Improvement of Anchorage Performance of Carbon Fiber-Reinforced Polymer Cables
Abstract
:1. Introduction
2. Materials and Methods
2.1. CFRP
2.1.1. Carbon Fibers
2.1.2. Binder
2.2. CFRP Anchorage Systems
2.3. Test Methods and Results of Single-Anchorage Systems
2.3.1. Specimens of Single-Anchorage System Test
2.3.2. Manufacturing Process of Single-Anchorage System Test Specimens
2.3.3. Single-Anchorage System Tensile Strength Method
2.3.4. Results of the Single-Anchorage System Test
3. Results and Discussion
3.1. Performance Improvement of Single-Anchorage System Compression
3.1.1. CFRP Cable Compression Variable Conditions
3.1.2. Test Results
3.2. Test Details and Results
3.2.1. Multi-Anchorage System Details
3.2.2. Multi-Anchorage System Test Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, J.H.; Choi, S.J.; Kim, T.K.; Lee, T.H.; Kim, J.H.J. Experimental evaluation on the prediction of long-term loss of prestressed concrete. J. Korea Concr. Inst. 2019, 31, 419–428. (In Korean) [Google Scholar] [CrossRef]
- Shin, H.M.; Lee, J.H. Reinforced Concrete, 11th ed.; Dong Myeong: Paju City, Gyeonggi, Korea, 2013. [Google Scholar]
- Shin, H.M. Prestressed Concrete, 10th ed.; Dong Myeong: Paju City, Gyeonggi, Korea, 2012. [Google Scholar]
- Mehta, P.K.; Paulo, J.M.M. Concrete Microstructure, Properties, and Materials, 3rd ed.; McGraw Hill: New York, NY, USA, 2006. [Google Scholar]
- Sidney, M.; Francis, Y.; David, D. Concrete, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Yang, J.M.; Jung, J.Y.; Kim, J.K. Applicability of 2360 MPa grade prestressing steel strand: Performance of material, bond, and anchorage system. Constr. Build. Mater. 2021, 266, 120941. [Google Scholar] [CrossRef]
- Dang, N.L.; Huynh, T.C.; Pham, Q.Q.; Lee, S.Y.; Kim, J.T. Damage-sensitive impedance sensor placement on multi-strand anchorage based on local stress variation analysis. Struct. Control Health Monit. 2020, 27, e2547. [Google Scholar] [CrossRef]
- Dang, N.L.; Huynh, T.C.; Kim, J.T. Local strand-breakage detection in multi-strand anchorage system using an impedance-based stress monitoring method—Feasibility study. Sensors 2019, 19, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohandoss, P.; Pillai, R.G.; Gettu, R. Determining bond strength of seven-wire strands in prestressed concrete. Structures 2021, 33, 2413–2423. [Google Scholar] [CrossRef]
- Dai, L.; Chen, Y.; Wang, L.; Ma, Y. Secondary anchorage and residual prestressing force in locally corroded PT beams after strand fracture. Constr. Build. Mater. 2021, 275, 122137. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W.; Zhang, X.; Zhu, P. Experimental and numerical study on a novel cable anchorage system to improve the maintainability of suspension bridges. Structures 2020, 27, 2126–2136. [Google Scholar] [CrossRef]
- Bedriñana, L.A.; Zhang, K.; Nishiyama, M. Evaluation of the behavior and ultimate capacity of unbonded monostrand-anchorage systems under concentric and eccentric inelastic cyclic loading. Eng. Struct. 2018, 176, 632–651. [Google Scholar] [CrossRef]
- Dyba, M. FEM Simulations of bond behaviour between concrete and seven-wire prestressing strand. IOP Conf. Ser. Mater. Sci. Eng. 2020, 960, 032076. [Google Scholar] [CrossRef]
- Senthil, R.; Manisekar, R. Ultimate flexural behaviour of externally prestressed new beams and distressed beams. J. Eng. Sci. Technol. 2015, 10, 461–484. [Google Scholar]
