Recent Advances in MXene/Epoxy Composites: Trends and Prospects
Abstract
:1. Introduction. Epoxy Resins and MXenes
2. Preparation of MXene/Epoxy Composites
2.1. The Synthesis of MXenes
2.2. Methods of Preparation of MXene/Epoxy Composites
3. Properties and Applications of MXene/Epoxy Composites
3.1. Mechanical Properties
3.2. Thermal Properties and Flame Retardancy
3.3. Tribological Properties
3.4. Electromagnetic Interference Shielding and Radiation Absorption
3.5. Anticorrosive Properties
Filler * | Optimal Conc. (%) | Property | Performance ** (% Compared to Neat ER Except If Specified) | Ref. |
---|---|---|---|---|
Ti2C | 1.0 | Mechanical | IS: 17.8 kJ/m2 (+76%); FS: 98 MPa (+66%) | [33] |
Ti3C2 | 5.0 | Young modulus of 4.36 GPa (+20%), nanoindentation | [25] | |
Ti3CN | 40–90 | Young mod. of 12.8 GPa (+182%) for 90% Ti3CN, nanoindentation +93% in Young mod. and +104% in hardness for 40% Ti3CN | [35] | |
Ti3C2 | 1.2 | IS: 24.2 kJ/m2 (+146%); TS: 66.2 MPa (+18%) | [36] | |
MTHPA-Ti3C2 | 0.2 | TS: 106.4 MPa (+51%); FS: 157 MPa (+32%). MXene bonding to the matrix through MTHPA, which improves dispersion | [37] | |
ATP nanorods/MTHPA-Ti3C2 | 0.25/0.2 | TS: 132.2 MPa (+88%); FS: 187.5 MPa (+57%). Covalent bonding between ATP and functionalized MXene | [38] | |
a-SCF/Ti3C2 | 2.0 | TS: 141.2 MPa (+100%); FS: 199.3 MPa (+67%) Ti3C2 chemically bridges SCF and epoxy resin | [42] | |
a-CF/Ti3C2 | 1.37 | Mechanical (Fiber-reinforced) | Single-fiber test. IFSS: 122.8 MPa (+182% compared to a-CF composite) Ti3C2 chemically bridges CF and epoxy resin | [29] |
APTES-CF/Ti3C2 | 1.0 | TS: 1210.9 MPa (+48.8% comp. to APTES-CF composite); FS: 987.3 MPa (+45.9% comp. to APTES-CF composite); IFSS: 223 MPa (+38.5% comp. to APTES-CF composite). Mxenes strongly attached to the NH2 functionality of APTES-CF | [39] | |
a-CF/APTES-Ti2C | 0.2 mg/mL (DMF) | Single-fiber test. IFSS: 72.2 MPa (+78% compared to a-CF composite); ILSS: 44.2 MPa (+28% compared to a-CF composite). Amide bonding between a-CF and amino-functionalized Ti2C | [40] | |
PEI-CF/Ti3C2/APTES-SiO2 | 1 mg/mL (aq. Sol) | TS: 920 MPa (+26% compared to CF composite); FS: 1050 MPa (+39.2% compared to CF composite). Single-fiber test: IFSS: 72.75 MPa (+73.2%); ILSS: 78.7 MPa (+61.2%). Electrostatic assembly (positive PEI-CF/negative Ti3C2/positive APTES-SIO2). SiO2 enhances roughness and wettability with ER (+11% in IFSS and ILSS) | [43] | |
BSA-UHMWPE/Ti2C | 1 mg/mL (aq. Sol) | Ti2C-decorated UHMWPE conductive fabric. IFSS: 3.29 MPa (+116% compared to UHMWPE composite) | [41] | |
Ti3C2 | 1.0 | Thermal conductivity | TC: 0.587 W/mK (+141.3% compared to resin without additives) | [28] |
Ti3C2Tx | 30 | In-plane TC: 3.14 W/mK (+1470%); though-plane TC: 0.294 W/mK (+47%) | [49] | |
Ti3C2Tx | 40 | In-plane TC: 1.29 W/mK (10.65 times better than ER); through-plane TC: 0.583 W/mK (2.92 times better than ER) | [50] | |
CF/Ti3C2 | 50.2 | TC: 9.68 W/mK (4509% compared to ER and 36.7% compared to CF composite) | [51] | |
Ag/Ti3C2 | 15/0.1 (vol) | In-plane TC: 1.70 W/mK (+827%); through-plane TC: 2.65 W/mK (+1225%) | [53] | |
CF/Ti3C2 | 1.0 | TC: 0.262 W/mK (+148% higher than ER) | [52] | |
Ag/Ti3C2 | 50/0.12 | TC: 72.7 W/mK (+24.7% higher than ER with 50% Ag) | [54] | |
Ag/Ti3C2 | 1.0 | TC: 0.382 W/mK (+135% higher than ER with Ag and +125% higher than ER with Ti3C2) | [55] | |
Ti3C2Tx/AgNWs | 4.1/4.1 | TC: 2.34 W/mK (+1014% higher than ER and +200% higher than ER with Ti3C2Tx) | [57] | |
RP-Ti3C2 | 2.0 | Fire retardancy | LOI: improve values from 24.4 to 26.3% compared to ER | [57] |
P-C-N/Ti3C2Tx | 3.0 | LOI: increase 38% compared to ER | [58] | |
CuP-Ti3C2 | 5.0 | PHRR: 64.4% less compared to neat epoxy | [59] | |
ZHS/Ti3C2Tx | 2.0 | PHRR: 629.41 kW/m2 (−54.41% compared to neat epoxy) | [60] | |
Ti3C2 | 3 | Tribological | COF: (−76.3%); WR: (−67.3%) | [52] |
