Sound Insulation Properties of Hollow Polystyrene Spheres/Polyethylene Glycol/Epoxy Composites
Abstract
:1. Introduction
2. Experiment Part
2.1. Materials
2.2. Preparation of Composites
2.3. Measurements and Characterization
2.4. Theoretical Basis of Sound Transmission Loss
3. Results and Discussion
3.1. Dispersion of Hollow Polystyrene Spheres in the PEG and Epoxy Matrix
3.2. Dynamic Mechanical Properties of the Composites
3.3. Sound Insulation Properties of the Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brink, M.; Schaffer, B.; Vienneau, D.; Foraster, M.; Pieren, R.; Eze, I.C.; Cajochen, C.; Probst-Hensch, N.; Roosli, M.; Wunderli, J.M. A survey on exposure-response relationships for road, rail, and aircraft noise annoyance: Differences between continuous and intermittent noise. Environ. Int. 2019, 125, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Song, R.; Zhang, H.; Liu, Q. Study on sound insulation performance of double-layer perforated panel under normal incidence waves. Appl. Acoust. 2021, 174, 107785. [Google Scholar] [CrossRef]
- Bloemsma, L.D.; Wijga, A.H.; Klompmaker, J.O.; Janssen, N.A.H.; Smit, H.A.; Koppelman, G.H.; Brunekreef, B.; Lebret, E.; Hoek, G.; Gehring, U. The associations of air pollution, traffic noise and green space with overweight throughout childhood: The PIAMA birth cohort study. Environ. Res. 2019, 169, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, X.M.; Chang, J.M.; Yao, Y.; Cui, Q. Sound insulation property of wood—Waste tire rubber composite. Compos. Sci. Technol. 2010, 70, 2033–2038. [Google Scholar] [CrossRef]
- Garg, N.; Kumar, A.; Maji, S. Significance and implications of airborne sound insulation criteria in building elements for traffic noise abatement. Appl. Acoust. 2013, 74, 1429–1435. [Google Scholar] [CrossRef]
- Jiejun, W.; Chenggong, L.; Dianbin, W.; Manchang, G. Damping and sound absorption properties of particle reinforced Al matrix composite foams. Compos. Sci. Technol. 2003, 63, 569–574. [Google Scholar]
- Ni, Q.Q.; Lu, E.; Kurahashi, N.; Kurashiki, K.; Kimura, T. Development of Insulation Sheet Materials and Their Sound Characterization. Adv. Compos. Mater. 2008, 172, 5–40. [Google Scholar] [CrossRef]
- Liang, S.; Xiu, Y.; Wang, H. A research on sound insulation characteristics and processing of the embedded and co-cured composite damping structures. J. Compos. Mater. 2012, 47, 1169–1177. [Google Scholar] [CrossRef]
- Tadeu, A.; António, J.; Mateus, D. Sound insulation provided by single and double panel walls—a comparison of analytical solutions versus experimental results. Appl. Acoust. 2004, 65, 15–29. [Google Scholar] [CrossRef]
- Uris, A.; Bravo, J.M.; Gomez-Lozano, V.; Guillen, I.; Llinares, J. Experimental sound insulation performance of double frame partitions with slits. Appl. Acoust. 2008, 69, 918–924. [Google Scholar] [CrossRef]
- Yu, H.; Yao, G.; Wang, X.; Liu, Y.; Li, H. Sound insulation property of Al–Si closed-cell aluminum foam sandwich panels. Appl. Acoust. 2007, 68, 1502–1510. [Google Scholar] [CrossRef]
- Liu, Y. Sound transmission through triple-panel structures lined with poroelastic materials. J. Sound. Vib. 2015, 339, 376–395. [Google Scholar] [CrossRef] [Green Version]
