Strength, Elastic Properties and Fiber–Matrix Interaction Mechanism in Geopolymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Strength Properties Tests
2.3. Elastic Properties Tests
2.4. Scanning Electron Microscopy (SEM) Observations
3. Results and Discussion
3.1. Strength Properties
3.2. Elastic Properties
3.3. SEM Observations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- International Energy Agency (IEA). Energy Technology Transitions for Industry. Strategies for the Next Industrial Revolution; OECD/IEA: Paris, France, 2009; p. 321. ISBN 978-92-64-06858-2. [Google Scholar]
- Baumert, K.A.; Herzog, T.; Pershing, J. Navigating the Numbers: Greenhouse Gas Data and International Climate Policy; World Resources Institute: Washington, DC, USA, 2005; p. 122. ISBN 1-56973-599-9. [Google Scholar]
- Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and Carbon Emissions. Mater. Struct. 2014, 47, 1055–1065. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Alomayri, T.; Shaikh, F.U.A.; Low, I.M. Synthesis and Mechanical Properties of Cotton Fabric Reinforced Geopolymer Composites. Compos. Part B Eng. 2014, 60, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.P.; Thaumaturgo, C. Fracture Toughness of Geopolymeric Concretes Reinforced with Basalt Fibers. Cem. Concr. Compos. 2005, 27, 49–54. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Review of Mechanical Properties of Short Fibre Reinforced Geopolymer Composites. Constr. Build. Mater. 2013, 43, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Archez, J.; Texier-Mandoki, N.; Bourbon, X.; Caron, J.F.; Rossignol, S. Influence of the Wollastonite and Glass Fibers on Geopolymer Composites Workability And Mechanical Properties. Constr. Build. Mater. 2020, 257, 119511. [Google Scholar] [CrossRef]
- Moradikhou, A.B.; Esparham, A.; Jamshidi Avanaki, M. Physical & mechanical properties of fiber reinforced metakaolin-based geopolymer concrete. Constr. Build. Mater. 2020, 251, 118965. [Google Scholar]
- Mohseni, E.; Kazemi, M.J.; Koushkbaghi, M.; Zehtab, B.; Behforouz, B. Evaluation of Mechanical and Durability Properties of Fiber-Reinforced Lightweight Geopolymer Composites Based on Rice Husk Ash and Nano-Alumina. Constr. Build. Mater. 2019, 209, 532–540. [Google Scholar] [CrossRef]
- Guo, X.; Pan, X. Mechanical Properties and Mechanisms of Fiber Reinforced Fly Ash–Steel Slag Based Geopolymer Mortar. Constr. Build. Mater. 2018, 179, 633–641. [Google Scholar] [CrossRef]
- Punurai, W.; Kroehong, W.; Saptamongkol, A.; Chindaprasirt, P. Mechanical Properties, Microstructure and Drying Shrinkage of Hybrid Fly Ash-Basalt Fiber Geopolymer Paste. Constr. Build. Mater. 2018, 186, 62–70. [Google Scholar] [CrossRef]
- Alzeebaree, R.; Çevik, A.; Nematollahi, B.; Sanjayan, J.; Mohammedameen, A.; Gülşan, M.E. Mechanical Properties and Durability of Unconfined and Confined Geopolymer Concrete with Fiber Reinforced Polymers Exposed to Sulfuric Acid. Constr. Build. Mater. 2019, 215, 1015–1032. [Google Scholar] [CrossRef]
- Khan, M.Z.N.; Hao, Y.; Hao, H.; Shaikh, F.U.A.; Liu, K. Mechanical Properties of Ambient Cured High-Strength Plain and Hybrid Fiber Reinforced Geopolymer Composites from Triaxial Compressive Tests. Constr. Build. Mater. 2018, 185, 338–353. [Google Scholar] [CrossRef]
- Tanyildizi, H.; Yonar, Y. Mechanical Properties of Geopolymer Concrete Containing Polyvinyl Alcohol Fiber Exposed to High Temperature. Constr. Build. Mater. 2016, 126, 381–387. [Google Scholar] [CrossRef]