APTES-Ti3C2 | 0.5 | COF: 0.357 (−34%); WR: 1.0 × 10−13 m3/(Nm) (−72.2%). Functionalization enhances dispersibility and reduces MXene amount | [64] | |
PTFE/PDDA-Ti3C2 | 2.0 | Electrostatic interaction PTFE/PDDA-Ti3C2. PTFE inhibits aggregation. FC is reduced 8.5 to 14 times, and WR is reduced 22 to 29 times, depending on the environmental conditions | [67] | |
ZrO2/Ti3C2 | 0.5 | COF: 0.6 (−35%); WR: 4.3 × 10−14 m3/(Nm) (−79.3%) | [68] | |
TiO2/Ti3C2 | 0.5 | COF: 0.6 (−35%); WR: 3.3 × 10−14 m3/(Nm) (−84.5%). TiO2 nanodot protuberances induce mechanical interlocking effect | [61] | |
Ti3C2Tx/LDH | 0.5 | WR was reduced by 80.45% compared to that of pure ER due to the synergy effect of MXene and layered LDH | [89] | |
Ti3C2Tx/carbon foam | 5 mg/mL (aq. Sol) | Radiation absorption | Porous structure allows incident EMWs to enter the material, and EM energy is dissipated through 3D MXene foam with high TC | [71] |
Ni0.6Zn0.4Fe2O4/Ti3C2Tx | 3.0 | EMW-absorption improvement of coatings for cement-based materials | [72] | |
Ti3C2Tx/rGO | 0.74 (vol) | EMI shielding | EMI SE: 56.4 dB (+210% compared to rGO composites) | [73] |
Ti3C2Tx/C hybrid foam | 1.64/2.61 | EMI SE: 46 dB and EC: 184 S/m (+480% and 3.1 × 104 times, respectively, compared to C hybrid foam/ER) | [74] | |
Ti3C2Tx/AgNWs | 4.1/4.1 | EMI SE: 94.1 dB (79% higher than the commercial materials) | [56] | |
Honeycomb rGO-Ti3C2Tx | 1.2–3.3 | EMI SE: 55 dB and EC: 387.1 S/m (2978 and 5 times, respectively, compared to non-honeycomb-structured nanocomposites) | [76] | |
APTES-Ti3C2Tx | 0.5 | Anticorrosive coating | |Z|0.01Hz increments by 2 order of magnitude, due to good interaction between amino group of APTES and epoxy matrix | [64] |
GPS-Ti3C2Tx | 0.5 | |Z|0.01Hz values 3 orders of magnitude. Good dispersibility because of the interaction between glycidyl groups of GPS and matrix | [83] | |
Ti3C2Tx/GO | 0.5 | Superior corrosion resistance because of barrier effect. Rc values 1 order of magnitude higher than that of pure ZRC epoxy coating | [85] | |
Ti3C2Tx/LDH | 0.5 | Good dispersibility and compatibility with ER. |Z|0.01Hz values increase by 1 order of magnitude | [89] | |
SF-Ti3C2TX | 0.5 | Excellent dispersion in ER. Impedance value 4 orders of magnitude higher than pure ER after 240 h immersion (20 MPa pressure) | [91] | |
p-CS-Ti3C2Tx | 0.2 | Uniform dispersion and distribution. Better compatibility with ER, reducing the porosity. |Z|0.01Hz more than 2 orders of magnitude higher | [92] | |
CD-Ti3C2Tx | 0.5 | With parallel arrangement, more than 4 orders improvement in impedance modulus, and Rc 4 and 2 orders of magnitude higher than pure ER and random CD-Ti3C2Tx coatings, respectively | [95] | |
Ti3C2Tx | 2.8 | Self-healing | Self-healing was achieved in 10 s and 10 min under near-infrared and sunlight, respectively | [63] |
3.6. Other Properties
3.6.1. Self-Healing and Antibacterial Properties
3.6.2. Charge-Absorption Properties
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanco, I.; Oliveri, L.; Cicala, G.; Recca, A. Effects of Novel Reactive Toughening Agent on Thermal Stability of Epoxy Resin. J. Therm. Anal. Calorim. 2012, 108, 685–693. [Google Scholar] [CrossRef]
- Capricho, J.C.; Fox, B.; Hameed, N. Multifunctionality in Epoxy Resins. Polym. Rev. 2020, 60, 1–41. [Google Scholar] [CrossRef]
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and Application of Epoxy Resins: A Review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Taloub, N.; Henniche, A.; Liu, L.; Li, J.; Rahoui, N.; Hegazy, M.; Huang, Y. Improving the Mechanical Properties, UV and Hydrothermal Aging Resistance of PIPD Fiber Using MXene (Ti3C2(OH)2) Nanosheets. Compos. Part B: Eng. 2019, 163, 260–271. [Google Scholar] [CrossRef]
