Analysis of a Film Forming Process through Coupled Image Correlation and Infrared Thermography
Abstract
:1. Introduction
Motivation
2. Materials and Methods
2.1. Bending Device
2.2. Experimental Setup and Measuring Equipment
2.3. Motivation for a Coupled DIC-IRT Measurement
2.4. Test Procedure
2.5. Determination of the Bending Angles
2.6. Determination of the Bending Area
3. Results and Discussion
Identification of the Bending Area
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bake, F.; Knobloch, K. Novel liner concepts. CEAS Aeronaut J. 2019, 10, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Dannemann, M.; Kucher, M.; Kunze, E.; Modler, N.; Knobloch, K.; Enghardt, L.; Sarradj, E.; Höschler, K. Experimental Study of Advanced Helmholtz Resonator Liners with Increased Acoustic Performance by Utilising Material Damping Effects. Appl. Sci. 2018, 8, 1923. [Google Scholar] [CrossRef] [Green Version]
- Knobloch, K.; Enghardt, L.; Bake, F. Helmholtz Resonator Liner with Flexible Walls. In Proceedings of the 2018 AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 25–29 June 2018; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2018; Volume 06252018, ISBN 978-1-62410-560-9. [Google Scholar]
- Wadley, H.N.G. Multifunctional periodic cellular metals. Philos. Trans. A Math. Phys. Eng. Sci. 2006, 364, 31–68. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, G.W.; Wadley, H.N.G. Lattice truss structures from expanded metal sheet. Mater. Des. 2007, 28, 507–514. [Google Scholar] [CrossRef]
- Chen, Y.; Li, T.; Jia, Z.; Scarpa, F.; Yao, C.-W.; Wang, L. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Des. 2018, 137, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Hedayati, R.; Sadighi, M.; Mohammadi-Aghdam, M.; Zadpoor, A.A. Mechanical properties of additively manufactured octagonal honeycombs. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1307–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.B.; Cochran, J.K.; Rosen, D.W. Additive manufacturing of metallic cellular materials via three-dimensional printing. Int. J. Adv. Manuf. Technol. 2011, 53, 231–239. [Google Scholar] [CrossRef]
- Zaharia, S.M.; Enescu, L.A.; Pop, M.A. Mechanical Performances of Lightweight Sandwich Structures Produced by Material Extrusion-Based Additive Manufacturing. Polymers 2020, 12, 1740. [Google Scholar] [CrossRef] [PubMed]
- Pflug, J.; Vangrimde, B.; Verpoest, I.; Bratfisch, P.; Vandepitte, D. (Eds.) Continuously Produced Honeycomb Cores. In Proceedings of the 48th International SAMPE Symposium, Long Beach, CA, USA, 11–15 May 2003. [Google Scholar]
- Xinyu, F.; Yubin, L.; Juan, L.; Chun, Y.; Ke, L. Modeling of Heat Conduction in Thermoplastic Honeycomb Core/Face Sheet Fusion Bonding. Undefined Chin. J. Aeronaut. 2009, 22, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Turner, J. Finite Element Modelling the Forming of Components for Portable Electronic Devices. Ph.D. Thesis, School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, UK, 2021. [Google Scholar]
- Truckenmüller, R.; Giselbrecht, S.; Rivron, N.; Gottwald, E.; Saile, V.; van den Berg, A.; Wessling, M.; van Blitterswijk, C. Thermoforming of Film-Based Biomedical Microdevices. Adv. Mater. 2011, 23, 1311–1329. [Google Scholar] [CrossRef]
