The Influence of Extraction Conditions on the Yield and Physico-Chemical Parameters of Pectin from Grape Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Extraction and Purification of Pectin from Dried Grape Pomace
2.2.2. Pectin Yield
2.2.3. Galacturonic Acid Content
2.2.4. Degree of Esterification
2.2.5. Equivalent Weight
2.2.6. Methoxyl Content
2.2.7. Molecular Weight
2.2.8. Color
2.2.9. FT-IR Analysis
2.2.10. Microstructure
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Influence of Grape Pomace Variety on the Yield and Physico-Chemical Parameters of Pectin
3.2. Influence of Acid Type on the Yield and Physico-Chemical Parameters of Pectin
3.3. Influence of Particle Size on the Yield and Physico-Chemical Parameters of Pectin
3.4. Influence of pH on the Yield and Physico-Chemical Parameters of Pectin
3.5. Influence of Time on the Yield and Physico-Chemical Parameters of Pectin
3.6. Influence of Temperature on the Yield and Physico-Chemical Parameters of Pectin
3.7. FT-IR Analysis
3.8. Microstructural Analysis by SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Cheng, H.; Zhi, Z.; Zhang, H.; Linhardt, R.J.; Zhang, F.; Chen, S.; Ye, X. Extraction temperature is a decisive factor for the properties of pectin. Food Hydrocoll. 2021, 112, 106160. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, C.; Feng, L.; Han, Y.; Du, H.; Xiao, H.; Zheng, J. Pectins from fruits: Relationships between extraction methods, structural characteristics, and functional properties. Trends Food Sci. Technol. 2021, 110, 39–54. [Google Scholar] [CrossRef]
- Lara-Espinoza, C.; Sanchez-Villegas, J.A.; Lopez-Franco, Y.; Carvajal-Millan, E.; Troncoso-Rojas, R.; Carvallo-Ruiz, T.; Rascon-Chu, A. Composition, physicochemical features, and covalent gelling properties of ferulated pectin extracted from three sugar beet (Beta vulgaris L.) cultivars grown under desertic Conditions. Agronomy 2020, 11, 40. [Google Scholar] [CrossRef]
- Jacob, E.M.; Borah, A.; Jindal, A.; Pillai, S.C.; Yamamoto, Y.; Maekawa, T.; Kumar, D.N.S. Synthesis and characterization of citrus-derived pectin nanoparticles based on their degree of esterification. J. Mater. Res. 2020, 35, 1514–1522. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res. Int. 2018, 113, 327–350. [Google Scholar] [CrossRef] [PubMed]
- Spinei, M.; Oroian, M. The potential of grape pomace varieties as a dietary source of pectic substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Méndez, P.A.; López, B.L. Polyelectrolyte nanoparticles of amphiphilic chitosan/pectin from banana peel as potential carrier system of hydrophobic molecules. Polymers 2020, 12, 2109. [Google Scholar] [CrossRef]
- Dalal, N.; Phogat, N.; Bisht, V.; Dhakar, U. Potential of fruit and vegetable waste as a source of pectin. Int. J. Chem. Stud. 2020, 8, 3085–3090. [Google Scholar] [CrossRef]
- Zaid, R.M.; Mishra, P.; Siti Noredyani, A.R.; Tabassum, S.; Ab Wahid, Z.; Mimi Sakinah, A.M. Proximate characteristics and statistical optimization of ultrasound-assisted extraction of high-methoxyl-pectin from Hylocereus polyrhizus peels. Food Bioprod. Process. 2020, 123, 134–149. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Dong, H.; Li, X.; Zhang, J.; Ramaswamy, S.; Xu, F. Pectin in biomedical and drug delivery applications: A review. Int. J. Biol. Macromol. 2021, 185, 49–65. [Google Scholar] [CrossRef]
