Advanced Ethylene-Propylene-Diene (EPDM) Rubber Composites Filled with Raw Silicon Carbide or Hybrid Systems with Different Conventional Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Rheometeric and Crosslink Density Measurements
3.2. Mechanical Properties and Morphology of EPDM Composites
3.3. Dynamic Mechanical Analysis (DMA)
3.4. Flammability and Thermal Stability of EPDM Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Irvine, D.J.; McCluskey, J.A.; Robinson, I.M. Fire hazards and some common polymers. Polym. Degrad. Stab. 2000, 67, 383–396. [Google Scholar] [CrossRef]
- Kausar, A.; Rafique, I.; Anwar, Z.; Muhammad, B. Recent developments in different types of flame retardants and effect on fire retardancy of epoxy composite. Polym. Plast. Technol. Eng. 2016, 55, 1512–1535. [Google Scholar] [CrossRef]
- Braun, U.; Balabanovich, A.I.; Schartel, B.; Knoll, U.; Artner, J.; Ciesielski, M.; Döring, M.; Perez, R.; Sandler, J.K.; Altstädt, V.; et al. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 2006, 47, 8495–8508. [Google Scholar] [CrossRef]
- Lawson, D.F. Recent developments in the flammability of elastomeric materials. Rubber Chem. Technol. 1986, 59, 455–481. [Google Scholar] [CrossRef]
- Kuo, P.L.; Chang, J.M.; Wang, T.L. Flame-retarding materials—I. Syntheses and flame-retarding property of alkylphosphate-type polyols and corresponding polyurethanes. J. Appl. Polym. Sci. 1998, 69, 1635–1643. [Google Scholar] [CrossRef]
- Cheng, X.W.; Guan, J.P.; Tang, R.C.; Liu, K.Q. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J. Clean. Prod. 2016, 124, 114–119. [Google Scholar] [CrossRef]
- Pinto, U.A.; Visconte, L.L.Y.; Gallo, J.; Nunes, R.C.S. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH). Polym. Degrad. Stab. 2000, 69, 257–260. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Zhao, D.; Zhai, W. Preparation of microcellular poly(lactic acid) composites foams with improved flame retardancy. J. Cell. Plast 2017, 53, 45–63. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, H.; Shen, L.; Fang, Z.; Zhang, X.; Wang, J.; Zhang, B. Chitosan/phytic acid polyelectrolyte complex: A green and renewable intumescent flame retardant system for ethylene-vinyl acetate copolymer. Ind. Eng. Chem. Res. 2014, 53, 19199–19207. [Google Scholar] [CrossRef]
- Tributsch, H.; Fiechter, S. The material strategy of fire-resistant tree barks. In High Performance Structures and Materials IV, 1st ed.; de Wilde, W.P., Brebbia, C.A., Eds.; WIT Press: Southampton, UK, 2008; pp. 43–52. [Google Scholar]
- Wang, J. Flame retardancy and dispersion of functionalized carbon nanotubes in thiol-ene nanocomposites. Polymers 2021, 13, 3308. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Gruke, E.; Hilding, J.; Groth, K.; Harris, R.; Awad, W.; Douglas, J. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid. Commun. 2002, 23, 761–765. [Google Scholar] [CrossRef]
- Szadkowski, B.; Marzec, A.; Rybiński, P. Silane treatment as an effective way of improving the reinforcing activity of carbon nanofibers in nitrile rubber composites. Materials 2020, 13, 3481. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Bao, C.; Song, L.; Hong, N.; Liew, K.M.; Hu, Y. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem. Eng. J. 2014, 237, 411–427. [Google Scholar] [CrossRef]
