Effect of Crystallization on Shape Memory Effect of Poly(lactic Acid)
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of PLA Plates
- (1)
- Cold compression process: The hot mold was placed in another plate vulcanizing machine. The cold compressing temperature was 25 °C, and pressure was 5 Mpa. The entire cool pressing process lasted for 5 min;
- (2)
- Quenching process: After the hot compressing process was completed, the PLA plate coated with aluminum foil was placed in water for rapid cooling. The water temperature was 25 °C;
- (3)
- Annealing process: After the completion of cold pressing process, the PLA plate was placed in a high temperature oven. The thermal treatment temperature was 115 °C, and annealing time lasted for 5 min.
2.3. Performance Test and Structure Analysis
3. Results and Discussion
3.1. Thermal Analysis of PLA Plates
3.2. Shape Memory Performance of PLA Plates
3.3. Crystal Structure Analysis of Polylactide Plate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Hu, J.; Zhu, Y. Tunable shape recovery of polymeric nano-composites. Mater. Lett. 2011, 65, 3583–3585. [Google Scholar] [CrossRef]
- Aznar, A.; Gràcia-Condal, A.; Planes, A.; Lloveras, P.; Barrio, M.; Tamarit, J.; Xiong, W.; Cong, D.; Popescu, C.; Mañosa, L. Giant barocaloric effect in all-d-metal Heusler shape memory alloys. Phys. Rev. Mater. 2019, 3, 044406. [Google Scholar] [CrossRef] [Green Version]
- Dahnke, C.; Pottmeyer, F.; Pinter, P.; Weidenmann, K.A.; Tekkaya, A.E. Influence of SMA-induced stress on shape memory alloy metal matrix composites manufactured by continuous composite extrusion. Smart Mater. Struct. 2019, 28, 084006. [Google Scholar] [CrossRef]
- Rezaei, R.; Deng, C. Pseudoelasticity and shape memory effects in cylindrical FCC metal nanowires. Acta Mater. 2017, 132, 49–56. [Google Scholar] [CrossRef]
- Zhang, Q.; Hao, S.; Liu, Y.; Xiong, Z.; Guo, W.; Yang, Y.; Ren, Y.; Cui, L.; Ren, L.; Zhang, Z. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. Appl. Mater. Today 2020, 19, 100547. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Zhuo, H. Properties and mechanism of two-way shape memory polyurethane composites. Compos. Sci. Technol. 2010, 70, 1437–1443. [Google Scholar] [CrossRef]
- Zhang, X.; Zong, H.; Cui, L.; Fan, X.; Ding, X.; Sun, J. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites. Sci. Rep. 2017, 7, 46360. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ping, P.; Chen, X.; Jing, X. Polylactide-based polyurethane and its shape-memory behavior. Eur. Polym. J. 2006, 42, 1240–1249. [Google Scholar] [CrossRef]
- Auad, M.L.; Contos, V.S.; Nutt, S.; Aranguren, M.I.; Marcovich, N.E. Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym. Int. 2008, 57, 651–659. [Google Scholar] [CrossRef]
- Dolynchuk, O.; Kolesov, I.; Jehnichen, D.; Reuter, U.; Radusch, H.J.; Sommer, J.U. Reversible shape-memory effect in cross-linked linear poly (ε-caprolactone) under stress and stress-free conditions. Macromolecules 2017, 50, 3841–3854. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Y.; Dong, Y.; Fu, Y. Shape memory and mechanical properties of silk fibroin/poly (ε-caprolactone) composites. Mater. Lett. 2017, 193, 26–29. [Google Scholar] [CrossRef]
- Utroša, P.; Onder, O.C.; Žagar, E.; Kovačič, S.; Pahovnik, D. Shape memory behavior of emulsion-templated poly (ε-Caprolactone) synthesized by organocatalyzed ring-opening polymerization. Macromolecules 2019, 52, 9291–9298. [Google Scholar] [CrossRef]
- Wang, Q.; He, Y.; Li, Q.; Wu, C. SBS Thermoplastic Elastomer Based on Dynamic Metal-Ligand Bond: Structure, Mechanical Properties, and Shape Memory Behavior. Macromol. Mater. Eng. 2021, 306, 2000737. [Google Scholar] [CrossRef]
- Yang, J.H.; Chun, B.C.; Chung, Y.C.; Cho, J.H. Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer 2003, 44, 3251–3258. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Liu, Y.; Liem, H.; Zhu, Y.; Meng, Q. Effect of molecular weight on shape memory behavior in polyurethane films. Polym. Int. 2007, 56, 1128–1134. [Google Scholar] [CrossRef]
- Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6, 587–592. [Google Scholar] [CrossRef]
- Chen, S.; Hu, J.; Zhuo, H. Study on the moisture absorption of pyridine containing polyurethane for moisture-responsive shape memory effects. J. Mater. Sci. 2011, 46, 6581–6588. [Google Scholar] [CrossRef]
- Zimkowski, M.M.; Rentschler, M.E.; Schoen, J.; Rech, B.A.; Mandava, N.; Shandas, R. Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: An in vitro and acute in vivo study. J. Biomed. Mater. Res. A 2013, 101, 2613–2620. [Google Scholar] [CrossRef] [Green Version]
