Probing the Dynamic Structural Evolution of End-Functionalized Polybutadiene/Organo-Clay Nanocomposite Gels before and after Yielding by Nonlinear Rheology and 1H Double-Quantum NMR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Rheology Experiment
2.4. Proton Double-Quantum (DQ) NMR Experiment
3. Results
3.1. Structural Evolution of Nanocomposite Gels in the Linear Region
3.2. Fracture of Networks by Transient Nonlinear Rheology
3.3. Recovery Properties of the Network
3.4. Heterogeneous Structures of Polymer-Based Nanocomposite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science 2006, 314, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Mackay, M.E.; Tuteja, A.; Duxbury, P.M.; Hawker, C.J.; Van Horn, B.; Guan, Z.B.; Chen, G.H.; Krishnan, R.S. General Strategies for Nanoparticle Dispersion. Science 2006, 311, 1740–1743. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.J.; Almusallam, A.S.; Seefeldt, K.F.; Somwangthanaroj, A.; Varadan, P. Rheology of Polypropylene/Clay Hybrid Materials. Macromolecules 2001, 34, 1864–1872. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent Advances in Carbon-Based Polymer Nanocomposites for Electromagnetic Interference Shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Du, J.G.; Li, J.X.; Huang, X.D.; Kang, T.; Zhang, C.; Wang, S.; Ajao, O.O.; Wang, W.J.; Liu, P.W. Polymer Nanocomposites with Aligned Two-Dimensional Materials. Prog. Polym. Sci. 2021, 114, 31. [Google Scholar] [CrossRef]
- Ray, S.S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Balazs, A.C.; Singh, C.; Zhulina, E. Modeling the Interactions between Polymers and Clay Surfaces through Self-Consistent Field Theory. Macromolecules 1998, 31, 8370–8381. [Google Scholar] [CrossRef]
- Okamoto, M.; Nam, P.H.; Maiti, P.; Kotaka, T.; Hasegawa, N.; Usuki, A. A House of Cards Structure in Polypropylene/Clay Nanocomposites under Elongational Flow. Nano Lett. 2001, 1, 295–298. [Google Scholar] [CrossRef]
- Hyun, K.; Wilhelm, M.; Klein, C.O.; Cho, K.S.; Nam, J.G.; Ahn, K.H.; Lee, S.J.; Ewoldt, R.H.; McKinley, G.H. A Review of Nonlinear Oscillatory Shear Tests: Analysis and Application of Large Amplitude Oscillatory Shear (LAOS). Prog. Polym. Sci. 2011, 36, 1697–1753. [Google Scholar] [CrossRef]
- Wu, S.L.; Chen, Q. Advances and New Opportunities in the Rheology of Physically and Chemically Reversible Polymers. Macromolecules 2022, 55, 697–714. [Google Scholar] [CrossRef]
- Giovino, M.; Pribyl, J.; Benicewicz, B.; Kumar, S.; Schadler, L. Linear Rheology of Polymer Nanocomposites with Polymer-Grafted Nanoparticles. Polymer 2017, 131, 104–110. [Google Scholar] [CrossRef]
- Shemshadi, R.; Naderi, G. The Relationship between Rheological Behavior and Microstructure of Nanocomposite based on PA6/NBR/clay. Polym. Compos. 2018, 39, 2403–2410. [Google Scholar] [CrossRef]
- Kim, M.; Song, H.Y.; Choi, W.J.; Hyun, K. Evaluation of the Degree of Dispersion of Polymer Nanocomposites (PNCs) Using Nonlinear Rheological Properties by FT-Rheology. Macromolecules 2019, 52, 8604–8616. [Google Scholar] [CrossRef]