- Wazalwar, R.; Sahu, M.; Raichur, A.M. Mechanical Properties of Aerospace Epoxy Composites Reinforced with 2D Nano-Fillers: Current Status and Road to Industrialization. Nanoscale Adv. 2021, 3, 2741–2776. [Google Scholar] [CrossRef]
- Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F.K.; Fox, B.; Hameed, N. Distribution States of Graphene in Polymer Nanocomposites: A Review. Compos. Part B: Eng. 2021, 226, 109353. [Google Scholar] [CrossRef]
- Rasul, M.G.; Kiziltas, A.; Arfaei, B.; Shahbazian-Yassar, R. 2D Boron Nitride Nanosheets for Polymer Composite Materials. npj 2d Mater. Appl. 2021, 5, 56. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-Containing Flame Retardant Epoxy Thermosets: Recent Advances and Future Perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naguib, M.; Barsoum, M.W.; Gogotsi, Y. Ten Years of Progress in the Synthesis and Development of MXenes. Adv. Mater. 2021, 33, 2103393. [Google Scholar] [CrossRef]
- Sun, S.; Liao, C.; Hafez, A.M.; Zhu, H.; Wu, S. Two-Dimensional MXenes for Energy Storage. Chem. Eng. J. 2018, 338, 27–45. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y. Potential Environmental Applications of MXenes: A Critical Review. Chemosphere 2021, 271, 129578. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Liu, B.; Qiu, H.; Shi, X.; Cao, D.; Gu, J. MXenes for Polymer Matrix Electromagnetic Interference Shielding Composites: A Review. Compos. Commun. 2021, 24, 100653. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhang, H.; Tzounis, L.; Santagiuliana, G.; Bilotti, E.; Papageorgiou, D.G. Multifunctional Epoxy Nanocomposites Reinforced by Two-Dimensional Materials: A Review. Carbon 2021, 185, 57–81. [Google Scholar] [CrossRef]
- Yuan, S.; Linas, S.; Journet, C.; Steyer, P.; Garnier, V.; Bonnefont, G.; Brioude, A.; Toury, B. Pure & Crystallized 2D Boron Nitride Sheets Synthesized via a Novel Process Coupling Both PDCs and SPS Methods. Sci. Rep. 2016, 6, 20388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, U.; Kaur, M.; Singh, K.; Kumar, M.; Kumar, A. A Synoptic Review of MoS2: Synthesis to Applications. Superlattices Microstruct. 2019, 128, 274–297. [Google Scholar] [CrossRef]
- Verger, L.; Xu, C.; Natu, V.; Cheng, H.M.; Ren, W.; Barsoum, M.W. Overview of the Synthesis of MXenes and Other Ultrathin 2D Transition Metal Carbides and Nitrides. Curr. Opin. Solid State Mater. Sci. 2019, 23, 149–163. [Google Scholar] [CrossRef]
- Shekhirev, M.; Shuck, C.E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at Every Step, from Their Precursors to Single Flakes and Assembled Films. Prog. Mater. Sci. 2021, 120, 100757. [Google Scholar] [CrossRef]
- Meshkian, R.; Näslund, L.-Å.; Halim, J.; Lu, J.; Barsoum, M.W.; Rosen, J. Synthesis of Two-Dimensional Molybdenum Carbide, Mo2C, from the Gallium Based Atomic Laminate Mo2Ga2C. Scr. Mater. 2015, 108, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.M.; Feng, X. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angew. Chem. 2018, 130, 15717–15721. [Google Scholar] [CrossRef]
- Zhou, J.; Zha, X.; Chen, F.Y.; Ye, Q.; Eklund, P.; Du, S.; Huang, Q. A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed. 2016, 55, 5008–5013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Shah, S.A.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M.J. Electrochemical Etching of Ti2AlC to Ti2CTx (MXene) in Low-Concentration Hydrochloric Acid Solution. J. Mater. Chem. A 2017, 5, 21663–21668. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application. Compos. Part B: Eng. 2019, 171, 111–118. [Google Scholar] [CrossRef]
- Mashtalir, O.; Naguib, M.; Mochalin, V.N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M.W.; Gogotsi, Y. Intercalation and Delamination of Layered Carbides and Carbonitrides. Nat. Commun. 2013, 4, 1716. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Wang, J.; Shi, Z.; Fan, L. Intercalation and Delamination of Two-Dimensional MXene (Ti3C2Tx) and Application in Sodium-Ion Batteries. Mater. Lett. 2018, 219, 45–50. [Google Scholar] [CrossRef]