- Nguyen, H.; Carvelli, V.; Adesanya, E.; Kinnunen, P.; Illikainen, M. High Performance Cementitious Composite from Alkali-Activated Ladle Slag Reinforced with Polypropylene Fibers. Cem. Concr. Compos. 2018, 90, 150–160. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yao, X.; Zhu, H.J.; Hua, S.D.; Chen, Y. Preparation and Mechanical Properties of Polypropylene Fiber Reinforced Calcined Kaolin-Fly Ash Based Geopolymer. J. Cent. South Univ. Technol. 2009, 16, 49–52. [Google Scholar] [CrossRef]
- Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Cornelis Metselaar, H.S.; Jumaat, M.Z. Mechanisms of Interfacial Bond in Steel and Polypropylene Fiber Reinforced Geopolymer Composites. Compos. Sci. Technol. 2016, 122, 73–81. [Google Scholar] [CrossRef]
- Bhutta, A.; Borges, P.H.R.; Zanotti, C.; Farooq, M.; Banthia, N. Flexural Behavior of Geopolymer Composites Reinforced with Steel and Polypropylene Macro Fibers. Cem. Concr. Res. 2017, 80, 31–40. [Google Scholar] [CrossRef]
- Xu, F.; Deng, X.; Peng, C.; Zhu, J.; Chen, J. Mix Design and Flexural Toughness of PVA Fiber Reinforced Fly Ash-Geopolymer Composites. Constr. Build. Mater. 2017, 150, 179–189. [Google Scholar] [CrossRef]
- Al-mashhadani, M.M.; Canpolat, O.; Aygörmez, Y.; Uysal, M.; Erdem, S. Mechanical and Microstructural Characterization of Fiber Reinforced Fly Ash Based Geopolymer Composites. Constr. Build. Mater. 2018, 167, 505–513. [Google Scholar] [CrossRef]
- Bhutta, A.; Farooq, M.; Banthia, N. Performance Characteristics of Micro Fiber-Reinforced Geopolymer Mortars for Repair. Constr. Build. Mater. 2019, 215, 605–612. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-Reinforced Geopolymer Composites: A Review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Cruz, A.S.A.; Marvila, M.T.; de Oliveira, L.B.; Monteiro, S.N.; Vieira, C.M.F.; Fediuk, R.; Timokhin, R.; Vatin, N.; Daironas, M. Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A Comparative Review. Polymers 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. Graphene Nanoplatelet-Fly Ash Based Geopolymer Composites. Cem. Concr. Res. 2015, 76, 222–231. [Google Scholar] [CrossRef]
- Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T. Mechanical and Durable Behavior of Alkaline Cement Mortars Reinforced with Polypropylene Fibres. Cem. Concr. Res. 2003, 33, 2031–2036. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, S. The Effects of Fiber’s Surface Roughness on the Mechanical Properties of Fiber-Reinforced Polymer Composites. J. Compos. Mater. 2012, 47, 2909–2923. [Google Scholar] [CrossRef] [Green Version]
- C778-12; Standard Specification for Standard Sand. ASTM Standard Book. ASTM International ASTM: West Conshohocken, PA, USA, 2012; pp. 1–3.
- C348-08; ASTM International ASTM. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International ASTM: West Conshohocken, PA, USA, 2012; ISBN 978-0-8031-8737-5.
- C349-08; Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars. Annual Book of ASTM Standards. ASTM International ASTM: West Conshohocken, PA, USA, 2012; pp. 248–251.
- C109/C109M-11b; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. Annual Book of ASTM Standards. ASTM International ASTM: West Conshohocken, PA, USA, 2012; pp. 80–89.
- C215-08; Standard Test Method for Fundamental Transverse, Longitudinal, and Torsion Resonant Frequencies of Concrete Sprecimens. Annual Book of ASTM Standards. ASTM International ASTM: West Conshohocken, PA, USA, 2011; pp. 146–152.
- EN 12390-13; European Standards EN. Testing Hardened Concrete-Part 13: Determination of Secant Modulus Elasticity in Compression. AENOR: Madrid, España, 2013.