- Xin, F.X.; Lu, T.J. Effects of core topology on sound insulation performance of lightweight all-metallic sandwich panels. Mater. Manuf. Process. 2011, 26, 1213–1221. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, J.; Xiao, Y.; Wang, G.; Wen, X. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. J. Sound. Vib. 2015, 343, 104–120. [Google Scholar] [CrossRef]
- Gong, R.; Xu, Q.; Chu, Y.; Gu, X.; Ma, J.; Li, R. A simple preparation method and characterization of epoxy reinforced microporous phenolic open-cell sound absorbent foam. RSC Adv. 2015, 5, 68003–68013. [Google Scholar] [CrossRef]
- Park, M.; Park, H.K.; Shin, H.K.; Kang, D.; Pant, B.; Kim, H.; Song, J.K.; Kim, H.Y. Sound absorption and insulation properties of a polyurethane foam mixed with electrospun nylon-6 and polyurethane nanofibre mats. J. Nanosci. Nanotechnol. 2019, 19, 3558–3563. [Google Scholar] [CrossRef]
- Sui, N.; Yan, X.; Huang, T.Y.; Xu, J.; Yuan, F.G.; Jing, Y. A light weight yet soundproof honeycomb acoustic metamaterial. Appl. Phys. Lett. 2015, 106, 171905. [Google Scholar] [CrossRef]
- Yan, P.; Zhou, B.; Du, A. Synthesis of polyimide cross-linked silica aerogels with good acoustic performance. RSC Adv. 2014, 4, 58252–58259. [Google Scholar] [CrossRef]
- Wang, X.; You, F.; Zhang, F.S.; Li, J.; Guo, S. Experimental and theoretic studies on sound transmission loss of laminated mica-filled poly(vinyl chloride) composites. J. Appl. Polym. Sci. 2011, 122, 1427–1433. [Google Scholar] [CrossRef]
- Ahmadi, S.; Nassiri, P.; Ghasemi, I.; Esmaeilpoor, M.R.M. Sound transmission loss through nanoclay-reinforced polymers. Iran Polym. J. 2015, 24, 641–649. [Google Scholar] [CrossRef]
- Kim, M.S.; Yan, J.; Kang, K.M.; Joo, K.H.; Pandey, J.K.; Kang, Y.J.; Ahn, S.H. Soundproofing properties of polypropylene/clay/carbon nanotube nanocomposites. J. Appl. Polym. Sci. 2013, 130, 504–509. [Google Scholar] [CrossRef]
- Kim, M.S.; Yan, J.; Joo, K.H.; Pandey, J.K.; Kang, Y.J.; Ahn, S.H. Synergistic effects of carbon nanotubes and exfoliated graphite nanoplatelets for electromagnetic interference shielding and soundproofing. J. Appl. Polym. Sci. 2013, 130, 3947–3951. [Google Scholar] [CrossRef]
- Liang, J.Z. Prediction of sound transmission losses for polymer/inorganic particle composites. Polym. Compos. 2015, 36, 2059–2065. [Google Scholar] [CrossRef]
- Liang, J.Z.; Jiang, X.H. Soundproofing effect of polypropylene/inorganic particle composites. Compos. Part B Eng. 2012, 43, 1995–1998. [Google Scholar] [CrossRef]
- Shi, X.; Wu, J.; Wang, X.; Zhou, X.; Xie, X.; Xue, Z. Novel sound insulation materials based on epoxy/hollow silica nanotubes composites. Compos. Part B Eng. 2017, 131, 125–133. [Google Scholar] [CrossRef]
- Zavareh, S.; Samandari, G. Polyethylene glycol as an epoxy modifier with extremely high toughening effect: Formation of nanoblend morphology. Polym. Eng. Sci. 2014, 54, 1833–1838. [Google Scholar] [CrossRef]
- Bocqué, M.; Voirin, C.; Lapinte, V.; Caillol, S.; Robin, J.J. Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. J. Polym. Sci. Pol. Chem. 2016, 54, 11–33. [Google Scholar] [CrossRef]