- Huang, G.; Chen, S.; Tang, S.; Gao, J. A novel intumescent flame retardant-functionalized graphene: Nanocomposite synthesis, characterization and flammability properties. Mater. Chem. Phys. 2012, 135, 938–947. [Google Scholar] [CrossRef]
- Becker, C.M.; Gabbardo, A.D.; Wypych, F.; Amico, S.C. Mechanical and flame-retardant properties of epoxy/Mg-Al based LDH composites. Compos. Part A 2011, 42, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Montero, B.; Bellas, R.; Ramirez, C.; Rico, M.; Bouza, R. Flame retardancy and thermal stability of organic-inorganic hybrid resins based on polyhedral oligomeric silsesquioxanes and montmorillonite clay. Compos. Part B 2014, 63, 67–76. [Google Scholar] [CrossRef]
- Qina, H.; Zhanga, S.; Zhaoa, C.; Fenga, M.; Yanga, M.; Shub, Z.; Yang, S. Thermal stability and flammability of pol-ypropylene/montmorillonite composites. Polym. Degrad. Stab. 2004, 85, 807–813. [Google Scholar] [CrossRef]
- Rooj, S.; Das, A.; Thakur, V.; Mahaling, R.N.; Bhowmick, A.K.; Heinrich, G. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater. Design 2010, 31, 2151–2156. [Google Scholar] [CrossRef]
- Liu, M.; Jia, Z.; Jia, D.; Zhou, C. Recent advance in research on halloysite nanotubes-polymer nanocomposites. Prog. Polym. Sci 2014, 39, 1498–1525. [Google Scholar] [CrossRef]
- Du, M.; Demin Jiab, B.G. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 2010, 59, 574–582. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Zhou, S.; Hu, Y. Intumescent flame retardation and silane crosslinking of PP/EPDM elastomer. Polym. Adv. Technol. 2009, 20, 393–403. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Z.Z.; Gui, Z.; Hu, Y. A study of the novel intumescent flame-retarded PP/EPDM copolymer blends. J. Appl. Polym. Sci. 2008, 110, 3804–3811. [Google Scholar] [CrossRef]
- Lu, H.; Yanga, W.; Zhouga, S.; Xinga, W.; Songa, L.; Hua, Y. Preparation and flammability of EPDM/PP/ Mg(OH)2 dynamic vulcanizates. Polym. Adv. Technol 2010, 21, 113–117. [Google Scholar]
- Yu, L.; Wang, W.J.; Xiao, W.D. The effect of decabromodiphenyl oxide and antimony trioxide on the flame retardation of ethylene−propylene−diene copolymer/polypropylene blends. Polym. Degrad. Stab. 2004, 86, 69–73. [Google Scholar] [CrossRef]
- Chang, Z.H.; Guo, F.; Chen, J.F.; Yu, J.H.; Wang, G.Q. Synergistic flame retardant effects of nano-kaolin and nano-HAO on LDPE/EPDM composites. Polym. Degrad. Stab. 2007, 92, 1204–1212. [Google Scholar] [CrossRef]
- Jia, S.J.; Zhang, Z.C.; Du, Z.W.; Teng, R.R.; Wang, Z.Z. A study of the dynamic flammability of radiation cross-linked flameretardant HDPE/EPDM/silicon-elastomer compound. Radiat. Phys. Chem. 2003, 66, 349–355. [Google Scholar] [CrossRef]
- Beyer, G. Nanocomposites: A new class of flame retardants for polymers. Plast. Addit. Compd. 2002, 4, 22–28. [Google Scholar] [CrossRef]
- Pol, V.G.; Pol, S.V.; Gedanken, A. Novel synthesis of high surface area silicon carbide by RAPET (reactions under autogenic pressure at elevated temperature) of organosilanes. Chem. Mater. 2005, 17, 1797–1802. [Google Scholar] [CrossRef]
- Kumar, S.; Panda, B.P.; Mohanty, S.; Nayak, S.K. Effect of silicon carbide on the mechanical and thermal properties of ethylene propylene diene monomer-based carbon fiber composite material for heat shield application. J. Appl Polym. Sci. 2020, 137, 49097. [Google Scholar] [CrossRef]