- Bertagne, C.; Walgren, P.; Erickson, L.; Sheth, R.; Whitcomb, J.; Hartl, D. Coupled behavior of shape memory alloy-based morphing spacecraft radiators: Experimental assessment and analysis. Smart Mater. Struct. 2018, 27, 065006. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Liu, L.; Leng, J. Shape memory polymers and their composites in aerospace applications: A review. Smart Mater. Struct. 2014, 23, 023001. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Wang, D. Tailoring crystallization: Towards high-performance poly(lactic acid). Adv. Mater. 2014, 26, 6905–6911. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hu, H.; Wang, X.; Yu, X.; Zhou, W.; Peng, S. Super tough poly(lactic acid) blends: A comprehensive review. RSC Adv. 2020, 10, 13316–13368. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, T.; Uyama, H. Full biobased polymeric material from plant oil and poly(lactic acid) with a shape memory property. ACS Sustain. Chem. Eng. 2014, 2, 2057–2062. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.Y.; Peng, X.F.; Turng, L.S. The morphology, properties, and shape memory behavior of poly(lactic acid)/thermoplastic polyurethane blends. Polym. Eng. Sci. 2015, 55, 70–80. [Google Scholar] [CrossRef]
- Ebadi-Dehaghani, H.; Barikani, M.; Khonakdar, H.A.; Jafari, S.H. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. J. Therm. Anal. Calorim. 2015, 121, 1321–1332. [Google Scholar] [CrossRef]
- Shi, Q.F.; Mou, H.Y.; Gao, L.; Yang, J.; Guo, W.H. Double-melting behavior of bamboo fiber/talc/poly(lactic acid) composites. J. Polym. Environ. 2010, 18, 567–575. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Ye, L.; Coates, P.; Caton-Rose, F. Multiple shape memory behavior of highly oriented long-chain-branched poly(lactic acid) and its recovery mechanism. J. Biomed. Mater. Res. A 2019, 107, 872–883. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Bao, H.; Zhu, C.; Zhu, S.; Huang, F.; Shi, J.; Hu, J.; Zhou, Q. Structure evolution of polyamide 1212 during the uniaxial stretching process: In situ synchrotron wide-angle X-ray diffraction and small-angle X-ray scattering analysis. Ind. Eng. Chem. Res. 2016, 55, 7621–7627. [Google Scholar] [CrossRef]
- Wang, L.; Dong, X.; Huang, M.; Wang, D. Transient microstructure in long alkane segment polyamide: Deformation mechanism and its temperature dependence. Polymer 2016, 97, 217–225. [Google Scholar] [CrossRef]
- Nagarajan, V.; Zhang, K.; Misra, M.; Mohanty, A.K. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: Influence of nucleating agent and mold temperature. ACS Appl. Mater. Inter. 2015, 7, 11203–11214. [Google Scholar] [CrossRef]
- Nofar, M.; Tabatabaei, A.; Park, C.B. Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer 2013, 54, 2382–2391. [Google Scholar] [CrossRef]
- Mao, Y.; Burger, C.; Li, X.; Hsiao, B.S.; Mehta, A.K.; Tsou, A.H. Time-resolved synchrotron X-ray scattering study on propylene–1-butylene random copolymer subjected to uniaxial stretching at high temperatures. Macromolecules 2012, 45, 951–961. [Google Scholar] [CrossRef]
- Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H.F.; Lilge, D.; Roth, S.V.; Men, Y. Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small-and wide-angle X-ray scattering studies. Polymer 2009, 50, 4101–4111. [Google Scholar] [CrossRef]
Specimen | Tg | Tcc | Tm |
---|---|---|---|
PLA plate | 61.3 | 114.3 | 158.8/164.8 |
Specimens | Parameters | Quenching Process | Cold Compression Process | Annealing Process |
---|---|---|---|---|
Non-stretched | Crystallinity (%) | 7.7 | 10.2 | 13.6 |
Crystallite size (nm) | 7.7 | 9.8 | 12.9 | |
Stretched | Crystallinity (%) | 53.4 | 61.1 | 69.1 |
Crystallite size (nm) | 8.5 | 10.2 | 13.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, D.; Yin, X.; Cai, Z.; Wang, J. Effect of Crystallization on Shape Memory Effect of Poly(lactic Acid). Polymers 2022, 14, 1569. https://doi.org/10.3390/polym14081569
Nie D, Yin X, Cai Z, Wang J. Effect of Crystallization on Shape Memory Effect of Poly(lactic Acid). Polymers. 2022; 14(8):1569. https://doi.org/10.3390/polym14081569
Chicago/Turabian StyleNie, Danli, Xianze Yin, Ziqing Cai, and Jintao Wang. 2022. "Effect of Crystallization on Shape Memory Effect of Poly(lactic Acid)" Polymers 14, no. 8: 1569. https://doi.org/10.3390/polym14081569
APA StyleNie, D., Yin, X., Cai, Z., & Wang, J. (2022). Effect of Crystallization on Shape Memory Effect of Poly(lactic Acid). Polymers, 14(8), 1569. https://doi.org/10.3390/polym14081569