- Hennessey-Ramos, L.; Murillo-Arango, W.; Vasco-Correa, J.; Paz Astudillo, I.C. Enzymatic extraction and characterization of pectin from cocoa pod husks (Theobroma cacao L.) using Celluclast® 1.5 L. Molecules 2021, 26, 1473. [Google Scholar] [CrossRef] [PubMed]
- Méndez, D.A.; Fabra, M.J.; Gómez-Mascaraque, L.; López-Rubio, A.; Martinez-Abad, A. Modelling the extraction of pectin towards the valorisation of watermelon rind waste. Foods 2021, 10, 738. [Google Scholar] [CrossRef] [PubMed]
- Sengar, A.S.; Rawson, A.; Muthiah, M.; Kalakandan, S.K. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrason. Sonochem. 2020, 61, 104812. [Google Scholar] [CrossRef] [PubMed]
- Torkova, A.A.; Lisitskaya, K.V.; Filimonov, I.S.; Glazunova, O.A.; Kachalova, G.S.; Golubev, V.N.; Fedorova, T.V. Physicochemical and functional properties of Cucurbita maxima pumpkin pectin and commercial citrus and apple pectins: A comparative evaluation. PLoS ONE 2018, 13, e0204261. [Google Scholar] [CrossRef]
- Khamsucharit, P.; Laohaphatanalert, K.; Gavinlertvatana, P.; Sriroth, K.; Sangseethong, K. Characterization of pectin extracted from banana peels of different varieties. Food Sci. Biotechnol. 2018, 27, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Tauferova, A.; Pospiech, M.; Javurkova, Z.; Tremlova, B.; Dordevic, D.; Jancikova, S.; Tesikova, K.; Zdarsky, M.; Vitez, T.; Vitezova, M. Plant byproducts as part of edible coatings: A case study with parsley, grape and blueberry pomace. Polymers 2021, 13, 2578. [Google Scholar] [CrossRef]
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Preparation and characterization of coating based on protein nanofibers and polyphenol and application for salted duck egg yolks. Foods 2020, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Wang, L.; Wang, M.; Wu, S.; Wang, X.; Li, D.; Liu, C.; Feng, Z.; Chi, Y. Direct separation and purification of α-lactalbumin from cow milk whey by aqueous two-phase flotation of thermo-sensitive polymer/phosphate. J. Sci. Food Agric. 2021, 101, 4173–4182. [Google Scholar] [CrossRef]
- Indreaş, A.; Vişan, L. Principalele Soiuri de Struguri de Vin Cultivate în România; Ceres: Bucharest, Romania, 2001. [Google Scholar]
- Minjares-Fuentes, R.; Femenia, A.; Garau, M.C.; Meza-Velázquez, J.A.; Simal, S.; Rosselló, C. Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach. Carbohydr. Polym. 2014, 106, 179–189. [Google Scholar] [CrossRef]
- Limareva, N.; Donchenko, L.; Vlaschik, L. Comparative evaluation of properties of pectin substances in pomace of grape varieties for development of functional foods. In Proceedings of the IV International Scientific and Practical Conference “Anthropogenic Transformation of Geospace: Nature, Economy, Society”, (ATG 2019), Volgograd, Russia, 1–4 October 2019; Atlantis Press: Paris, France, 2020. [Google Scholar]