- Anancharoenwong, E.; Marthosa, S.; Suklueng, M.; Niyomwas, S.; Chaiprapat, S. Effect of silicon carbide on the properties of natural rubber blends with EPDM rubber. Int. J. Integr. Eng. 2020, 12, 234–240. [Google Scholar]
- Gu, J.; Zhang, Q.; Dang, J.; Zhang, J.; Chen, S. Preparation and mechanical properties researches of silane coupling reagent modified β-silicon carbide filled epoxy composites. Pol. Bull. 2009, 62, 689–697. [Google Scholar] [CrossRef]
- Guo, Z.; Kim, T.Y.; Lei, K.; Pereira, T.; Sugar, J.G.; Hahn, H.T. Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. Compos. Sci. Technol. 2008, 68, 164–170. [Google Scholar] [CrossRef]
- Todorova, Z.; Dishovsky, N.; Dimitrov, R.; El-Tantawy, F.; Abdel Aal, N.; Al-Hajry, A.; Bououdina, M. Natural rubber filled SiC and B4C ceramic composites as a new NTC thermistors and piezoresistive sensor materials. Polym. Compos. 2008, 29, 109–118. [Google Scholar] [CrossRef]
- Kueseng, K.; Jacob, K.I. Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes. Eur. Polym. J. 2006, 42, 220–227. [Google Scholar] [CrossRef]
- Alam, M.N.; Kumar, V.; Potiyaraj, P.; Lee, D.J.; Choi, J. Synergistic activities of binary accelerators in presence of magnesium oxide as a cure activator in the vulcanization of natural rubber. J. Elastomers Plast. 2022, 54, 123–144. [Google Scholar] [CrossRef]
- Laskowska, A.; Marzec, A.; Zaborski, M.; Boiteux, G. Reinforcement of carboxylated acrylonitrile-butadiene rubber (XNBR) with graphene nanoplatelets with varying surface area. J. Polym. Eng. 2014, 34, 883–893. [Google Scholar] [CrossRef]
- Masek, A.; Plota, A. Influence of a natural plant antioxidant on the ageing process of ethylene-norbornene copolymer (Topas). Int. J. Mol. Sci. 2021, 22, 4018. [Google Scholar] [CrossRef]
- Szadkowski, B.; Marzec, A.; Rybiński, P.; Żukowski, W.; Zaborski, M. Characterization of ethylene–propylene composites filled with perlite and vermiculite minerals: Mechanical, barrier, and flammability properties. Materials 2020, 13, 585. [Google Scholar] [CrossRef] [Green Version]
- Masłowski, M.; Miedzianowska, J.; Strzelec, K. Hybrid straw/perlite reinforced natural rubber biocomposites. J. Bionic. Eng. 2019, 16, 1127–1142. [Google Scholar] [CrossRef]
- Berahman, R.; Raiati, M.; Mazidi, M.M.; Paran, S.M.R. Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: Effect of matrix hardness and HNT content. Mater. Des. 2016, 104, 333–345. [Google Scholar] [CrossRef]
- Szadkowski, B.; Marzec, A.; Zaborski, M. Use of carbon black as a reinforcing nano-filler in conductivity-reversible elastomer composites. Polym. Test. 2020, 81, 106222. [Google Scholar] [CrossRef]
- Szadkowski, B.; Marzec, A.; Zaborski, M. Effect of different carbon fillers on the properties of nitrile rubber composites. Compos. Interfaces 2019, 26, 729–750. [Google Scholar] [CrossRef]
- Namasivayam, M.; Shapter, J. Factors affecting carbon nanotube fillers towards enhancement of thermal conductivity in polymer nanocomposites: A Review. J. Compos. Mater. 2017, 51, 3657–3668. [Google Scholar] [CrossRef]
- Rybinski, P.; Syrek, B.; Marzec, A.; Szadkowski, B.; Kusmierek, M. Effects of basalt and carbon fillers on fire hazard, thermal, and mechanical properties of EPDM rubber composites. Materials 2021, 14, 5245. [Google Scholar] [CrossRef] [PubMed]