- Borowiec, J.; Hampl, J.; Singh, S.; Haefner, S.; Friedel, K.; Mai, P.; Brauer, D.; Ruther, F.; Liverani, L.; Boccaccini, A.R.; et al. 3D Microcontact Printing for Combined Chemical and Topographical Patterning on Porous Cell Culture Membrane. ACS Appl. Mater. Interfaces 2018, 10, 22857–22865. [Google Scholar] [CrossRef] [PubMed]
- Suwanmanee, U.; Varabuntoonvit, V.; Chaiwutthinan, P.; Tajan, M.; Mungcharoen, T.; Leejarkpai, T. Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: Cradle to consumer gate. Int. J. Life Cycle Assess 2013, 18, 401–417. [Google Scholar] [CrossRef]
- Wei, H. Optimisation on Thermoforming of Biodegradable Poly (Lactic Acid) (PLA) by Numerical Modelling. Polymers 2021, 13, 654. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Verpoest, I.; Pflug, J.; Vandepitte, D.; Bratfisch, P. Investigation of Continuously Produced Thermoplastic Honeycomb Processing—Part I: Thermoforming. J. Sandw. Struct. Mater. 2009, 11, 151–178. [Google Scholar] [CrossRef]
- Throne, J.L. Thermoforming; American Cancer Society: Dunedin, FL, USA, 2003. [Google Scholar]
- Koltzenburg, S.; Maskos, M.; Nuyken, O.; Mülhaupt, R. Polymere: Synthese, Eigenschaften und Anwendungen; Springer Spektrum: Berlin/Heidelberg, Germany, 2014; ISBN 9783642347733. [Google Scholar]
- Khaliulin, V.I.; Savitskii, V.V. A Transformed Framework with a Folded Configuration. J. Mach. Manuf. Reliab. 2020, 49, 948–957. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Khaliulin, V.I.; Shabalov, A.V. Six-ray folded configurations as the geometric basis of thin-walled elements in engineering structures. Thin-Walled Struct. 2018, 130, 435–448. [Google Scholar] [CrossRef]
- Akishev, N.I.; Zakirov, I.M.; Nikitin, A.V. Foldable Mandrel for Production of a Single Curvature Folded Core for a Sandwich Panel. Google Patents No. 7458802B2, 2008. Available online: https://patents.google.com/patent/US7458802 (accessed on 29 June 2021).
- Kucher, M.; Dannemann, M.; Adam, F.; Modler, N.; Zichner, M. Verfahren und Vorrichtung zur kontinuierlichen Herstellung Gefalteter Zellstrukturen; Sowie Gefaltete Zellstruktur; Technische Universitaet Dresden: Dresden, Germany, 2019. [Google Scholar]
- Chrysochoos, A.; Huon, V.; Jourdan, F.; Muracciole, J.-M.; Peyroux, R.; Wattrisse, B. Use of Full-Field Digital Image Correlation and Infrared Thermography Measurements for the Thermomechanical Analysis of Material Behaviour. Strain 2010, 46, 117–130. [Google Scholar] [CrossRef]
- González, J.A.O.; Paiva, V.E.L.; Gonzáles, G.L.G.; Freire, J.L.F.; Miskioglu, I. DIC-IR Analysis of Transient Thermal Stresses. In Thermomechanics & Infrared Imaging, Inverse Problem Methodologies and Mechanics of Additive & Advanced Manufactured Materials; Kramer, S.L.B., Tighe, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 7, pp. 67–73. ISBN 978-3-030-59863-1. [Google Scholar]
- Żaba, K.; Trzepieciński, T.; Puchlerska, S.; Noga, P.; Balcerzak, M. Coupled Thermomechanical Response Measurement of Deformation of Nickel-Based Superalloys Using Full-Field Digital Image Correlation and Infrared Thermography. Materials 2021, 14, 2163. [Google Scholar] [CrossRef] [PubMed]