- Pisani, M.A. Behaviour under long-term loading of externally prestressed concrete beams. Eng. Struct. 2018, 160, 24–33. [Google Scholar] [CrossRef]
- Yi, N.H.; Lee, S.W.; Choi, S.J.; Kim, J.H.J. Performance evaluations of PSC panel from impact-induced fire loading. Mag. Concr. Res. 2015, 67, 1257–1273. [Google Scholar] [CrossRef]
- Kotynia, R.; Oller, E.; Marí, A.; Kaszubska, M. Efficiency of shear strengthening of RC beams with externally bonded FRP materials–State-of-the-art in the experimental tests. Compos. Struct. 2021, 267, 113891. [Google Scholar] [CrossRef]
- Jiang, T.Y.; Fang, Z. Experimental investigation on the performance of wedge-bond anchors for CFRP tendons. Chi. Civ. Eng. J. 2010, 43, 79–87. [Google Scholar]
- Cai, D.S.; Yin, J.; Liu, R.G. Experimental and analytical investigation into the stress performance of composite anchors for CFRP tendons. Compos. B. Eng. 2015, 79, 530–534. [Google Scholar] [CrossRef]
- Reda, M.M.; Shrive, N.G.; Gillott, J.E. Microstructural investigation of innovative UHPC. Cem. Concr. Res. 1999, 29, 323–329. [Google Scholar] [CrossRef]
- Al-Mayah, A.; Soudki, K.; Plumtree, A. Development and assessment of a new CFRP rod–anchor system for prestressed concrete. Appl. Compos. Mater. 2006, 13, 321–334. [Google Scholar] [CrossRef]
- Yang, Y.; Fahmy, M.F.M.; Guan, S.; Pan, Z.; Zhan, Y.; Zhao, T. Properties and applications of FRP cable on long-span cable-supported bridges: A review. Compos. B: Eng. 2020, 190, 107934. [Google Scholar] [CrossRef]
- Damiani, M.; Quadrino, A.; Nisticò, N. FRP cables to prestress RC beams: State of the art vs. a split wedge anchorage system. Buildings 2021, 11, 209. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Xu, J.; Han, Q. Anchorage systems of CFRP cables in cable structures—A review. Constr. Build. Mater. 2018, 160, 82–99. [Google Scholar] [CrossRef]
- Zhuge, Y. FRP-retrofitted URM walls under in-plane shear: Review and assessment of available models. J. Compos. Constr. 2010, 14, 743–753. [Google Scholar] [CrossRef]
- Campbell, T.I.; Shrive, N.G.; Soudki, K.A.; Al-Mayah, A.; Keatley, J.P.; Reda, M.M. Design and evaluation of a wedge-type anchor for fibre reinforced polymer tendons. Can. J. Civ. Eng. 2000, 27, 985–992. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Peng, Z.; Wu, Z.; Zhu, Z. Evaluation of a large-tonnage FRP cable anchor system: Anchorage design and full-scale experiment. Eng. Struct. 2022, 251, 113551. [Google Scholar] [CrossRef]
- Feng, B.; Wang, X.; Wu, Z. Static and fatigue behavior of multitendon CFRP cables with integrated anchorages. J. Compos. Constr. 2019, 23, 04019051. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, X.; Zhou, J.; Wu, Z. Reliability assessment of fiber-reinforced polymer cable-anchorage system. Compos. Struct. 2021, 273, 114308. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Peng, Z.; Wu, Z. Optimization of load transfer component for FRP cable anchor system. Compos. Struct. 2022, 282, 115009. [Google Scholar] [CrossRef]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizklla, S.H.; Triantafillou, T.C. Fiber-reinforced polymer composites for construction—State-of-the-art review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.L.; Zhang, L. State-of-the-art review on FRP strengthened steel structures. Eng. Struct. 2007, 29, 1808–1823. [Google Scholar] [CrossRef]