- Tanna, V.A.; Enokida, J.S.; Coughlin, E.B.; Winter, H.H. Functionalized Polybutadiene for Clay–Polymer Nanocomposite Fabrication. Macromolecules 2019, 52, 6135–6141. [Google Scholar] [CrossRef]
- Bindgen, S.; Bossler, F.; Allard, J.; Koos, E. Connecting Particle Clustering and Rheology in Attractive Particle Networks. Soft Matter 2020, 16, 8380–8393. [Google Scholar] [CrossRef]
- Larson, R.G. The Structure and Rheology of Complex Fluids; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Yousfi, M.; Samuel, C.; Soulestin, J.; Lacrampe, M.-F. Rheological Considerations in Processing Self-Reinforced Thermoplastic Polymer Nanocomposites: A Review. Polymers 2022, 14, 637. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, X.; Li, C.-H.; Cai, Y.; Jia, X.; Bao, Z. Disassociation and Reformation Under Strain in Polymer with Dynamic Metal–Ligand Coordination Cross-Linking. Macromolecules 2019, 52, 660–668. [Google Scholar] [CrossRef]
- Robertson, C.G.; Vaikuntam, S.R.; Heinrich, G. A Nonequilibrium Model for Particle Networking/Jamming and Time-Dependent Dynamic Rheology of Filled Polymers. Polymers 2020, 12, 190. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhou, C.; Hong, Z.; Mao, D.; Bian, Z. Study on Rheological Behaviour of Poly(butylene terephthalate)/Montmorillonite Nanocomposites. Eur. Polym. J. 2005, 41, 2199–2207. [Google Scholar] [CrossRef]
- Wu, D.; Wu, L.; Wu, L.; Zhang, M. Rheology and Thermal Stability of Polylactide/Clay Nanocomposites. Polym. Degrad. Stab. 2006, 91, 3149–3155. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Chen, J.; Wu, D.; Qiu, Y.; Yao, X.; Zhou, Y.; Chen, C. Percolation Networks and Transient Rheology of Polylactide Composites Containing Graphite Nanosheets with Various Thicknesses. Polymer 2015, 67, 216–226. [Google Scholar] [CrossRef]
- Tanna, V.; Wetzel, C.; Henning Winter, H. Onset of Nonlinearity and Yield Strain of a Model Soft Solid. Rheol. Acta 2017, 56, 527–537. [Google Scholar] [CrossRef]
- Tanna, V.A.; Zhou, Y.; Henning Winter, H. Effect of Platelet Size in a Soft Nanocomposite: Physical Gelation and Yielding. J. Rheol. 2018, 62, 791–800. [Google Scholar] [CrossRef]
- Geen, H.; Titman, J.J.; Gottwald, J.; Spiess, H.W. Solid-State Proton Multiple-Quantum NMR-Spectroscopy with Fast Magic-Angle-Spinning. Chem. Phys. Lett. 1994, 227, 79–86. [Google Scholar] [CrossRef]
- Saalwchter, K. Multiple-Quantum NMR Studies of Anisotropic Polymer Chain Dynamics In Modern Magnetic Resonance.; Webb, G.A., Ed.; Springer Cham: Berlin, Germany, 2017; pp. 1–28. [Google Scholar] [CrossRef]
- Bokobza, L. Spectroscopic Techniques for the Characterization of Polymer Nanocomposites: A Review. Polymers 2018, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Saalwachter, K. Proton Multiple-Quantum NMR for The Study of Chain Dynamics and Structural Constraints in Polymeric Soft Materials. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 51, 1–35. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, C.; Yang, Z.; Wu, Q.; Sun, P.; Wang, X. Hierarchical Dynamics in a Transient Polymer Network Cross-Linked by Orthogonal Dynamic Bonds. Macromolecules 2020, 53, 5937–5949. [Google Scholar] [CrossRef]