- Colodel, C.; Vriesmann, L.C.; Teófilo, R.F.; de Oliveira Petkowicz, C.L. Optimization of acid-extraction of pectic fraction from grape (Vitis vinifera cv. Chardonnay) pomace, a Winery Waste. Int. J. Biol. Macromol. 2020, 161, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.Q.; Ngoh, G.C.; Yusoff, R.; Teoh, W.H. Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels. Int. J. Biol. Macromol. 2016, 93, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Filisetti-Cozzi, T.M.C.C.; Carpita, N.C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 1991, 197, 157–162. [Google Scholar] [CrossRef]
- Melton, L.D.; Smith, B.G. Determination of the uronic acid content of plant cell walls using a colorimetric assay. Curr. Protoc. Food Anal. Chem. 2001, 1, E3-3. [Google Scholar] [CrossRef]
- Miceli-Garcia, L.G. Pectinfrom Apple Pomace: Extraction, Characterization, and Utilization in Encapsulating Alpha-Tocopherol Acetate; University of Nebraska-Lincoln: Lincoln, NE, USA, 2014. [Google Scholar]
- Franchi, M.L. Evaluation of enzymatic pectin extraction by a recombinant polygalacturonase (PGI) from apples and pears pomace of argentinean production and characterization of the extracted pectin. J. Food Process. Technol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Wai, W.W.; Alkarkhi, A.F.M.; Easa, A.M. Effect of extraction conditions on yield and degree of esterification of durian rind pectin: An experimental design. Food Bioprod. Process. 2010, 88, 209–214. [Google Scholar] [CrossRef]
- Ranggana, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; McGraw Hill Publishing Co. Ltd.: New Delhi, India, 1986; ISBN 9780074518519. [Google Scholar]
- Dranca, F.; Vargas, M.; Oroian, M. Physicochemical properties of pectin from Malus domestica ‘Fălticeni’ apple pomace as affected by non-conventional extraction techniques. Food Hydrocoll. 2020, 100, 105383. [Google Scholar] [CrossRef]
- Wathoni, N.; Yuan Shan, C.; Yi Shan, W.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef]
- Picot-Allain, M.C.N.; Ramasawmy, B.; Emmambux, M.N. Extraction, characterisation, and application of pectin from tropical and sub-tropical fruits: A review. Food Rev. Int. 2020, 38, 282–312. [Google Scholar] [CrossRef]
- Ghoshal, G.; Negi, P. Isolation of pectin from kinnow peels and its characterization. Food Bioprod. Process. 2020, 124, 342–353. [Google Scholar] [CrossRef]
- Peng, X.; Yang, G.; Shi, Y.; Zhou, Y.; Zhang, M.; Li, S. Box–Behnken design based statistical modeling for the extraction and physicochemical properties of pectin from sunflower heads and the comparison with commercial low-methoxyl pectin. Sci. Rep. 2020, 10, 3595. [Google Scholar] [CrossRef] [PubMed]
- Reichembach, L.H.; de Oliveira Petkowicz, C.L. Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties. Carbohydr. Polym. 2020, 245, 116473. [Google Scholar] [CrossRef] [PubMed]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape pomace valorization: A systematic review and meta-analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Yapo, B.M. Biochemical characteristics and gelling capacity of pectin from yellow passion fruit rind as affected by acid extractant nature. J. Agric. Food Chem. 2009, 57, 1572–1578. [Google Scholar] [CrossRef]