- Cholewa, N.; Summers, P.T.; Feih, S.; Mouritz, A.P.; Lattimer, B.Y.; Case, S.W. A Technique for Coupled Thermomechanical Response Measurement Using Infrared Thermography and Digital Image Correlation (TDIC). Exp. Mech. 2016, 56, 145–164. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Lahiri, B.B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared thermography for condition monitoring—A review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Hung, P.-C.; Voloshin, A.S. In-plane strain measurement by digital image correlation. J. Braz. Soc. Mech. Sci. Eng. 2003, 25, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, L. Analysis of absorption and reflection mechanisms in a three-dimensional plate silencer. J. Sound Vib. 2008, 313, 510–524. [Google Scholar] [CrossRef]
- Pritchard, R.H.; Lava, P.; Debruyne, D.; Terentjev, E.M. Precise determination of the Poisson ratio in soft materials with 2D digital image correlation. Soft Matter 2013, 9, 6037–6045. [Google Scholar] [CrossRef]
- Wang, X.; Witz, J.-F.; El Bartali, A.; Jiang, C. Infrared thermography coupled with digital image correlation in studying plastic deformation on the mesoscale level. Opt. Lasers Eng. 2016, 86, 264–274. [Google Scholar] [CrossRef]
- Sabaté, N.; Vogel, D.; Gollhardt, A.; Marcos, J.; Gràcia, I.; Cané, C.; Michel, B. Digital image correlation of nanoscale deformation fields for local stress measurement inthin films. Nanotechnology 2006, 17, 5264. [Google Scholar] [CrossRef]
- Feng, X.; Xue, F. Characterization of 3D printed bolts based on digital image correlation and infrared thermography. Mater. Des. 2020, 191, 108641. [Google Scholar] [CrossRef]
- Dymny, G.; Bukalska, M.; Kujawińska, M. Hybrid Digital Image Correlation/Thermovision System for Monitoring of Civil Engineering Structures. In Proceedings of the 10th International Conference on Quantitative InfraRed Thermography 2010, Quebec, QC, Canada, 24–29 June 2010. [Google Scholar]
- van Mieghem, B.; Hamblok, M.; van Bael, A.; Buffel, B.; Amerijckx, M.; Desplentere, F.; Ivens, J. On the potential of stereo digital image correlation in thermoforming. Thermoform. Q. 2015, 34, 20–28. [Google Scholar]
- Denis, Y.; Guzman-Maldonado, E.; Morestin, F.; Hamila, N. Ultraviolet Digital Image Correlation for Molten Thermoplastic Composites under Finite Strain. Exp. Mech. 2019, 59, 439–451. [Google Scholar] [CrossRef]
- van Mieghem, B.; Ivens, J.; van Bael, A. Consistency of Strain Fields and Thickness Distributions in Thermoforming Experiments Through Stereo DIC. Exp. Tech. 2016, 40, 1409–1420. [Google Scholar] [CrossRef] [Green Version]
- Soudre-Bau, L.; Meshaka, Y.; Parent, G.; Boulet, P.; Le Corre, B.; Jeandel, G. Combined Temperature and Deformation Measurement During Glass Forming in a Real Scale Setup. Exp. Mech. 2013, 53, 1773–1781. [Google Scholar] [CrossRef]
- Ayadi, A.; Lacrampe, M.-F.; Krawczak, P. Assessment of principal strain uncertainties in stereo-DIC due to uncontrollable change of initial boundary conditions during vacuum-assisted thermoforming. AIP Conf. Proc. 2019, 2113, 130002. [Google Scholar] [CrossRef]
- Hoeschler, K.; Sarradj, E.; Modler, N.; Enghardt, L. Novel Jet Engine Acoustic Liner with Improved Broadband Noise Absorption. In Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, ICAS 2018. 31st Congress of the International Council of Aeronautical Sciences, Belo Horizonte, Brazil, 9–14 September 2018; ISBN 978-393218288-4. [Google Scholar]
