Synthesis of Microporosity Dominant Wood-Based Activated Carbon Fiber for Removal of Copper Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physicochemical Characterization
2.3. Cu (II) Adsorption Performance
3. Results
3.1. Morphology
3.2. Pore Structure
3.3. Surface Chemistry
3.4. Cu2+ Adsorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2020, 264, 128455. [Google Scholar] [CrossRef] [PubMed]
- Dhaouadi, F.; Sellaoui, L.; Reynel-Ávila, H.E.; Landín-Sandoval, V.; Mendoza-Castillo, D.I.; Jaime-Leal, J.E.; Lima, E.C.; Bonilla-Petriciolet, A.; Ben Lamine, A. Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: Interpretation of the adsorption isotherms via physical modelling. Environ. Sci. Pollut. Res. Int. 2021, 28, 30943–30954. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.; Chabot, B.; Loranger, E. Enhanced activation of ultrasonic pre-treated softwood biochar for efficient heavy metal removal from water. J. Environ. Manag. 2021, 290, 112569. [Google Scholar] [CrossRef] [PubMed]
- Mariana, M.; Khalil, H.P.S.A.; Mistar, E.M.; Yahya, E.B.; Alfatah, T.; Danish, M.; Amayreh, M. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng. 2021, 43, 102221. [Google Scholar] [CrossRef]
- Yu, J.; Meng, Z.; Yan, S.; Zhao, S.; Zhu, B.; Cai, X.; Qiao, K. Precise control of ultramicropore structure of activated carbon fiber for the application of Cu(II) adsorption/electro-adsorption. J. Environ. Chem. Eng. 2021, 9, 105312. [Google Scholar] [CrossRef]
- Gunasundari, E.; Kumar, P.S. Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). J. Ind. Eng. Chem. 2017, 56, 129–144. [Google Scholar] [CrossRef]
- Botello-González, J.; Cerino-Córdova, F.J.; Dávila-Guzmán, N.E.; Salazar-Rábago, J.J.; Soto-Regalado, E.; Gómez-González, R.; Loredo-Cancino, M. Ion Exchange Modeling of the Competitive Adsorption of Cu(II) and Pb(II) Using Chemically Modified Solid Waste Coffee. Water Air Soil Pollut. 2019, 230, 73. [Google Scholar] [CrossRef]
- Wang, K.; Tian, Z.; Yin, N. Significantly Enhancing Cu(II) Adsorption onto Zr-MOFs through Novel Cross-Flow Disturbance of Ceramic Membrane. Ind. Eng. Chem. Res. 2018, 57, 3773–3780. [Google Scholar] [CrossRef]
- Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Rehman, A.U.; Baek, J.W.; Rene, E.R.; Sergienko, N.; Behera, S.K.; Park, H.-S. Effect of process parameters influencing the chemical modification of activated carbon fiber for carbon dioxide removal. Process Saf. Environ. Prot. 2018, 118, 384–396. [Google Scholar] [CrossRef]
- Duan, J.; Ji, H.; Xu, T.; Pan, F.; Liu, X.; Liu, W.; Zhao, D. Simultaneous adsorption of uranium(VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chem. Eng. J. 2021, 406, 126752. [Google Scholar] [CrossRef]
- Zaini, M.A.A.; Zhi, L.L.; Hui, T.S.; Amano, Y.; Machida, M. Effects of physical activation on pore textures and heavy metals removal of fiber-based activated carbons. Mater. Today Proc. 2021, 39, 917–921. [Google Scholar] [CrossRef]
- Ge, Y.; Cheng, B.; Wang, X.; Zhao, T. Rapid Preparation of Activated Carbon Fiber Felt under Microwaves: Pore Structures, Adsorption of Tetracycline in Water, and Mechanism. Ind. Eng. Chem. Res. 2019, 59, 146–153. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Shifa, T.A.; Wang, D.; Wu, X.; Cui, Y. Hierarchical MnO2/activated carbon cloth electrode prepared by synchronized electrochemical activation and oxidation for flexible asymmetric supercapacitors. Chem. Eng. J. 2019, 372, 1047–1055. [Google Scholar] [CrossRef]
- Hassan, M.F.; Sabri, M.A.; Fazal, H.; Hafeez, A.; Shezad, N.; Hussain, M. Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. J. Anal. Appl. Pyrolysis 2020, 145, 104715. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Bayatpour, S.; Qian, X.; Frigo-Vaz, B.; Wang, P. Activated carbon fibers via reductive carbonization of cellulosic biomass for adsorption of nonpolar volatile organic compounds. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 612, 125908. [Google Scholar] [CrossRef]
- Wang, L.; Ma, X. Preparation of N, P self-doped activated carbon hollow fibers derived from liquefied wood. Wood Sci. Technol. 2020, 55, 83–93. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, E.; Zhao, G. Preparation of liquefied wood-based activated carbon fibers by different activation methods for methylene blue adsorption. RSC Adv. 2015, 5, 70287–70296. [Google Scholar] [CrossRef]