- Lee, J.C.; Hong, Y.S.; Nan, R.G.; Jang, M.K.; Lee, C.S.; Ahn, S.H.; Kang, Y.J. Soundproofing effect of nano particle reinforced polymer composites. J. Mech. Sci. Technol. 2019, 22, 1468–1474. [Google Scholar] [CrossRef]
- Lerch, T.P. A noncontact method for determining surface density of nonporous materials with the limp-wall mass law. Appl. Acoust. 2016, 101, 39–46. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, R.; Goh, H.L.; Huang, S.; Lu, X. From waste to functional additive: Toughening epoxy resin with lignin. ACS Appl. Mater Interfaces 2014, 6, 5810–5817. [Google Scholar] [CrossRef] [PubMed]
- Francis, B.; Thomas, S.; Sadhana, R.; Thuaud, N.; Ramaswamy, R.; Jose, S.; Rao, V.L. Diglycidyl ether of bisphenol-A epoxy resin modified using poly(ether ether ketone) with pendenttert-butyl groups. J. Polym. Sci. Pol. Phys. 2007, 45, 2481–2496. [Google Scholar] [CrossRef]
- Dai, J.B.; Kuan, H.C.; Du, X.S.; Dai, S.C.; Ma, J. Development of a novel toughener for epoxy resins. Polym. Int. 2009, 58, 838–845. [Google Scholar] [CrossRef]
- Xia, L.; Wu, H.; Guo, S.; Sun, X.; Liang, W. Enhanced sound insulation and mechanical properties of LDPE/mica composites through multilayered distribution and orientation of the mica. Compos. Part A Appl. S 2016, 81, 225–233. [Google Scholar] [CrossRef]
- Hussein, S.I.; Abd-Elnaiem, A.M.; Asafa, T.B.; Jaafar, H.I. Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite. Appl. Phys. A 2018, 124, 475. [Google Scholar] [CrossRef]
- Mostovoy, A.; Yakovlev, A.; Tseluikin, V.; Lopukhova, M. Epoxy Nanocomposites Reinforced with Functionalized Carbon Nanotubes. Polymers 2020, 12, 1816. [Google Scholar] [CrossRef] [PubMed]
- Pati, P.R.; Satpathy, M.P. Investigation on red brick dust filled epoxy composites using ant lion optimization approach. Polym. Compos. 2019, 40, 3877–3885. [Google Scholar] [CrossRef]
- Sim, J.; Kang, Y.; Kim, B.J.; Park, Y.H.; Lee, Y.C. Preparation of Fly Ash/Epoxy Composites and Its Effects on Mechanical Properties. Polymers 2020, 12, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | PEG Content (wt%) | Bending Strength (MPa) | Bending Modulus (MPa) |
---|---|---|---|
Neat EP | 0 | 125.6 ± 10.4 | 1838 ± 176 |
PEG/EP-3% | 3 | 130.3 ± 15.8 | 1897 ± 191 |
PEG/EP-7% | 7 | 146.7 ± 16.3 | 1953 ± 189 |
PEG/EP-10% | 10 | 150.2 ± 13.7 | 2106 ± 204 |
PEG/EP-15% | 15 | 137.5 ± 18.1 | 1910 ± 180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Shi, G.; Li, S.; Du, X.; Han, Y. Sound Insulation Properties of Hollow Polystyrene Spheres/Polyethylene Glycol/Epoxy Composites. Polymers 2022, 14, 1388. https://doi.org/10.3390/polym14071388
Shi X, Shi G, Li S, Du X, Han Y. Sound Insulation Properties of Hollow Polystyrene Spheres/Polyethylene Glycol/Epoxy Composites. Polymers. 2022; 14(7):1388. https://doi.org/10.3390/polym14071388
Chicago/Turabian StyleShi, Xuejun, Guangling Shi, Songtian Li, Xiangxiang Du, and Yongjun Han. 2022. "Sound Insulation Properties of Hollow Polystyrene Spheres/Polyethylene Glycol/Epoxy Composites" Polymers 14, no. 7: 1388. https://doi.org/10.3390/polym14071388
APA StyleShi, X., Shi, G., Li, S., Du, X., & Han, Y. (2022). Sound Insulation Properties of Hollow Polystyrene Spheres/Polyethylene Glycol/Epoxy Composites. Polymers, 14(7), 1388. https://doi.org/10.3390/polym14071388