- Zollo, R.F. Fiber-Reinforced Concrete: An Overview after 30 Years of Development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | SO3 | TiO2 |
---|---|---|---|---|---|---|---|---|---|
FA (%) | 59.11 | 20.31 | 4.638 | 9.918 | 1.74 | 1.17 | 0.512 | 0.336 | 1.65 |
Material | Length (mm) | Diameter (mm) | Aspect Ratio | Shape | Tensile Strength (MPa) | Young’s Modulus (GPa) | Specific Gravity |
---|---|---|---|---|---|---|---|
Polypropylene | 18 | 0.05 | 360 | Mono filament | 582 | 3.8 | 0.9 |
Sample | 1 Day | 7 Day | 14 Day | 1 Day | 7 Day | 14 Day | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dynamic Young’s Modulus (Ed) | Dynamic Shear Modulus (Gd) | |||||||||||
Ed (GPa) | IR (%) | Ed (GPa) | IR (%) | Ed (GPa) | IR (%) | Gd (GPa) | IR (%) | Gd (GPa) | IR (%) | Gd (GPa) | IR (%) | |
G0 | 10.9 | - | 15.5 | - | 15.7 | - | 4.7 | - | 6.8 | - | 7.0 | - |
G1 | 15.8 | 45 | 18.3 | 18 | 18.9 | 20 | 6.5 | 38 | 7.9 | 16 | 8.1 | 16 |
G2 | 16.6 | 52 | 17.6 | 14 | 16.6 | 6 | 6.7 | 43 | 7.6 | 12 | 7.1 | 1 |
G3 | 6.1 | −44 | 11.1 | −29 | 11.3 | −28 | 2.6 | −45 | 4.8 | −29 | 4.9 | −29 |
Poisson’s ratio (μ) | Static Young’s modulus (Es) | |||||||||||
μ | IR (%) | μ | IR (%) | μ | IR (%) | Es (GPa) | IR (%) | Es (GPa) | IR (%) | Es (GPa) | IR (%) | |
G0 | 0.16 | - | 0.14 | - | 0.12 | - | 10.42 | - | 13.98 | - | 13.68 | - |
G1 | 0.22 | 37 | 0.16 | 14 | 0.16 | 33 | 14.82 | 42 | 17.46 | 25 | 15.71 | 15 |
G2 | 0.24 | 50 | 0.16 | 14 | 0.17 | 42 | 16.10 | 55 | 15.88 | 14 | 14.06 | 3 |
G3 | 0.17 | 6 | 0.15 | 1 | 0.14 | 17 | 5.20 | −50 | 8.20 | −41 | 6.2 | −55 |
Resilience (Ur) | Elongation at yield stress (εy) | |||||||||||
Ur (J/m3) | IR (%) | Ur (J/m3) | IR (%) | Ur (J/m3) | IR (%) | εy (με) | IR (%) | εy (με) | IR (%) | εy (με) | IR (%) | |
G0 | 2695 | - | 3194 | - | 3654 | - | 410 | - | 440 | - | 711 | - |
G1 | 2871 | 7 | 3787 | 19 | 4775 | 31 | 712 | 74 | 725 | 65 | 786 | 11 |
G2 | 2784 | 3 | 4426 | 39 | 5557 | 52 | 300 | −27 | 756 | 72 | 1121 | 58 |
G3 | 872 | −68 | 664 | −79 | 1290 | −65 | 670 | 63 | 285 | −35 | 708 | −0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arredondo, S.P.; Corral, R.; Valenciano, A.; Rosas, C.A.; Gómez, J.M.; Medina, T.J.; Soto, M.; Bernal, J.M. Strength, Elastic Properties and Fiber–Matrix Interaction Mechanism in Geopolymer Composites. Polymers 2022, 14, 1248. https://doi.org/10.3390/polym14061248
Arredondo SP, Corral R, Valenciano A, Rosas CA, Gómez JM, Medina TJ, Soto M, Bernal JM. Strength, Elastic Properties and Fiber–Matrix Interaction Mechanism in Geopolymer Composites. Polymers. 2022; 14(6):1248. https://doi.org/10.3390/polym14061248
Chicago/Turabian StyleArredondo, Susana P., Ramón Corral, A. Valenciano, Carlos A. Rosas, Jose M. Gómez, Teresita J. Medina, Magnolia Soto, and Jesús M. Bernal. 2022. "Strength, Elastic Properties and Fiber–Matrix Interaction Mechanism in Geopolymer Composites" Polymers 14, no. 6: 1248. https://doi.org/10.3390/polym14061248
APA StyleArredondo, S. P., Corral, R., Valenciano, A., Rosas, C. A., Gómez, J. M., Medina, T. J., Soto, M., & Bernal, J. M. (2022). Strength, Elastic Properties and Fiber–Matrix Interaction Mechanism in Geopolymer Composites. Polymers, 14(6), 1248. https://doi.org/10.3390/polym14061248