- Saeed, Y.M. Behavior of Prestressed Concrete Beams with CFRP Strands. Master’s Thesis, Portland State University, Portland, OR, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Science and ICT, and Transport. Structural Performance Improvement of Infrastructures Using FRP Composites; Report No. KICT 2017-109; Korea Institute of Civil Engineering and Building Technology: Ilsanseo-gu, Gyeonggi-do, Korea, 2017. (In Korean)
Category | Specific Gravity | Tensile Strength (MPa) | Young’s Modulus (GPa) | Elongation (%) | Coefficient of Thermal Expansion (×10−6/°C) | Poisson’s Ratio | ||
---|---|---|---|---|---|---|---|---|
Glass fiber | E | 2.54 | 600–3500 | 5–74 | 4.8 | 5.0 | 0.2 | |
S | 2.49 | 4900 | 87 | 5.6 | 2.9 | 0.22 | ||
AR | 2.78 | 1800–3500 | 6–70 | 2.0–3.0 | N/A | N/A | ||
Carbon | Pan | High-strength | 1.76 | 3500 | 200–240 | 1.3–1.8 | −1.2~−0.1 (Longitudinal) | –0.2 |
High elasticity | 1.76 | 2500–4000 | 350–650 | 0.4–0.8 | 7~12 (Lateral) | −0.2 | ||
Pitch | General | 2.00 | 780–1000 | 38–40 | 2.1–2.5 | −1.6~−0.8 (Longitudinal) | N/A | |
High elasticity | 2.00 | 3000–3500 | 400–800 | 0.4–1.5 | −1.6~−0.8 (Longitudinal) | N/A | ||
Aramid fiber | Kevlar 29 | 1.45 | 3620 | 82.7 | 4.4 | N/A | 0.35 | |
Kevlar 49 | 1.45 | 2800 | 130 | 2.3 | −2.0 (Longitudinal), 59 (Lateral) | 0.35 | ||
Kevlar 129 | 1.45 | 4210 | 110 | - | N/A | 0.35 | ||
Kevlar 149 | 1.45 | 3450 | 172–179 | 1.9 | N/A | 0.35 | ||
Twaron | 1.45 | 2800 | 130 | 2.3 | −2.0 (Longitudinal), 59 (Lateral) | 0.35 | ||
Technora | 1.39 | 3500 | 74 | 4.6 | N/A | 0.35 |
Category | Specific Gravity | Tensile Strength (MPa) | Young’s Modulus (GPa) | Coefficient of Thermal Expansion (×10−6/°C) | |
---|---|---|---|---|---|
Thermoset | Polyester | 1.10–1.40 | 45–90 | 2.5–4.0 | 100–110 |
Vinylester | 1.12–13.3 | 73–81 | 3.0–3.35 | 100–110 | |
Epoxy | 1.20–1.30 | 90–110 | 3.0–7.0 | 45–65 | |
Phenol | 1.5–1.75 | 45–59 | 5.5–8.3 | 30–45 | |
Thermoplastic | PVC | 1.37 | 58 | 2.4–2.8 | 50 |
ABS | 1.05 | 17–62 | 0.69–2.82 | 60–130 | |
Nylon | 1.13–1.15 | 48–83 | 1.03–2.76 | 80–150 |
Specifications | Details | |
---|---|---|
1 | Model name | 1000 kN Dynamic UTM |
2 | Experimental capacity | Loading rage: +1000 to −1000 kN |
Displacement range: 0–500 mm |
Specifications | Details | |
---|---|---|
1 | Model name | 1000 kN Dynamic UTM |
2 | Measurement point channel | Basic channel: 30 channel Switch box (added): 1000 channel |
3 | Measurement target | Strain, DC voltage, Thermocouple |
4 | Scanning time | IHW-50G: 0.4 s/1000 points (1 s/point) |
5 | Dimensions | 320 (W) × 130 (H) × 440 (D) mm |
6 | Weight | Approximately 8 kg |
7 | Power supply | AC 85-250 V 50/60 Hz 114 VA MAX |
Specimens (EA) | CFRP Cable | |||
---|---|---|---|---|
Maximum Load (kN) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Fracture Location | |
1 | 241 | 3075 | 189 | Center |
2 | 237 | 3015 | 183 | Center |
3 | 241 | 3072 | 183 | End |
4 | 243 | 3098 | 184 | End |
5 | 243 | 3099 | 187 | End |
Average | 241 | 3071 | 185 | - |
Specimens | Sleeve Manufacturer | CFRP Surface Treatment Direction | Number of Insert Layers | Specimens (EA) |
---|---|---|---|---|
A-N-3 | A | - | 3 | 3 |
B-N-3 | B | - | 3 | 3 |
A-L-0 | A | Longitudinal | 0 | 3 |
A-L-2 | A | Longitudinal | 2 | 3 |
A-L-3 | A | Longitudinal | 3 | 3 |
A-L-4 | A | Longitudinal | 4 | 3 |
A-T-0 | A | Transverse | 0 | 3 |