- Bakis, G. Coefficient of Thermal Expansion—Elastollan 1170A; BASF Polyurethanes GmbH: Lemfoerde, Germany, 2021. [Google Scholar]
- Deutsches Institut für Normung. Testing of Plastics Films and Textile Fabrics (Excluding Nonwovens), Coated or Not Coated Fabrics —Determination of Stiffness in Bending—Method according to Cantilever; Beuth Verlag GmbH: Berlin, Germany, 2003. [Google Scholar]
Property | Unit | Thermoplastic Polyurethane Film | Polypropylene-Based Film |
---|---|---|---|
°C | 324.1 1 | 444.5 1 | |
°C | 162.8–216.8 2 | 98.9–166.6 2 | |
g/cm3 | 1.08 | 0.89 | |
Thickness t | mm | 0.3 | 0.1, 0.2 |
No. | Film Configuration | Heating Power | Heating Duration | Standard Deviation | |
---|---|---|---|---|---|
[W] | [s] | [%] | [%] | ||
1 | PP-0.2 | 48.5 | 100.0 | 86.9 | 3.3 |
2 | PP-0.2 | 53.0 | 102.0 | 93.4 | |
3 | PP-0.2 | 76.8 | 14.5 | 83.7 | |
4 | PP-0.2 | 82.5 | 10.0 | 86.6 | |
5 | PP-0.2 | 89.7 | 16.0 | 90.1 | |
6 | PP-0.1 | 64.9 | 11.0 | 88.9 | 4.2 |
7 | PP-0.1 | 76.8 | 9.0 | 86.1 | |
8 | PP-0.1 | 76.8 | 11.0 | 94.4 | |
9 | TPU-0.3 | 82.5 | 20.0 | 63.9 | 1.2 |
10 | TPU-0.3 | 89.0 | 25.0 | 63.6 | |
11 | TPU-0.3 | 103.6 | 24.5 | 66.3 |
No. | Film Config. | Heating Power | Heating Duration | Boundaries Y-Coordinate | Temp. Upper Boundary | Temp. Lower Boundary | Temp. Center Line |
---|---|---|---|---|---|---|---|
[W] | [s] | [mm] | [°C] | [°C] | [°C] | ||
3 | PP-0.2 | 76.8 | 14.5 | ±3.15 | 85.2 | 86.5 | 103.5 |
4 | PP-0.2 | 82.5 | 10.0 | ±3.30 | 74.0 | 77.6 | 94.4 |
5 | PP-0.2 | 89.7 | 16.0 | ±3.75 | 85.7 | 90.8 | 111.5 |
6 | PP-0.1 | 64.9 | 11.0 | ±3.49 | 78.1 | 79.2 | 101.0 |
7 | PP-0.1 | 76.8 | 9.0 | ±3.05 | 82.4 | 85.8 | 103.4 |
8 | PP-0.1 | 76.8 | 11.0 | ±2.78 | 91.3 | 98.0 | 110.8 |
9 | TPU-0.3 | 82.5 | 20.0 | ±4.98 | 59.9 | 74.5 | 123.2 |
10 | TPU-0.3 | 89.0 | 25.0 | ±5.44 | 65.5 | 65.5 | 154.5 |
11 | TPU-0.3 | 103.6 | 24.5 | ±5.65 | 65.7 | 72.7 | 153.2 |
Process Parameter | Unit | PP-0.2 | PP-0.1 | TPU-0.3 |
---|---|---|---|---|
Heating power | W | 76.8 … 89.7 | 64.9 … 76.8 | 82.5 … 103.6 |
Heating duration | s | 10.0 … 16.0 | 9.0 … 11.0 | 20.0 … 25.0 |
Heating energy | kJ | 0.83 … 1.44 | 0.69 … 0.84 | 1.65 … 2.54 |
Resulting forming ratio | % | 86.6 … 90.1 | 86.1 … 94.4 | 63.6 … 66.3 |
Minimum boundary temperature | °C | 74.0 … 85.2 | 78.1 … 91.3 | 59.9 … 65.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neubauer, M.; Dannemann, M.; Herzer, N.; Schwarz, B.; Modler, N. Analysis of a Film Forming Process through Coupled Image Correlation and Infrared Thermography. Polymers 2022, 14, 1231. https://doi.org/10.3390/polym14061231
Neubauer M, Dannemann M, Herzer N, Schwarz B, Modler N. Analysis of a Film Forming Process through Coupled Image Correlation and Infrared Thermography. Polymers. 2022; 14(6):1231. https://doi.org/10.3390/polym14061231
Chicago/Turabian StyleNeubauer, Moritz, Martin Dannemann, Niklas Herzer, Benjamin Schwarz, and Niels Modler. 2022. "Analysis of a Film Forming Process through Coupled Image Correlation and Infrared Thermography" Polymers 14, no. 6: 1231. https://doi.org/10.3390/polym14061231
APA StyleNeubauer, M., Dannemann, M., Herzer, N., Schwarz, B., & Modler, N. (2022). Analysis of a Film Forming Process through Coupled Image Correlation and Infrared Thermography. Polymers, 14(6), 1231. https://doi.org/10.3390/polym14061231