- Kang, R.; Zhang, Z.; Guo, L.; Cui, J.; Chen, Y.; Hou, X.; Wang, B.; Lin, C.; Jiang, N.; Yu, J. Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading. Sci. Rep. 2019, 9, 9135. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ying, G.; Hu, C.; Zhang, K.; Ma, F.; Su, L.; Zhang, C.; Wang, C. Functionalization with MXene (Ti3C2) Enhances the Wettability and Shear Strength of Carbon Fiber-Epoxy Composites. ACS Appl. Nano Mater. 2019, 2, 5553–5562. [Google Scholar] [CrossRef]
- Seyedin, S.; Zhang, J.; Usman, K.A.S.; Qin, S.; Glushenkov, A.M.; Yanza, E.R.S.; Jones, R.T.; Razal, J.M. Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers. Glob. Chall. 2019, 3, 1900037. [Google Scholar] [CrossRef] [Green Version]
- Szeluga, U.; Pusz, S.; Kumanek, B.; Olszowska, K.; Kobyliukh, A.; Trzebicka, B. Effect of Graphene Filler Structure on Electrical, Thermal, Mechanical, and Fire Retardant Properties of Epoxy-Graphene Nanocomposites—A Review. Crit. Rev. Solid State Mater. Sci. 2021, 46, 152–187. [Google Scholar] [CrossRef]
- Ji, Z.J.; Zhang, L.; Xie, G.X.; Xu, W.H.; Guo, D.; Luo, J.B.; Prakash, B. Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction 2020, 8, 813–846. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Zhou, A.; Shen, C.; Dai, Y.; Liu, F.; Chen, J.; Li, P.; Hu, Q. Effects of 2-D Transition Metal Carbide Ti2CT:X on Properties of Epoxy Composites. RSC Adv. 2016, 6, 87341–87352. [Google Scholar] [CrossRef]
- Carey, M.S.; Sokol, M.; Palmese, G.R.; Barsoum, M.W. Water Transport and Thermomechanical Properties of Ti3C2T z MXene Epoxy Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 39143–39149. [Google Scholar] [CrossRef]
- Hatter, C.B.; Shah, J.; Anasori, B.; Gogotsi, Y. Micromechanical Response of Two-Dimensional Transition Metal Carbonitride (MXene) Reinforced Epoxy Composites. Compos. Part B Eng. 2020, 182, 107603. [Google Scholar] [CrossRef]
- Feng, A.; Hou, T.; Jia, Z.; Zhang, Y.; Zhang, F.; Wu, G. Preparation and Characterization of Epoxy Resin Filled with Ti3C2Tx MXene Nanosheets with Excellent Electric Conductivity. Nanomaterials 2020, 10, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Ying, G.; Wen, D.; Zhang, K.; Hu, C.; Zheng, Y.; Zhang, C.; Wang, X.; Wang, C. Aqueous Solution-Processed MXene (Ti3C2Tx) for Non-Hydrophilic Epoxy Resin-Based Composites with Enhanced Mechanical and Physical Properties. Mater. Des. 2021, 197, 109276. [Google Scholar] [CrossRef]
- Liu, L.; Ying, G.; Zhao, Y.; Li, Y.; Wu, Y.; Wen, D.; Wu, M.; Wang, M.; Zhou, Q.; Wang, X.; et al. Attapulgite–Mxene Hybrids with Ti3c2tx Lamellae Surface Modified by Attapulgite as a Mechanical Reinforcement for Epoxy Composites. Polymers 2021, 13, 1820. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Qi, S.; Liu, J.; Han, X.; Zhang, F. Preparation and Mechanical Performances of Carbon Fiber Reinforced Epoxy Composites by Mxene Nanosheets Coating. J. Mater. Sci. Mater. Electron. 2019, 30, 10516–10523. [Google Scholar] [CrossRef]
- Ding, R.; Sun, Y.; Lee, J.; do Nam, J.; Suhr, J. Enhancing Interfacial Properties of Carbon Fiber Reinforced Epoxy Composites by Grafting MXene Sheets (Ti2C). Compos. Part B: Eng. 2021, 207, 108580. [Google Scholar] [CrossRef]
- Yu, J.; Chen, H.; Huang, H.; Zeng, M.; Qin, J.; Liu, H.; Ji, M.; Bao, F.; Zhu, C.; Xu, J. Protein-Induced Decoration of Applying MXene Directly to UHMWPE Fibers and Fabrics for Improved Adhesion Properties and Electronic Textiles. Compos. Sci. Technol. 2022, 218, 109158. [Google Scholar] [CrossRef]
- Liu, L.; Ying, G.; Sun, C.; Min, H.; Zhang, J.; Zhao, Y.; Wen, D.; Ji, Z.; Liu, X.; Zhang, C.; et al. Mxene (Ti3c2tx) Functionalized Short Carbon Fibers as a Cross-Scale Mechanical Reinforcement for Epoxy Composites. Polymers 2021, 13, 1825. [Google Scholar] [CrossRef]