- Raji, Z.; Khodaiyan, F.; Rezaei, K.; Kiani, H.; Schultz, M.; Zanganeh, S. The influence of particle size and acid type on pectin extraction. Int. J. Farming Allied Sci. 2020, 9, 1–4. [Google Scholar]
- Sengkhamparn, N.; Lasunon, P.; Tettawong, P. Effect of ultrasound assisted extraction and acid type extractant on pectin from industrial tomato waste. Chiang Mai Univ. J. Nat. Sci. 2019, 18, 214–225. [Google Scholar] [CrossRef]
- Ma, S.; Yu, S.; Zheng, X.; Wang, X.; Bao, Q.; Guo, X. Extraction, characterization and spontaneous emulsifying properties of pectin from sugar beet pulp. Carbohydr. Polym. 2013, 98, 750–753. [Google Scholar] [CrossRef]
- Khan, M. Optimization of extraction condition and characterization of low methoxy pectin from wild plum. J. Packag. Technol. Res. 2019, 3, 215–221. [Google Scholar] [CrossRef]
- Manasa, V.; Padmanabhan, A.; Anu Appaiah, K.A. Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Manag. 2021, 120, 762–771. [Google Scholar] [CrossRef]
- Huang, X.; Li, D.; Wang, L. Effect of particle size of sugar beet pulp on the extraction and property of pectin. J. Food Eng. 2018, 218, 44–49. [Google Scholar] [CrossRef]
- Geerkens, C.H.; Nagel, A.; Just, K.M.; Miller-Rostek, P.; Kammerer, D.R.; Schweiggert, R.M.; Carle, R. Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food Hydrocoll. 2015, 51, 241–251. [Google Scholar] [CrossRef]
- Rezzoug, S.-A.; Maache-Rezzoug, Z.; Sannier, F.; Allaf, K. A thermomechanical preprocessing for pectin isolation from orange peel with optimisation by response surface methodology. Int. J. Food Eng. 2008, 4. [Google Scholar] [CrossRef]
- Kalapathy, U.; Proctor, A. Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin. Food Chem. 2001, 73, 393–396. [Google Scholar] [CrossRef]
- Colodel, C.; de Oliveira Petkowicz, C.L. Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocoll. 2019, 86, 193–200. [Google Scholar] [CrossRef]
- Guo, X.; Meng, H.; Tang, Q.; Pan, R.; Zhu, S.; Yu, S. Effects of the precipitation pH on the ethanolic precipitation of sugar beet pectins. Food Hydrocoll. 2016, 52, 431–437. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, T.; Meng, H.; Yu, S. Ethanol precipitation of sugar beet pectins as affected by electrostatic interactions between counter ions and pectin chains. Food Hydrocoll. 2017, 65, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.-Y.; Choo, W.-S. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chem. 2013, 141, 3752–3758. [Google Scholar] [CrossRef]
- Kulkarni, S.G.; Vijayanand, P. Effect of extraction conditions on the quality characteristics of pectin from passion fruit peel (Passiflora edulis f. flavicarpa L.). LWT-Food Sci. Technol. 2010, 43, 1026–1031. [Google Scholar] [CrossRef]
- Berardini, N.; Knödler, M.; Schieber, A.; Carle, R. Utilization of mango peels as a source of pectin and polyphenolics. Innov. Food Sci. Emerg. Technol. 2005, 6, 442–452. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, Y.; Li, F.; Li, D.; Huang, Q. Pectin extracted from persimmon peel: A physicochemical characterization and emulsifying properties evaluation. Food Hydrocoll. 2020, 101, 105561. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef]