- Sowinska, A.; Maciejewska, M.; Guo, L. Effect of SILPs on the vulcanization and properties of ethylene–propylene–diene elastomer. Polymers 2020, 12, 1220. [Google Scholar] [CrossRef]
- Ismail, H.; Othman, N.; Komethi, M. Curing characteristics and mechanical properties of rattanpowder-filled natural rubber composites as a function of filler loading and silane coupling agent. J. Appl. Polym. Sci. 2012, 123, 2805–2811. [Google Scholar] [CrossRef]
- Shiva, M.; Dallakeh, M.K.; Ahmadi, M.; Lakhi, M. Effects of silicon carbide as a heat conductive filler in butyl rubber for bladder tire curing applications. Mater. Today Commun. 2021, 29, 102773. [Google Scholar] [CrossRef]
- Alam, M.N.; Kumar, V.; Potiyaraj, P.; Lee, D.-J.; Choi, J. Mutual dispersion of graphite–silica binary fillers and its effects on curing, mechanical, and aging properties of natural rubber composites. Polym. Bull. 2021, 1–18. [Google Scholar] [CrossRef]
- Kumar, T.B.; Haseebuddin, M.R.; Raghavendra, N. Influence of SiC on mechanical, thermal, fire and wear studies of vinylester/glass fibre composites. Mater. Today 2018, 5, 22675–22686. [Google Scholar]
- Wang, Y.; Wu, J.; Yin, Y.; Han, T. Effect of micro and nano-size boron nitride and silicon carbide on thermal properties and partial discharge resistance of silicone elastomer composite. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 377–385. [Google Scholar] [CrossRef]
- Tian, H.; Yao, Y.; Ma, S.; Wu, J.; Xiang, A. Enhanced thermal stability and flame resistance of polyurethane-imide foams by adding silicon carbide. Adv. Polym. Technol. 2017, 37, 2470–2477. [Google Scholar] [CrossRef]
- Du, M.; Guo, B.; Jia, D. Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur. Polym. J. 2006, 42, 1362–1369. [Google Scholar] [CrossRef]
- Kharazi, A.P.; Jalali-Arani, A. Preparation of silicon carbide nanoparticle/butadiene rubber/silane nanocomposites; Structural, mechanical, tribological and thermal properties. J. Marcomol. Sci. Phys. 2017, 56, 749–761. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
EPDM | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
S | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
CBS | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Stearin | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
ZnO | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
SiC | - | 5 | 10 | 15 | 20 | 10 | 10 | 10 | 10 | 10 | 10 |
Silica | - | - | - | - | - | 5 | - | - | - | - | - |
Carbon black | - | - | - | - | - | - | 5 | - | - | - | - |
Graphene | - | - | - | - | - | - | - | 5 | - | - | - |
Hydrotalcite | - | - | - | - | - | - | - | - | 5 | - | - |
Halloysite | - | - | - | - | - | - | - | - | - | 5 | - |
PY119 | - | - | - | - | - | - | - | - | - | - | 5 |
Sample | t05 (min) | t90 (min) | Mmin (dNm) | Mmax (dNm) | ΔM (dNm) |
---|---|---|---|---|---|
EPDM | 4.61 | 11.01 | 0.58 | 12.62 | 12.04 |
EPDM/5SiC | 4.34 | 11.81 | 0.55 | 12.41 | 11.87 |
EPDM/10SiC | 4.08 | 8.06 | 0.63 | 12.39 | 11.69 |
EPDM/15SiC | 3.78 | 8.08 | 0.62 | 13.17 | 12.55 |
EPDM/20SiC | 3.77 | 8.53 | 0.63 | 13.40 | 12.77 |
EPDM/10SiC/5SiO2 | 3.90 | 11.80 | 0.76 | 13.96 | 13.20 |
EPDM/10SiC/5CB | 2.93 | 7.42 | 0.64 | 14.15 | 13.51 |
EPDM/10SiC/5XGnP | 1.91 | 8.53 | 0.72 | 13.42 | 12.70 |
EPDM/10SiC/5LDH | 3.32 | 9.62 | 0.54 | 13.90 | 13.36 |
EPDM/10SiC/5HAL | 3.45 | 8.55 | 0.69 | 14.67 | 13.98 |