- Guo, J.; Qiu, T.; Yu, C.; Liu, Y.; Ning, C.; Kong, L.; Ma, Y.; Liu, L.; Ao, Y. Three-Dimensional Structured MXene/SiO2 for Improving the Interfacial Properties of Composites by Self-Assembly Strategy. Polym. Compos. 2022, 43, 84–93. [Google Scholar] [CrossRef]
- Liu, L.; Yan, F.; Liu, H.; Zhang, M.; Jin, L.; Xiao, L.; Ao, Y. Construction of Hierarchical “Organic-Inorganic” Structure by Self-Assembly to Enhance the Interfacial Properties of Epoxy Composites. Compos. Sci. Technol. 2021, 210, 108802. [Google Scholar] [CrossRef]
- Sliozberg, Y.; Andzelm, J.; Hatter, C.B.; Anasori, B.; Gogotsi, Y.; Hall, A. Interface Binding and Mechanical Properties of MXene-Epoxy Nanocomposites. Compos. Sci. Technol. 2020, 192, 108124. [Google Scholar] [CrossRef]
- Monastyreckis, G.; Mishnaevsky, L.; Hatter, C.B.; Aniskevich, A.; Gogotsi, Y.; Zeleniakiene, D. Micromechanical Modeling of MXene-Polymer Composites. Carbon 2020, 162, 402–409. [Google Scholar] [CrossRef]
- Srivatsa, S.; Packo, P.; Mishnaevsky, L.; Uhl, T.; Grabowski, K. Micromechanical Modeling of Nacre-Mimetic Ti3C2-MXene Nanocomposites with Viscoelastic Polymer Matrix. MRS Adv. 2021, 6, 729–733. [Google Scholar] [CrossRef]
- Kilikevičius, S.; Kvietkaitė, S.; Mishnaevsky, L.; Omastová, M.; Aniskevich, A.; Zeleniakienė, D. Novel Hybrid Polymer Composites with Graphene and Mxene Nano-Reinforcements: Computational Analysis. Polymers 2021, 13, 1013. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Cao, Y.; Zhang, X.; Guo, X.; Song, P.; Chen, K.; Lin, J. Anisotropic and High Thermal Conductivity of Epoxy Composites Containing Multilayer Ti3C2Tx MXene Nanoflakes. J. Mater. Sci. 2020, 55, 16533–16543. [Google Scholar] [CrossRef]
- Chen, L.; Cao, Y.; Guo, X.; Song, P.; Chen, K.; Li, D.; Lin, J. Simultaneously Improved Thermal and Dielectric Performance of Epoxy Composites Containing Ti3C2Tx Platelet Fillers. Polymers 2020, 12, 1608. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, Z.; Li, M.; Kang, R.; Chen, Y.; Song, G.; Han, S.T.; Lin, C.; Jiang, N.; Yu, J. Extremely High Thermal Conductivity of Carbon Fiber/Epoxy with Synergistic Effect of MXenes by Freeze-Drying. Compos. Commun. 2020, 19, 134–141. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, Z.; Gao, P.; Kang, R.; Boyjoo, Y.; Yu, J.; Liu, T. Excellent Tribological Properties of Epoxy—Ti3C2 with Three-Dimensional Nanosheets Composites. Friction 2021, 9, 734–746. [Google Scholar] [CrossRef]
- Ji, C.; Wang, Y.; Ye, Z.; Tan, L.; Mao, D.; Zhao, W.; Zeng, X.; Yan, C.; Sun, R.; Kang, D.J.; et al. Ice-Templated MXene/Ag-Epoxy Nanocomposites as High-Performance Thermal Management Materials. ACS Appl. Mater. Interfaces 2020, 12, 24298–24307. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wei, H.; Lin, Y.; Jiang, P.; Bao, H.; Huang, X. Achieving Ultrahigh Thermal Conductivity in Ag/MXene/Epoxy Nanocomposites via Filler-Filler Interface Engineering. Compos. Sci. Technol. 2021, 213, 108953. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, M.; Wang, Y.; Yuan, J.; Men, X. Significance of Constructed MXene@Ag Hybrids for Enhancing the Mechanical and Tribological Performance of Epoxy Composites. Tribol. Int. 2022, 165, 107328. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Z.; Chen, T.; Su, X.; Liu, Y.; Fu, R. Construction of 3D MXene/Silver Nanowires Aerogels Reinforced Polymer Composites for Extraordinary Electromagnetic Interference Shielding and Thermal Conductivity. Chem. Eng. J. 2022, 427, 131540. [Google Scholar] [CrossRef]