- Mishra, R.K.; Majeed, A.B.A.; Banthia, A.K. Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int. J. Plast. Technol. 2011, 15, 82–95. [Google Scholar] [CrossRef]
- Adi-Dako, O.; Ofori-Kwakye, K.; Frimpong Manso, S.; Boakye-Gyasi, M.E.L.; Sasu, C.; Pobee, M. Physicochemical and antimicrobial properties of cocoa pod husk pectin intended as a versatile pharmaceutical excipient and nutraceutical. J. Pharm. 2016, 2016, 7608693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oloye, M.T.; Jabar, J.M.; Adetuyi, A.O.; Lajide, L. Extraction and characterization of pectin from fruit peels of Irvingia gabonensis and pulp of Cola milleni and Theobroma cacao as precursor for industrial applications. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Sharma, P.; Sen, K.; Thakur, P.; Chauhan, M.; Chauhan, K. Spherically shaped pectin-g-poly(amidoxime)-Fe complex: A promising innovative pathway to tailor a new material in high amidoxime functionalization for fluoride adsorption. Int. J. Biol. Macromol. 2019, 140, 78–90. [Google Scholar] [CrossRef]
- Baum, A.; Dominiak, M.; Vidal-Melgosa, S.; Willats, W.G.T.; Søndergaard, K.M.; Hansen, P.W.; Meyer, A.S.; Mikkelsen, J.D. Prediction of pectin yield and quality by FTIR and carbohydrate microarray analysis. Food Bioprocess Technol. 2017, 10, 143–154. [Google Scholar] [CrossRef]
- Zouambia, Y.; Youcef Ettoumi, K.; Krea, M.; Moulai-Mostefa, N. A new approach for pectin extraction: Electromagnetic induction heating. Arab. J. Chem. 2017, 10, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Monsoor, M.A. Effect of drying methods on the functional properties of soy hull pectin. Carbohydr. Polym. 2005, 61, 362–367. [Google Scholar] [CrossRef]
- Mishra, R.K.; Anis, A.; Mondal, S.; Dutt, M.; Banthia, A.K. Reparation and characterization of amidated pectin based polymer electrolyte membranes. Chinese J. Polym. Sci. 2009, 27, 639. [Google Scholar] [CrossRef]
- Santos, E.E.; Amaro, R.C.; Bustamante, C.C.C.; Guerra, M.H.A.; Soares, L.C.; Froes, R.E.S. Extraction of pectin from agroindustrial residue with an ecofriendly solvent: Use of FTIR and chemometrics to differentiate pectins according to degree of methyl esterification. Food Hydrocoll. 2020, 107, 105921. [Google Scholar] [CrossRef]
- Liu, X.; Renard, C.M.G.C.; Bureau, S.; Le Bourvellec, C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr. Polym. 2021, 262, 117935. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Abdullah, A. Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 7–9 November 2018; pp. 7–9. [Google Scholar]
- Muñoz-Almagro, N.; Valadez-Carmona, L.; Mendiola, J.A.; Ibáñez, E.; Villamiel, M. Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydr. Polym. 2019, 217, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalpasquale, M.; Mariani, F.Q.; Müller, M.; Anaissi, F.J. Citrus pectin as a template for synthesis of colorful aluminates. Dye. Pigment. 2016, 125, 124–131. [Google Scholar] [CrossRef]
- Almeida, E.A.M.S.; Facchi, S.P.; Martins, A.F.; Nocchi, S.; Schuquel, I.T.A.; Nakamura, C.V.; Rubira, A.F.; Muniz, E.C. Synthesis and characterization of pectin derivative with antitumor property against Caco-2 colon cancer cells. Carbohydr. Polym. 2015, 115, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Grape Pomace Variety | F-value | Acid Type | F-Value | Particle Size (µm) | F-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