EPDM/10SiC/5PY119 | 3.25 | 8.19 | 0.64 | 13.39 | 12.75 |
Sample | Tg (°C) | Max. tan δ (−) |
---|---|---|
EPDM | −56.85 | 1.73 |
EPDM/5SiC | −56.55 | 1.69 |
EPDM/15SiC | −56.35 | 1.69 |
EPDM/10SiC/5SiO2 | −56.45 | 1.58 |
EPDM/10SiC/5XGnP | −56.90 | 1.58 |
EPDM/10SiC/5CB | −56.30 | 1.59 |
EPDM/10SiC/5LDH | −57.10 | 1.60 |
EPDM/10SiC/5HAL | −56.55 | 1.66 |
EPDM/10SiC/5PY119 | −56.40 | 1.70 |
Sample | E’ at −80 °C (MPa) | E’ at 0 °C (MPa) | E’ at 20 °C (MPa) |
---|---|---|---|
EPDM | 1614 | 2.21 | 2.44 |
EPDM/5SiC | 1673 | 2.54 | 2.56 |
EPDM/15SiC | 1499 | 2.71 | 2.92 |
EPDM/10SiC/5SiO2 | 1666 | 3.68 | 3.92 |
EPDM/10SiC/5XGnP | 1986 | 3.37 | 3.68 |
EPDM/10SiC/5CB | 2033 | 4.37 | 4.57 |
EPDM/10SiC/5LDH | 1899 | 3.69 | 4.08 |
EPDM/10SiC/5HAL | 2007 | 2.9 8 | 3.35 |
EPDM/10SiC/5PY119 | 1861 | 2.88 | 3.01 |
Sample | HRR [W/g] | THRR [°C] | THR [kJ/g] | HRC [J/g × K] |
---|---|---|---|---|
EPDM | 1460 | 477 | 67.9 | 1421 |
EPDM/5SiC | 1371 | 488 | 56.0 | 1328 |
EPDM/10SiC | 1332 | 479 | 65.3 | 1292 |
EPDM/15SiC | 1167 | 484 | 39.7 | 1126 |
EPDM/20SiC | 1195 | 482 | 44.8 | 1195 |
EPDM/10SiC/5SiO2 | 1346 | 483 | 48.7 | 1299 |
EPDM/10SiC/5CB | 1387 | 483 | 49.6 | 1341 |
EPDM/10SiC/5XGnP | 1373 | 480 | 49.2 | 1322 |
EPDM/10SiC/5LDH | 1226 | 480 | 45.3 | 1185 |
EPDM/10SiC/5HAL | 1165 | 482 | 41.7 | 1127 |
EPDM/10SiC/5PY119 | 1275 | 481 | 44.8 | 1233 |
Sample | T5 [°C] | T50 [°C] | TR [°C] | TRMAX [°C] | dm/dt [%/min] | P600 [%] |
---|---|---|---|---|---|---|
EPDM | 415 | 435 | 415 | 431 | 31.0 | 10.1 |
EPDM/5SiC | 375 | 435 | 410 | 431 | 28.8 | 11.7 |
EPDM/10SiC | 380 | 435 | 410 | 430 | 26.8 | 14.1 |
EPDM/15SiC | 395 | 430 | 415 | 425 | 29.3 | 20.3 |
EPDM/20SiC | 415 | 445 | 410 | 440 | 18.5 | 30.1 |
EPDM/10SiC/5SiO2 | 415 | 440 | 410 | 435 | 25.4 | 20.2 |
EPDM/10SiC/5CB | 420 | 440 | 420 | 431 | 31.2 | 25.1 |
EPDM/10SiC/5XGnP | 375 | 435 | 410 | 435 | 24.8 | 16.5 |
EPDM/10SiC/5LDH | 400 | 435 | 400 | 435 | 19.7 | 18.3 |
EPDM/10SiC/5HAL | 410 | 440 | 415 | 435 | 25.5 | 24.6 |
EPDM/10SiC/5PY119 | 405 | 445 | 400 | 435 | 13.5 | 22.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartosik, D.; Szadkowski, B.; Kuśmierek, M.; Rybiński, P.; Mirkhodzhaev, U.; Marzec, A. Advanced Ethylene-Propylene-Diene (EPDM) Rubber Composites Filled with Raw Silicon Carbide or Hybrid Systems with Different Conventional Fillers. Polymers 2022, 14, 1383. https://doi.org/10.3390/polym14071383
Bartosik D, Szadkowski B, Kuśmierek M, Rybiński P, Mirkhodzhaev U, Marzec A. Advanced Ethylene-Propylene-Diene (EPDM) Rubber Composites Filled with Raw Silicon Carbide or Hybrid Systems with Different Conventional Fillers. Polymers. 2022; 14(7):1383. https://doi.org/10.3390/polym14071383
Chicago/Turabian StyleBartosik, Dominik, Bolesław Szadkowski, Małgorzata Kuśmierek, Przemysław Rybiński, Ulugbek Mirkhodzhaev, and Anna Marzec. 2022. "Advanced Ethylene-Propylene-Diene (EPDM) Rubber Composites Filled with Raw Silicon Carbide or Hybrid Systems with Different Conventional Fillers" Polymers 14, no. 7: 1383. https://doi.org/10.3390/polym14071383
APA StyleBartosik, D., Szadkowski, B., Kuśmierek, M., Rybiński, P., Mirkhodzhaev, U., & Marzec, A. (2022). Advanced Ethylene-Propylene-Diene (EPDM) Rubber Composites Filled with Raw Silicon Carbide or Hybrid Systems with Different Conventional Fillers. Polymers, 14(7), 1383. https://doi.org/10.3390/polym14071383