- Yuan, Y.; Pan, Y.T.; Zhang, W.; Feng, M.; Wang, N.; Wang, D.Y.; Yang, R. Delamination and Engineered Interlayers of Ti3C2MXenes Using Phosphorous Vapor toward Flame-Retardant Epoxy Nanocomposites. ACS Appl. Mater. Interfaces 2021, 13, 48196–48207. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.; Li, Y.; Liang, C.; Zhang, J. Novel Ti3C2Tx MXene/Epoxy Intumescent Fire-Retardant Coatings for Ancient Wooden Architectures. J. Appl. Polym. Sci. 2021, 138, 50649. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, M.; Ma, Z.; Xu, X.; Mohesen Seraji, S.; Yu, B.; Sun, Z.; Wang, H.; Song, P. A Reactive Copper-Organophosphate-MXene Heterostructure Enabled Antibacterial, Self-Extinguishing and Mechanically Robust Polymer Nanocomposites. Chem. Eng. J. 2022, 430, 132712. [Google Scholar] [CrossRef]
- Lu, J.; Wang, B.; Jia, P.; Cheng, W.; Liao, C.; Xu, Z.; Cheng, L.; Hu, Y. Designing Advanced 0D–2D Hierarchical Structure for Epoxy Resin to Accomplish Exceeding Thermal Management and Safety. Chem. Eng. J. 2022, 427, 132046. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Cao, M.; Shen, X.; Yang, Y.; Yi, J.; Guan, J.; Shen, J.; Xi, M.; Zhang, Y.; et al. Tribological and Thermo-Mechanical Properties of TiO2 Nanodot-Decorated Ti3C2/Epoxy Nanocomposites. Materials 2021, 14, 2509. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, X.; Wang, T.; Yang, Y.; Yi, J.; Cao, M.; Shen, J.; Xiao, Y.; Guan, J.; Jiang, X.; et al. Investigation on Tribological and Thermo-Mechanical Properties of Ti3C2 Nanosheets/Epoxy Nanocomposites. ACS Omega 2021, 6, 29184–29191. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Fang, L.; Chen, T.; Sun, M.; Lu, C.; Xu, Z. Near-Infrared Light and Solar Light Activated Self-Healing Epoxy Coating Having Enhanced Properties Using MXene Flakes as Multifunctional Fillers. Polymers 2018, 10, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Cai, M.; Li, W.; Fan, X.; Zhu, M. Amino-Functionalized Ti3C2Tx with Anti-Corrosive/Wear Function for Waterborne Epoxy Coating. J. Mater. Sci. Technol. 2020, 54, 144–159. [Google Scholar] [CrossRef]
- Zukiene, K.; Monastyreckis, G.; Kilikevicius, S.; Procházka, M.; Micusik, M.; Omastová, M.; Aniskevich, A.; Zeleniakiene, D. Wettability of MXene and Its Interfacial Adhesion with Epoxy Resin. Mater. Chem. Phys. 2021, 257, 123820. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, Y.; Zhang, G.; Wang, Q.; Wang, T. MXene-Al2O3 Synergize to Reduce Friction and Wear on Epoxy-Steel Contacts Lubricated with Ultra-Low Sulfur Diesel. Tribol. Int. 2021, 153, 106588. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, G.; Hou, K.; Wang, H.; Wang, N.; Yang, S.; Wang, J. Environmentally-Adaptive Epoxy Lubricating Coating Using Self-Assembled PMXene@polytetrafluoroethylene Core-Shell Hybrid as Novel Additive. Carbon 2021, 184, 12–23. [Google Scholar] [CrossRef]
- Yi, J.; Yang, Y.; Zhang, Y.; Cao, M.; Wang, T.; Guan, J.; Xiao, Y.; Zhang, Y.; Tang, B.; Shen, X. Improved Tribological and Thermo-Mechanical Properties of Epoxy Resin with Micro-Nano Structured ZrO2/Ti3C2 Particles. J. Appl. Polym. Sci. 2021, 138, 51209. [Google Scholar] [CrossRef]
- Du, C.F.; Wang, Z.; Wang, X.; Zhao, X.; Gao, J.; Xue, Y.; Jiang, Y.; Yu, H.; Ye, Q. Probing the Lubricative Behaviors of a High MXene-Content Epoxy-Based Composite under Dry Sliding. Tribol. Int. 2022, 165, 107314. [Google Scholar] [CrossRef]
- Qing, Y.; Nan, H.; Luo, F.; Zhou, W. Nitrogen-Doped Graphene and Titanium Carbide Nanosheet Synergistically Reinforced Epoxy Composites as High-Performance Microwave Absorbers. RSC Adv. 2017, 7, 27755–27761. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Liu, Z.; Li, S.; Liu, H.; Chen, F.; Wang, K.; Zhao, Y. Effective Improvement on Microwave Absorbing Performance of Epoxy Resin-Based Composites with 3D MXene Foam Prepared by One-Step Impregnation Method. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106594. [Google Scholar] [CrossRef]