- Zou, X.; Kui, X.; Zhang, R.; Zhang, Y.; Wang, X.; Wu, Q.; Chen, T.; Sun, P. Viscoelasticity and Structures in Chemically and Physically Dual-Cross-Linked Hydrogels: Insights from Rheology and Proton Multiple-Quantum NMR Spectroscopy. Macromolecules 2017, 50, 9340–9352. [Google Scholar] [CrossRef]
- Moldovan, D.; Fechete, R. Bimodal H-1 Double Quantum Build-Up Curves by Fourier and Laplace-like Transforms on Aged Cross-Linked Natural Rubber. Polymers 2021, 13, 3523. [Google Scholar] [CrossRef]
- Saalwachter, K.; Chasse, W.; Sommer, J.U. Structure and Swelling of Polymer Networks: Insights from NMR. Soft Matter 2013, 9, 6587–6593. [Google Scholar] [CrossRef]
- Lange, F.; Schwenke, K.; Kurakazu, M.; Akagi, Y.; Chung, U.I.; Lang, M.; Sommer, J.U.; Sakai, T.; Saalwachter, K. Connectivity and Structural Defects in Model Hydrogels: A Combined Proton NMR and Monte Carlo Simulation Study. Macromolecules 2011, 44, 9666–9674. [Google Scholar] [CrossRef]
- Papon, A.; Saalwächter, K.; Schäler, K.; Guy, L.; Lequeux, F.; Montes, H. Low-Field NMR Investigations of Nanocomposites: Polymer Dynamics and Network Effects. Macromolecules 2011, 44, 913–922. [Google Scholar] [CrossRef]
- Huang, C.; Huang, G.S.; Li, S.Q.; Luo, M.C.; Liu, H.; Fu, X.; Qu, W.; Xie, Z.T.; Wu, J.R. Research on Architecture and Composition of Natural Network in Natural Rubber. Polymer 2018, 154, 90–100. [Google Scholar] [CrossRef]
- Chen, T.H.; Zhu, J.J.; Li, B.H.; Guo, S.Y.; Yuan, Z.Y.; Sun, P.C.; Ding, D.T.; Shi, A.C. Exfoliation of Organo-Clay in Telechelic Liquid Polybutadiene Rubber. Macromolecules 2005, 38, 4030–4033. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Tao, F.; Xue, G.; Chen, T.; Sun, P.; Jin, Q.; Ding, D. Room Temperature Spontaneous Exfoliation of Organo-Clay in Liquid Polybutadiene: Effect of Polymer End-Groups and The Alkyl Tail Number of Organic Modifier. Polymer 2007, 48, 7590–7597. [Google Scholar] [CrossRef]
- Wang, X.; Tao, F.; Xue, G.; Zhu, J.; Chen, T.; Sun, P.; Winter, H.H.; Shi, A.-C. Enhanced Exfoliation of Organoclay in Partially End-Functionalized Non-Polar Polymer. Macromol. Mater. Eng. 2009, 294, 190–195. [Google Scholar] [CrossRef]
- Wang, X.L.; Gao, Y.; Mao, K.M.; Xue, G.; Chen, T.H.; Zhu, J.J.; Li, B.H.; Sun, P.C.; Jin, Q.H.; Ding, D.T.; et al. Unusual Rheological Behavior of Liquid Polybutadiene Rubber/Clay Nanocomposite Gels: The Role of Polymer-Clay Interaction, Clay Exfoliation, and Clay Orientation and Disorientation. Macromolecules 2006, 39, 6653–6660. [Google Scholar] [CrossRef]
- Wang, X.; Sun, P.; Xue, G.; Winter, H.H. Late-State Ripening Dynamics of a Polymer/Clay Nanocomposite. Macromolecules 2010, 43, 1901–1906. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, R.; Lv, W.; Liu, Q.; Wang, X.; Sun, P.; Winter, H.H.; Xue, G. Critical Effect of Segmental Dynamics in Polybutadiene/Clay Nanocomposites Characterized by Solid State 1H NMR Spectroscopy. J. Phys. Chem. C 2014, 118, 5606–5614. [Google Scholar] [CrossRef]
