | 288.75 | 9.56 | 288.74 | 6.22 | 288.81 | 5.87 |
Pyridine-N | 398.70 | 17.55 | 398.85 | 19.83 | 398.94 | 16.75 | 398.83 | 12.98 |
Amine-N | 399.55 | 22.63 | 399.42 | 16.14 | 399.60 | 28.03 | 399.80 | 34.18 |
Protein-N | 400.26 | 46.03 | 400.11 | 27.32 | 400.13 | 7.26 | 400.42 | 22.36 |
Pyrrole-N | 401.26 | 4.21 | 400.69 | 24.22 | 401.46 | 29.88 | 400.96 | 19.96 |
Quartenary Ammonium-N | 401.81 | 1.77 | 401.71 | 9.35 | 401.69 | 18.08 | 402.21 | 8.22 |
N=O | 402.14 | 7.82 | 402.65 | 3.13 | - | - | 403.64 | 2.31 |
SS-Derived Hydrochars | Specific Surface Area m2·g−1 | Total Pore Volume cm3·g−1 | Average Pore Size nm | Peak Pore Size nm |
---|---|---|---|---|
HC | 45.53 | 0.23 | 20.21 | 12.12 |
AHC0.1 | 59.95 | 0.23 | 15.25 | 9.23 |
AHC0.5 | 30.10 | 0.18 | 23.74 | 3.29 |
SS-Derived Hydrochars | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
K1 | qe/(mg·g−1) | R2 | K2 | qe/(mg·g−1) | R2 | |
SSHC | 0.08 | 30.63 | 0.988 | 0.004 | 33.03 | 0.999 |
AHC0.1 | 0.13 | 46.24 | 0.989 | 0.006 | 48.48 | 0.998 |
SS-Derived Hydrochars | Temperature K | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
qmax mg·g−1 | KL L·mg−1 | R2 | n | KF | R2 | ||
SSHC | 298 | 44.34 | 0.07 | 0.981 | 9.21 | 22.90 | 0.762 |
308 | 57.79 | 0.13 | 0.999 | 12.80 | 12.89 | 0.753 | |
318 | 67.46 | 0.32 | 0.999 | 13.52 | 13.52 | 0.892 | |
328 | 70.05 | 0.57 | 0.999 | 14.73 | 14.73 | 0.723 | |
AHC0.1 | 298 | 60.88 | 0.26 | 0.999 | 17.48 | 43.82 | 0.872 |
308 | 68.09 | 0.27 | 0.999 | 12.16 | 43.07 | 0.924 | |
318 | 77.99 | 0.30 | 0.999 | 13.10 | 51.30 | 0.895 | |
328 | 80.73 | 0.31 | 0.999 | 13.30 | 53.49 | 0.876 |
Adsorbents | Qmax (mg·g−1) | SBET-N2 (m2·g−1) | Reference |
---|---|---|---|
H2O2 modified peanut hull hydrochar | 22.82 | 1.4 | [49] |
SiO2/polysaccharide-hydrochar composite | 52 | 21.76 | [50] |
LDH/sewage sludge-hydrochar composite | 62.44 | - | [51] |
KOH activated sewage sludge biochar | 57.48 | 907.95 | [52] |
Sewage sludge-based biochar | 18.20 | 23.70 | [53] |
Sewage sludge-based biochar | 51.20 | - | [54] |
SSHC | 44.34 | 45.53 | This study |
AHC0.1 | 60.88 | 59.95 | This study |
Hydrochars | T (K) | ΔH (KJ·mol−1) | ΔS (J·mol−1·L−1) | ΔG (KJ·mol−1) |
---|---|---|---|---|
SSHC | 298 | 57.90 | 274.15 | −23.68 |
308 | −26.42 | |||
318 | −29.16 | |||
328 | −31.90 | |||
AHC0.1 | 298 | 5.35 | 108.41 | −26.99 |
308 | −28.03 | |||
318 | −29.17 | |||
328 | −30.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Shen, D.; Wang, Z. Preparation of Citric Acid-Sewage Sludge Hydrochar and Its Adsorption Performance for Pb(II) in Aqueous Solution. Polymers 2022, 14, 968. https://doi.org/10.3390/polym14050968
Huang Y, Shen D, Wang Z. Preparation of Citric Acid-Sewage Sludge Hydrochar and Its Adsorption Performance for Pb(II) in Aqueous Solution. Polymers. 2022; 14(5):968. https://doi.org/10.3390/polym14050968
Chicago/Turabian StyleHuang, Yangpeng, Dekui Shen, and Zhanghong Wang. 2022. "Preparation of Citric Acid-Sewage Sludge Hydrochar and Its Adsorption Performance for Pb(II) in Aqueous Solution" Polymers 14, no. 5: 968. https://doi.org/10.3390/polym14050968
APA StyleHuang, Y., Shen, D., & Wang, Z. (2022). Preparation of Citric Acid-Sewage Sludge Hydrochar and Its Adsorption Performance for Pb(II) in Aqueous Solution. Polymers, 14(5), 968. https://doi.org/10.3390/polym14050968