- Li, Y.; Guan, H.; Bao, Y.; Guo, S.; Lei, D.; Zhao, T.; Zhong, B.; Li, Z. Ni0.6Zn0.4Fe2O4/Ti3C2Tx Nanocomposite Modified Epoxy Resin Coating for Improved Microwave Absorption and Impermeability on Cement Mortar. Constr. Build. Mater. 2021, 310, 125213. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.; Luo, J.Q.; Wang, Q.W.; Xu, B.; Hong, S.; Yu, Z.Z. Highly Electrically Conductive Three-Dimensional Ti3C2Tx MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano 2018, 12, 11193–11202. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, H.; Song, P.; Zhang, Y.; Lu, Y.; Liang, C.; Kong, J.; Chen, L.; Gu, J. 3D Ti3C2Tx MXene/C Hybrid Foam/Epoxy Nanocomposites with Superior Electromagnetic Interference Shielding Performances and Robust Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2019, 123, 293–300. [Google Scholar] [CrossRef]
- Wang, L.; Song, P.; Lin, C.-T.; Kong, J.; Gu, J. 3D Shapeable, Superior Electrically Conductive Cellulose Nanofibers/Ti3C2Tx MXene Aerogels/Epoxy Nanocomposites for Promising EMI Shielding. Research 2020, 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Qiu, H.; Wang, L.; Liu, X.; Zhang, Y.; Zhang, J.; Kong, J.; Gu, J. Honeycomb Structural RGO-MXene/Epoxy Nanocomposites for Superior Electromagnetic Interference Shielding Performance. Sustain. Mater. Technol. 2020, 24, e00153. [Google Scholar] [CrossRef]
- Verma, C.; Olasunkanmi, L.O.; Akpan, E.D.; Quraishi, M.A.; Dagdag, O.; el Gouri, M.; Sherif, E.-S.M.; Ebenso, E.E. Epoxy Resins as Anticorrosive Polymeric Materials: A Review. React. Funct. Polym. 2020, 156, 104741. [Google Scholar] [CrossRef]
- Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R. Distinctive Roles of Silane Coupling Agents on the Corrosion Inhibition Performance of Graphene Oxide in Epoxy Coatings. Prog. Org. Coat. 2017, 111, 47–56. [Google Scholar] [CrossRef]
- Cui, M.; Ren, S.; Chen, J.; Liu, S.; Zhang, G.; Zhao, H.; Wang, L.; Xue, Q. Anticorrosive Performance of Waterborne Epoxy Coatings Containing Water-Dispersible Hexagonal Boron Nitride (h-BN) Nanosheets. Appl. Surf. Sci. 2017, 397, 77–86. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; He, Y.; Chen, C.; Zhang, C.; Xie, P.; Zhong, F.; Li, H.; Chen, J.; Li, Z. APTES Modification of Molybdenum Disulfide to Improve the Corrosion Resistance of Waterborne Epoxy Coating. Coatings 2021, 11, 178. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, M.; Yu, H. Interfacial Combination of Ti3C2Tx MXene with Waterborne Epoxy Anticorrosive Coating. Appl. Surf. Sci. 2022, 572, 150894. [Google Scholar] [CrossRef]
- Yan, H.; Li, W.; Li, H.; Fan, X.; Zhu, M. Ti3C2 MXene Nanosheets toward High-Performance Corrosion Inhibitor for Epoxy Coating. Prog. Org. Coat. 2019, 135, 156–167. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S. Epoxy-Functionalized Ti3C2 Nanosheet for Epoxy Coatings with Prominent Anticorrosion Performance. Prog. Org. Coat. 2022, 162, 106559. [Google Scholar] [CrossRef]
- Pourhashem, S.; Rashidi, A.; Vaezi, M.R.; Bagherzadeh, M.R. Excellent Corrosion Protection Performance of Epoxy Composite Coatings Filled with Amino-Silane Functionalized Graphene Oxide. Surf. Coat. Technol. 2017, 317, 1–9. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, W.; Wang, K.; Xu, J. GO-Ti3C2 Two-Dimensional Heterojunction Nanomaterial for Anticorrosion Enhancement of Epoxy Zinc-Rich Coatings. J. Hazard. Mater. 2021, 417, 126048. [Google Scholar] [CrossRef] [PubMed]
- Teng, S.; Gao, Y.; Cao, F.; Kong, D.; Zheng, X.; Ma, X.; Zhi, L. Zinc-Reduced Graphene Oxide for Enhanced Corrosion Protection of Zinc-Rich Epoxy Coatings. Prog. Org. Coat. 2018, 123, 185–189. [Google Scholar] [CrossRef]
- Zhao, H.; Ding, J.; Zhou, M.; Yu, H. Air-Stable Titanium Carbide MXene Nanosheets for Corrosion Protection. ACS Appl. Nano Mater. 2021, 4, 3075–3086. [Google Scholar] [CrossRef]
- Yan, H.; Cai, M.; Wang, J.; Zhang, L.; Li, H.; Li, W.; Fan, X.; Zhu, M. Insight into Anticorrosion/Antiwear Behavior of Inorganic-Organic Multilayer Protection System Composed of Nitriding Layer and Epoxy Coating with Ti3C2Tx MXene. Appl. Surf. Sci. 2021, 536, 147974. [Google Scholar] [CrossRef]