- Sun, P.C.; Zhu, J.J.; Chen, T.H. H-2-NMR Characterization of Clay Dispersion and Confinement Effect on Probe Molecules in Rubber/Clay Nanocomposite-Gels. Chin. J. Polym. Sci. 2009, 27, 71–76. [Google Scholar] [CrossRef]
- Momani, B.; Sen, M.; Endoh, M.; Wang, X.; Koga, T.; Winter, H.H. Temperature Dependent Intercalation and Self–Exfoliation of Clay/Polymer Nanocomposite. Polymer 2016, 93, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.Y.; Yu, J.; Shen, K.X.; Wang, R.Y.; Du, J.Q.; Zhao, X.D.; Yang, Y.X.; Xu, K.; Zhang, Q.; Zhang, Y.F.; et al. Highly Stretchable Nanocomposite Hydrogels with Outstanding Antifatigue Fracture Based on Robust Noncovalent Interactions for Wound Healing. Chem. Mater. 2021, 33, 6453–6463. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Zhou, F.H.; Yan, H.Z.; Gao, G.R.; Li, H.J.; Li, R.; Chen, T. Anti-Freezing Organohydrogel Triboelectric Nanogenerator toward Highly Efficient and Flexible Human-Machine Interaction at −30 °C. Nano Energy 2021, 90, 9. [Google Scholar] [CrossRef]
- Sun, P.C.; Zhu, J.J.; Chen, T.H.; Yuan, Z.Y.; Li, B.H.; Jin, Q.H.; Ding, D.T.; Shi, A.C. Rubber/Exfoliated-clay Nanocomposite Gel: Direct Exfoliation of Montmorillonite by Telechelic Liquid Rubber. Chin. Sci. Bull. 2004, 49, 1664–1666. [Google Scholar] [CrossRef]
- Sun, P.C.; Chen, T.H.; Li, B.H. Composition Composed of Liquid Rubber and Clay. Chinese Patent CN1414029A, 30 April 2003. [Google Scholar]
- Zhang, R.C.; Yu, S.; Chen, S.L.; Wu, Q.; Chen, T.H.; Sun, P.C.; Li, B.H.; Ding, D.T. Reversible Cross-Linking, Microdomain Structure, and Heterogeneous Dynamics in Thermally Reversible Cross-Linked Polyurethane as Revealed by Solid-State NMR. J. Phys. Chem. B 2014, 118, 1126–1137. [Google Scholar] [CrossRef]
- Demco, D.E.; Johansson, A.; Tegenfeldt, J. Proton Spin-Diffusion for Spatial Heterogeneity and Morphology Investigations of Polymers. Solid State Nucl. Magn. Reson. 1995, 4, 13–38. [Google Scholar] [CrossRef]
- Baum, J.; Pines, A. NMR Studies of Clustering in Solids. J. Am.Chem. Soc. 1986, 108, 7447–7454. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Momani, B.; Winter, H.H.; Perry, S.L. Rheological Characterization of Liquid-to-Solid Transitions in Bulk Polyelectrolyte Complexes. Soft Matter 2017, 13, 7332–7340. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Gong, S.; Moll, J.; Zhao, D.; Kumar, S.K.; Colby, R.H. Mechanical Reinforcement of Polymer Nanocomposites from Percolation of a Nanoparticle Network. ACS Macro Lett. 2015, 4, 398–402. [Google Scholar] [CrossRef]
- You, W.; Yu, W. Slow Linear Viscoelastic Relaxation of Polymer Nanocomposites: Contribution from Confined Diffusion of Nanoparticles. Macromolecules 2019, 52, 9094–9104. [Google Scholar] [CrossRef]
- Malvaldi, M.; Allegra, G.; Ciardelli, F.; Raos, G. Structure of An Associating Polymer Melt in A Narrow Slit by Molecular Dynamics Simulation. J. Phys. Chem. B 2005, 109, 18117. [Google Scholar] [CrossRef] [PubMed]