A-T-2 | A | Transverse | 2 | 3 |
A-T-3 | A | Transverse | 3 | 3 |
A-T-4 | A | Transverse | 4 | 3 |
B-L-3 | B | Longitudinal | 3 | 3 |
B-L-4 | B | Longitudinal | 4 | 3 |
A-D-3 | A | Longitudinal | 3 | 1 |
Specimens | Maximum Load (kN) | Tensile Strength (MPa) | Young’s Modulus (GPa) |
---|---|---|---|
A-N-3-1 | 236.4 | 3011 | 180.2 |
A-N-3-2 | 234.9 | 2992 | 178.3 |
A-N-3-3 | 217.2 | 2767 | 176.5 |
A-N-3 Avg. | 229.5 | 2924 | 178.3 |
B-N-3-1 | 242.4 | 3088 | 177.8 |
B-N-3-2 | 240.9 | 3069 | 180.2 |
B-N-3-3 | 185.9 | 2368 | 174.9 |
B-N-3 Avg. | 223.1 | 2842 | 177.6 |
A-L-0-1 | 170.2 | 2168 | 192.7 |
A-L-0-2 | 209.3 | 2666 | 177.1 |
A-L-0-3 | 227.0 | 2892 | 176.4 |
A-L-0 Avg. | 202.2 | 2576 | 182.0 |
A-L-2-1 | 237.0 | 3019 | 179.8 |
A-L-2-2 | 226.9 | 2890 | 181.1 |
A-L-2-3 | 222.2 | 2831 | 180.4 |
A-L-2 Avg. | 228.7 | 2913 | 180.5 |
A-L-3-1 | 236.8 | 3017 | 179.6 |
A-L-3-2 | 214.9 | 2738 | 177.9 |
A-L-3-3 | 237.3 | 3023 | 178.8 |
A-L-3 Avg. | 229.7 | 2926 | 178.7 |
A-L-4-1 | 241.7 | 3079 | 180.4 |
A-L-4-2 | 236.6 | 3014 | 181.7 |
A-L-4-3 | 241.7 | 3079 | 178.5 |
A-L-4 Avg. | 240.0 | 3057 | 180.2 |
A-T-0-1 | 136.2 | 1735 | 173.0 |
A-T-0-2 | 165.4 | 2107 | 175.8 |
A-T-0-3 | 218.8 | 2787 | 178.9 |
A-T-0 Avg. | 173.4 | 2209 | 175.9 |
A-T-2-1 | 201.7 | 2569 | 176.8 |
A-T-2-2 | 195.3 | 2488 | 177.1 |
A-T-2-3 | 215.5 | 2745 | 182.3 |
A-T-2 Avg. | 204.2 | 2601 | 178.7 |
A-T-3-1 | 227.0 | 2892 | 179.4 |
A-T-3-2 | 228.7 | 2913 | 179.0 |
A-T-3-3 | 230.1 | 2931 | 180.4 |
A-T-3 Avg. | 228.6 | 2912 | 179.6 |
A-T-4-1 | 228.5 | 2911 | 179.9 |
A-T-4-2 | 183.2 | 2334 | 178.1 |
A-T-4-3 | 207.3 | 2641 | 177.6 |
A-T-4 Avg. | 206.3 | 2628 | 178.5 |
B-L-3-1 | 246 | 3134 | 179.2 |
B-L-3-2 | 241.4 | 3075 | 182.5 |
B-L-3-3 | 245.9 | 3132 | 183.0 |
B-L-3 Avg. | 244.4 | 3113 | 181.6 |
B-L-4-1 | 252.4 | 3215 | 181.6 |
B-L-4-2 | 245.2 | 3124 | 178.3 |
B-L-4-3 | 248.6 | 3167 | 183.6 |
B-L-4 Avg. | 248.7 | 3168 | 181.2 |
A-D-3 | 227.0 | 2892 | 180.6 |
Specimens | Maximum Load (kN) | Tensile Strength (MPa) | Displacement (mm) |
---|---|---|---|
B-L-4 | 248.7 | 3168 | 36.6 |
3-multi S1 (1EA) | 740.4 | 9431.8 | 46.2 |
3-multi S2 (1EA) | 742.9 | 9463.7 | 36.2 |
3-multi S3 (1EA) | 726.9 | 9259.9 | 35.6 |
3-multi-S Avg. (1 single) | 736.7 (245.1) | 9385.1 (3128.4) | 39.3 (13.1) |
Specimens | Maximum Load (kN) | Tensile Strength (MPa) | Displacement (mm) |
---|---|---|---|
B-L-4 | 248.7 | 3168 | 36.6 |
7-multi S1 (1EA) | 1583.7 | 20 174.5 | 42.0 |
7-multi S2 (1EA | 1708.8 | 21 768.2 | 42.5 |
7-multi S3 (1EA) | 1623.7 | 20 684.1 | 39.0 |
7-multi-S Avg. (1 single) | 1638.7 (234.1) | 20 875.6 (2982.2) | 41.2 (5.9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-K.; Jung, W.-T. Improvement of Anchorage Performance of Carbon Fiber-Reinforced Polymer Cables. Polymers 2022, 14, 1239. https://doi.org/10.3390/polym14061239
Kim T-K, Jung W-T. Improvement of Anchorage Performance of Carbon Fiber-Reinforced Polymer Cables. Polymers. 2022; 14(6):1239. https://doi.org/10.3390/polym14061239
Chicago/Turabian StyleKim, Tae-Kyun, and Woo-Tai Jung. 2022. "Improvement of Anchorage Performance of Carbon Fiber-Reinforced Polymer Cables" Polymers 14, no. 6: 1239. https://doi.org/10.3390/polym14061239
APA StyleKim, T. -K., & Jung, W. -T. (2022). Improvement of Anchorage Performance of Carbon Fiber-Reinforced Polymer Cables. Polymers, 14(6), 1239. https://doi.org/10.3390/polym14061239