FN | RN | CA | SA | NA | <125 | ≥125–<200 µm | ≥200–<300 | ||||
Yield (%) | 6.07 (0.13) a | 5.70 (0.21) a | 1.23 ns | 6.01 (0.18) a | 5.80 (0.27) a | 5.84 (0.24) a | 0.13 ns | 4.64 (0.11) c | 7.31 (0.10) a | 5.71 (0.09) b | 147.08 *** |
GalA (g/100 g) | 33.14 (0.25) b | 48.47 (0.27) a | 10.67 * | 52.01 (0.45) a | 31.45 (0.34) b | 38.95 (0.38) b | 6.76 * | 31.55 (0.21) b | 56.33 (0.19) a | 34.54 (0.18) b | 13.96 *** |
DE (%) | 73.88 (0.20) a | 73.15 (0.21) a | 0.22 ns | 73.21 (0.25) a | 74.15 (0.19) a | 73.19 (0.27) a | 0.16 ns | 71.31 (0.42) a | 74.31 (0.32) a | 74.92 (0.27) a | 2.15 ns |
EW (g/mol) | 555.38 (0.31) a | 548.09 (0.21) a | 0.38 ns | 566.85 (0.09) a | 557.32 (0.11) ab | 531.04 (0.24) b | 3.63 * | 549.13 (0.24) a | 565.70 (0.15) a | 540.38 (0.25) a | 1.63 ns |
MeO (%) | 5.55 (0.31) a | 4.30 (0.25) b | 12.36 ** | 5.31 (0.41) a | 4.89 (0.27) a | 4.56 (0.24) a | 1.25 ns | 4.60 (0.32) b | 6.18 (0.48) a | 3.98 (0.25) b | 18.57 *** |
Mw (g/mol) | 5.29 × 104 (0.07) a | 5.30 × 104 (0.05) a | 0.30 ns | 5.34 × 104 (0.05) a | 5.30 × 104 (0.03) b | 5.25 × 104 (0.04) c | 10.89 *** | 5.29 × 104 (0.04) b | 5.35 × 104 (0.08) a | 5.24 × 104 (0.03) c | 17.09 *** |
L* | 41.62 (0.24) b | 49.14 (0.33) a | 21.18 *** | 48.33 (0.12) a | 47.34 (0.15) a | 40.44 (0.17) b | 8.68 ** | 47.78 (0.21) a | 45.98 (0.28) ab | 42.35 (0.17) b | 2.99 ns |
h*ab | 31.06 (0.25) b | 39.27 (0.29) a | 32.33 *** | 32.90 (0.14) b | 34.77 (0.09) ab | 37.82 (0.10) a | 2.63 ns | 36.80 (0.17) a | 34.60 (0.24) a | 34.08 (0.27) a | 0.84 ns |
C*ab | 10.89 (0.14) a | 11.26 (0.12) a | 0.30 ns | 11.23 (0.17) ab | 10.16 (0.23) b | 11.84 (0.18) a | 2.37 ns | 10.48 (0.03) a | 10.93 (0.05) a | 11.81 (0.02) a | 1.45 ns |
Parameter | Grape Pomace Variety | F-Value | pH | F-Value | |||
---|---|---|---|---|---|---|---|
FN | RN | 1 | 2 | 3 | |||
Yield (%) | 9.56 (0.12) a | 7.87 (0.18) a | 1.29 ns | 12.43 (0.32) a | 7.56 (0.25) b | 6.14 (0.27) b | 23.89 *** |
GalA (g/100 g) | 42.86 (0.56) a | 54.96 (0.47) a | 4.23 ns | 39.40 (0.17) b | 61.76 (0.21) a | 45.57 (0.19) b | 7.73 * |
DE (%) | 71.67 (0.33) a | 75.39 (0.37) a | 3.46 ns | 70.39 (0.18) b | 78.92 (0.13) a | 71.27 (0.16) b | 23.30 *** |
EW (g/mol) | 563.76 (0.11) a | 549.41 (0.13) a | 1.43 ns | 559.26 (0.34) b | 582.97 (0.38) a | 527.51 (0.41) c | 34.48 *** |
MeO (%) | 6.77 (0.32) a | 6.72 (0.25) a | 0.19 ns | 6.71 (0.07) b | 6.99 (0.08) a | 6.53 (0.06) c | 33.53 *** |
Mw (g/mol) | 5.35 × 104 (0.20) a | 5.34 × 104 (0.22) a | 0.06 ns | 5.39 × 104 (0.19) a | 5.37 × 104 (0.16) b | 5.28 × 104 (0.21) c | 1116.95 *** |
L* | 39.20 (0.11) a | 46.80 (0.05) a | 1.02 ns | 23.89 (0.14) c | 45.20 (0.12) b | 59.92 (0.04) a | 76.12 *** |
h*ab | 32.03 (0.24) a | 35.86 (0.21) a | 0.86 ns | 25.06 (0.35) c | 34.28 (0.38) b | 42.48 (0.41) a | 17.86 ** |
C*ab | 10.50 (0.02) a | 9.39 (0.04) a | 0.30 ns | 4.41 (0.21) b | 13.06 (0.09) a | 12.37 (0.17) a | 114.04 *** |
Parameter | Grape Pomace Variety | F-Value | Time (h) | F-Value | |||
---|---|---|---|---|---|---|---|
FN | RN | 1 | 2 | 3 | |||