- Baeza, G.P.; Dessi, C.; Costanzo, S.; Zhao, D.; Gong, S.S.; Alegria, A.; Colby, R.H.; Rubinstein, M.; Vlassopoulos, D.; Kumar, S.K. Network Dynamics in Nanofilled Polymers. Nat. Commun. 2016, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Du, F.M.; Scogna, R.C.; Zhou, W.; Brand, S.; Fischer, J.E.; Winey, K.I. Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity. Macromolecules 2004, 37, 9048–9055. [Google Scholar] [CrossRef]
- Yan, T.; Schröter, K.; Herbst, F.; Binder, W.H.; Thurn-Albrecht, T. What Controls the Structure and the Linear and Nonlinear Rheological Properties of Dense, Dynamic Supramolecular Polymer Networks? Macromolecules 2017, 50, 2973–2985. [Google Scholar] [CrossRef] [Green Version]
- Krishnamoorti, R.; Ren, J.; Silva, A.S. Shear Response of Layered Silicate Nanocomposites. J. Chem. Phys. 2001, 114, 4968–4973. [Google Scholar] [CrossRef]
- Schmidt, G.; Nakatani, A.I.; Butler, P.D.; Karim, A.; Han, C.C. Shear Orientation of Viscoelastic Polymer-Clay Solutions Probed by Flow Birefringence and SANS. Macromolecules 2000, 33, 7219–7222. [Google Scholar] [CrossRef]
- Li, J.; Zhou, C.X.; Wang, G.; Zhao, D.L. Study on Rheological Behavior of Polypropylene/Clay Nanocomposites. J. Appl. Polym. Sci. 2003, 89, 3609–3617. [Google Scholar] [CrossRef]
Clay Concentration | 5 wt% | 6 wt% | 8 wt% | 12 wt% | 16 wt% |
---|---|---|---|---|---|
Dm/2π (kHz) | 0.25 | 0.48 | 0.69 | 0.86 | 1.06 |
σ | 0.71 | 0.71 | 0.59 | 0.62 | 0.40 |
Status | Before Shear | After Shear | Recover |
---|---|---|---|
Dm/2π (kHz) | 0.69 | 0.44 | 0.39 |
σ | 0.59 | 0.68 | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Feng, C.; Hou, J.; Zhang, R.; Sun, P.; Gao, Y.; Wang, X. Probing the Dynamic Structural Evolution of End-Functionalized Polybutadiene/Organo-Clay Nanocomposite Gels before and after Yielding by Nonlinear Rheology and 1H Double-Quantum NMR. Polymers 2022, 14, 1518. https://doi.org/10.3390/polym14081518
Peng W, Feng C, Hou J, Zhang R, Sun P, Gao Y, Wang X. Probing the Dynamic Structural Evolution of End-Functionalized Polybutadiene/Organo-Clay Nanocomposite Gels before and after Yielding by Nonlinear Rheology and 1H Double-Quantum NMR. Polymers. 2022; 14(8):1518. https://doi.org/10.3390/polym14081518
Chicago/Turabian StylePeng, Wansu, Chengdong Feng, Jiawen Hou, Rongchun Zhang, Pingchuan Sun, Yun Gao, and Xiaoliang Wang. 2022. "Probing the Dynamic Structural Evolution of End-Functionalized Polybutadiene/Organo-Clay Nanocomposite Gels before and after Yielding by Nonlinear Rheology and 1H Double-Quantum NMR" Polymers 14, no. 8: 1518. https://doi.org/10.3390/polym14081518
APA StylePeng, W., Feng, C., Hou, J., Zhang, R., Sun, P., Gao, Y., & Wang, X. (2022). Probing the Dynamic Structural Evolution of End-Functionalized Polybutadiene/Organo-Clay Nanocomposite Gels before and after Yielding by Nonlinear Rheology and 1H Double-Quantum NMR. Polymers, 14(8), 1518. https://doi.org/10.3390/polym14081518