- Ma, L.; Li, D.; Wang, L.; Ma, X. In situ hydrothermal synthesis of α-MnO2 nanowire/activated carbon hollow fibers from cotton stalk composite: Dual-effect cyclic visible light photocatalysis performance. Cellulose 2020, 27, 8937–8948. [Google Scholar] [CrossRef]
- Jin, Z.; Yan, X.; Yu, Y.; Zhao, G. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2014, 2, 11706–11715. [Google Scholar] [CrossRef]
- Liu, W.; Han, W.; Zhang, M.; Guo, Z. Self-regeneration performance and characterization of silver-containing activated carbon fibers coated by titanium dioxide. Polymers 2019, 11, 983. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, X.; Zhang, M. Preparation of highly mesoporous wood-derived activated carbon fiber and the mechanism of its porosity development. Holzforschung 2017, 71, 363–371. [Google Scholar] [CrossRef]
- Yang, H.; Ning, P.; Zhu, Z.; Yuan, L.; Jia, W.; Wen, J.; Xu, G.; Li, Y.; Cao, H. Water-steam activation toward oxygen-deficient vanadium oxides for enhancing zinc ion storage. J. Mater. Chem. A 2021, 9, 24517–24527. [Google Scholar] [CrossRef]
- Li, Y.; Lu, L.; Lyu, S.; Xu, H.; Ren, X.; Levendis, Y.A. Activated coke preparation by physical activation of coal and biomass co-carbonized chars. J. Anal. Appl. Pyrolysis 2021, 156, 105137. [Google Scholar] [CrossRef]
- Oh, H.-J.; Lee, J.-H.; Ahn, H.-J.; Jeong, Y.; Kim, Y.-J.; Chi, C.-S. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films 2006, 515, 220–225. [Google Scholar] [CrossRef]
- Ayiania, M.; Smith, M.; Hensley, A.J.; Scudiero, L.; McEwen, J.-S.; Garcia-Perez, M. Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon 2020, 162, 528–544. [Google Scholar] [CrossRef]
- Wang, H.; Gao, B.; Wang, S.; Fang, J.; Xue, Y.; Yang, K. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour. Technol. 2015, 197, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Zhang, S.; Song, J.; Zhao, Y.; Yang, F. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions. J. Hazard. Mater. 2020, 389, 122115. [Google Scholar] [CrossRef]
- Legrouri, K.; Khouya, E.; Hannache, H.; El Hartti, M.; Ezzine, M.; Naslain, R. Activated carbon from molasses efficiency for Cr(VI), Pb(II) and Cu(II) adsorption: A mechanistic study. Chem. Int. 2017, 3, 301–310. [Google Scholar]
Samples | SBET (m2 g−1) | Smi (m2 g−1) | Vt (cm3 g−1) | Vmi (cm3 g−1) | Vme (cm3 g−1) | SBJH (m2 g−1) | Da (nm) |
---|---|---|---|---|---|---|---|
LWACF-60 | 1205 | 1107 | 0.521 | 0.427 | 0.056 | 42 | 1.728 |
LWACF-140 | 1801 | 1604 | 0.826 | 0.573 | 0.189 | 79 | 1.835 |
LWACF-220 | 2478 | 2134 | 1.191 | 0.652 | 0.447 | 94 | 1.922 |
Samples | C–C (%) | C–O (%) | C=O (%) | –COOH (%) | CO32−, CO2, CO (%) |
---|---|---|---|---|---|
LWACF-60 | 65.23 | 16.38 | 13.72 | 4.67 | 0 |
LWACF-140 | 37.53 | 29.37 | 14.71 | 11.61 | 6.78 |
LWACF-220 | 34.67 | 28.30 | 15.54 | 13.96 | 7.53 |
Samples | C1s (at%) | O1s (at%) | N1s (at%) | P1s (at%) | S1s (at%) | (O)/(C) |
---|---|---|---|---|---|---|
LWACF-60 | 86.30 | 11.9 | 0.77 | 0.34 | 0.69 | 0.138 |
LWACF-140 | 90.68 | 8.29 | 0.72 | 0.21 | 0.10 | 0.091 |
LWACF-220 | 92.29 | 7.02 | 0.45 | 0.14 | 0.09 | 0.076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Zeng, Z.; Hu, S.; Tang, L.; Fu, Y.; Zhao, G. Synthesis of Microporosity Dominant Wood-Based Activated Carbon Fiber for Removal of Copper Ions. Polymers 2022, 14, 1088. https://doi.org/10.3390/polym14061088
Jin Z, Zeng Z, Hu S, Tang L, Fu Y, Zhao G. Synthesis of Microporosity Dominant Wood-Based Activated Carbon Fiber for Removal of Copper Ions. Polymers. 2022; 14(6):1088. https://doi.org/10.3390/polym14061088
Chicago/Turabian StyleJin, Zhi, Zhen Zeng, Shenghui Hu, Lina Tang, Yuejin Fu, and Guangjie Zhao. 2022. "Synthesis of Microporosity Dominant Wood-Based Activated Carbon Fiber for Removal of Copper Ions" Polymers 14, no. 6: 1088. https://doi.org/10.3390/polym14061088
APA StyleJin, Z., Zeng, Z., Hu, S., Tang, L., Fu, Y., & Zhao, G. (2022). Synthesis of Microporosity Dominant Wood-Based Activated Carbon Fiber for Removal of Copper Ions. Polymers, 14(6), 1088. https://doi.org/10.3390/polym14061088