Yield (%) | 6.05 (0.06) a | 6.37 (0.12) a | 0.46 ns | 5.38 (0.21) c | 5.77 (0.18) b | 7.50 (0.17) a | 187.94 *** |
GalA (g/100 g) | 38.39 (0.05) a | 41.41 (0.11) a | 0.84 ns | 33.69 (0.37) b | 39.04 (0.28) b | 46.98 (0.31) a | 14.01 ** |
DE (%) | 74.79 (0.11) a | 72.91 (0.17) a | 0.61 ns | 67.17 (0.13) b | 76.61 (0.11) a | 77.77 (0.12) a | 140.90 *** |
EW (g/mol) | 613.41 (0.14) a | 586.95 (0.17) b | 8.66 * | 586.20 (0.15) b | 595.92 (0.14) ab | 618.42 (0.13) a | 4.31 * |
MeO (%) | 5.70 (0.11) b | 6.86 (0.14) a | 75.02 *** | 6.38 (0.07) a | 5.93 (0.11) a | 6.54 (0.09) a | 1.50 ns |
Mw (g/mol) | 5.30 × 104 (0.20) a | 5.31 × 104 (0.24) a | 0.20 ns | 5.25 × 104 (0.19) c | 5.38 × 104 (0.17) a | 5.29 × 104 (0.23) b | 407.77 *** |
L* | 67.55 (0.13) a | 63.96 (0.17) a | 2.24 ns | 59.98 (0.34) c | 71.52 (0.27) a | 65.76 (0.24) b | 41.71 *** |
h*ab | 42.44 (0.28) a | 41.14 (0.33) a | 0.19 ns | 33.62 (0.15) b | 46.71 (0.14) a | 45.06 (0.17) a | 110.21 *** |
C*ab | 14.04 (0.16) a | 13.29 (0.24) a | 1.47 ns | 12.82 (0.07) b | 14.62 (0.09) a | 13.57 (0.11) ab | 3.58 ns |
Parameter | Grape Pomace Variety | F-Value | Temperature (°C) | F-Value | |||
---|---|---|---|---|---|---|---|
FN | RN | 70 | 80 | 90 | |||
Yield (%) | 5.74 (0.24) a | 5.96 (0.32) a | 0.12 ns | 4.23 (0.34) c | 6.02 (0.27) b | 7.30 (0.17) a | 494.78 *** |
GalA (g/100 g) | 53.27 (0.18) a | 48.40 (0.21) a | 1.01 ns | 39.16 (0.27) c | 51.14 (0.32) b | 62.21 (0.36) a | 56.00 *** |
DE (%) | 84.98 (0.14) a | 70.90 (0.17) b | 92.08 *** | 74.65 (0.05) a | 77.77 (0.08) a | 81.40 (0.11) a | 1.13 ns |
EW (g/mol) | 535.38 (0.05) a | 569.06 (0.07) a | 2.46 ns | 511.44 (0.21) b | 536.96 (0.16) b | 608.30 (0.14) a | 28.33 *** |
MeO (%) | 6.34 (0.02) a | 6.38 (0.06) a | 0.02 ns | 5.60 (0.12) b | 6.74 (0.14) a | 6.75 (0.16) a | 578.00 *** |
Mw (g/mol) | 5.28 × 104 (0.17) a | 5.29 × 104 (0.21) a | 0.04 ns | 5.23 × 104 (0.15) b | 5.31 × 104 (0.20) a | 5.32 × 104 (0.23) a | 14.60 ** |
L* | 52.40 (0.07) a | 53.67 (0.12) a | 0.20 ns | 59.72 (0.24) a | 50.74 (0.21) b | 48.64 (0.19) b | 17.15 ** |
h*ab | 24.93 (0.03) b | 37.90 (0.05) a | 37.90 *** | 26.83 (0.06) a | 34.74 (0.11) a | 32.67 (0.12) a | 1.74 ns |
C*ab | 12.14 (0.09) a | 14.48 (0.11) a | 1.57 ns | 8.37 (0.19) c | 14.45 (0.18) b | 17.13 (0.21) a | 50.95 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spinei, M.; Oroian, M. The Influence of Extraction Conditions on the Yield and Physico-Chemical Parameters of Pectin from Grape Pomace. Polymers 2022, 14, 1378. https://doi.org/10.3390/polym14071378
Spinei M, Oroian M. The Influence of Extraction Conditions on the Yield and Physico-Chemical Parameters of Pectin from Grape Pomace. Polymers. 2022; 14(7):1378. https://doi.org/10.3390/polym14071378
Chicago/Turabian StyleSpinei, Mariana, and Mircea Oroian. 2022. "The Influence of Extraction Conditions on the Yield and Physico-Chemical Parameters of Pectin from Grape Pomace" Polymers 14, no. 7: 1378. https://doi.org/10.3390/polym14071378
APA StyleSpinei, M., & Oroian, M. (2022). The Influence of Extraction Conditions on the Yield and Physico-Chemical Parameters of Pectin from Grape Pomace. Polymers, 14(7), 1378. https://doi.org/10.3390/polym14071378