- Cai, M.; Fan, X.; Yan, H.; Li, Y.; Song, S.; Li, W.; Li, H.; Lu, Z.; Zhu, M. In Situ Assemble Ti3C2Tx MXene@MgAl-LDH Heterostructure towards Anticorrosion and Antiwear Application. Chem. Eng. J. 2021, 419, 130050. [Google Scholar] [CrossRef]
- Yasakau, K.A.; Kuznetsova, A.; Kallip, S.; Starykevich, M.; Tedim, J.; Ferreira, M.G.S.; Zheludkevich, M.L. A Novel Bilayer System Comprising LDH Conversion Layer and Sol-Gel Coating for Active Corrosion Protection of AA2024. Corros. Sci. 2018, 143, 299–313. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, W. Silk Fibroin-Ti3C2TX Hybrid Nanofiller Enhance Corrosion Protection for Waterborne Epoxy Coatings under Deep Sea Environment. Chem. Eng. J. 2021, 423, 130195. [Google Scholar] [CrossRef]
- He, X.; Li, S.; Shen, R.; Ma, Y.; Zhang, L.; Sheng, X.; Chen, Y.; Xie, D.; Huang, J. A High-Performance Waterborne Polymeric Composite Coating with Long-Term Anti-Corrosive Property Based on Phosphorylation of Chitosan-Functionalized Ti3C2Tx MXene. Adv. Compos. Hybrid Mater. 2022. [Google Scholar] [CrossRef]
- Li, S.; Huang, H.; Chen, F.; He, X.; Ma, Y.; Zhang, L.; Sheng, X.; Chen, Y.; Shchukina, E.; Shchukin, D. Reinforced Anticorrosion Performance of Waterborne Epoxy Coating with Eco-Friendly L-Cysteine Modified Ti3C2Tx MXene Nanosheets. Prog. Org. Coat. 2021, 161, 106478. [Google Scholar] [CrossRef]
- Haddadi, S.A.; Hu, S.; Ghaderi, S.; Ghanbari, A.; Ahmadipour, M.; Pung, S.Y.; Li, S.; Feilizadeh, M.; Arjmand, M. Amino-Functionalized MXene Nanosheets Doped with Ce(III) as Potent Nanocontainers toward Self-Healing Epoxy Nanocomposite Coating for Corrosion Protection of Mild Steel. ACS Appl. Mater. Interfaces 2021, 13, 42074–42093. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, H.; Yu, H. Structure and Performance Insights in Carbon Dots-Functionalized MXene-Epoxy Ultrathin Anticorrosion Coatings. Chem. Eng. J. 2022, 430, 132838. [Google Scholar] [CrossRef]
- Zou, Y.; Jin, X.; Zhang, X.P.; Kong, X.L.; Zhang, Q.; Xie, X.H.; Liu, C.J.; Ke, L.N.; Liu, W.G.; Wang, W. A Multifunctional Biomedical Patch Based on Hyperbranched Epoxy Polymer and MXene. Sci. China Technol. Sci. 2021, 64, 2744–2754. [Google Scholar] [CrossRef]
- Yan, H.; Fan, X.; Cai, M.; Song, S.; Zhu, M. Amino-Functionalized Ti3C2Tx Loading ZIF-8 Nanocontainer@benzotriazole as Multifunctional Composite Filler towards Self-Healing Epoxy Coating. J. Colloid Interface Sci. 2021, 602, 131–145. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.; Li, D.; Hou, Y.; Zhang, B. MXene-Doped Epoxy Resin to Suppress Surface Charge Accumulation on Insulators in a DC Gas-Insulated System. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 939–946. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | |
---|---|---|---|
Physical blending | Solvent-assisted blending |
|
|
Mechanical mixing |
|
| |
Infiltration and impregnation | Infiltration molding |
|
|
Vacuum-assisted impregnation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giménez, R.; Serrano, B.; San-Miguel, V.; Cabanelas, J.C. Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers 2022, 14, 1170. https://doi.org/10.3390/polym14061170
Giménez R, Serrano B, San-Miguel V, Cabanelas JC. Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers. 2022; 14(6):1170. https://doi.org/10.3390/polym14061170
Chicago/Turabian StyleGiménez, Raquel, Berna Serrano, Verónica San-Miguel, and Juan Carlos Cabanelas. 2022. "Recent Advances in MXene/Epoxy Composites: Trends and Prospects" Polymers 14, no. 6: 1170. https://doi.org/10.3390/polym14061170
APA StyleGiménez, R., Serrano, B., San-Miguel, V., & Cabanelas, J. C. (2022). Recent Advances in MXene/Epoxy Composites: Trends and Prospects. Polymers, 14(6), 1170. https://doi.org/10.3390/polym14061170