A Phosphorous-Containing Bio-Based Furfurylamine Type Benzoxazine and Its Application in Bisphenol-A Type Benzoxazine Resins: Preparation, Thermal Properties and Flammability
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Benzoxazine Monomer of Furfurylamine (D-fu)
2.3. Preparation of PBa/PD-fu Composites
2.4. Characterization
3. Results and Discussion
3.1. Characterization of D-fu
3.2. Curing Behavior of Ba and Ba/D-fu Mixture
3.3. Thermal Stability
3.4. Flammability of PBa and PBa/D-fu Composites
3.5. Flame Retardance Mechanism
3.5.1. Condensed Phase Analysis
3.5.2. Gas Phase Analysis
3.6. Dynamic Mechanical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van, A.; Chiou, K.; Ishida, H. Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring. Polymer 2014, 55, 1443–1451. [Google Scholar] [CrossRef]
- Yang, P. Synthesis of a novel benzoxazine containing benzoxazole structure. Chin. Chem. Lett. 2010, 21, 558–562. [Google Scholar] [CrossRef]
- Ning, X.; Ishida, H. Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J. Polym. Sci. Part A Polym. Chem. 1994, 32, 1121–1129. [Google Scholar] [CrossRef]
- Li, S.F.; Zou, T.; Liu, X.L.; Tao, M. Synthesis and characterization of benzoxazine monomers from rosin and their thermal polymerization. Des. Monomers Polym. 2014, 17, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Sha, X.L.; Yuan, L.; Liang, G.Z.; Gu, A.J. Development and mechanism of high-performance fully biobased shape memory benzoxazine resins with a green strategy. ACS Sustain. Chem. Eng. 2020, 8, 18696–18705. [Google Scholar] [CrossRef]
- Iguchi, D.; Ohashi, S.; Abarro, G.J.E.; Yin, X.; Winroth, S.; Scott, C.; Gleydura, M.; Jin, L.; Kanagasegar, N.; Lo, C.; et al. Development of hydrogen-rich benzoxazine resins with low polymerization temperature for space radiation shielding. ACS Omega 2018, 3, 11569–11581. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Wang, J.; Xie, L.; Sun, Y.; Li, K. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 15583–15596. [Google Scholar] [CrossRef]
- Yu, X.; Shang, Z.; Zhang, K. Thermally stable polybenzoxazines via tetrahydrophthalimide-functional monobenzoxazines: Synthesis, characterization and thermally activated polymerization kinetics. Thermochim. Acta. 2019, 675, 29–37. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Q.; Wang, X.; Wen, T.; Chen, C. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance. J. Am. Chem. Soc. 2015, 137, 1947–1955. [Google Scholar] [CrossRef]
- Cheng, C.J.; Zhang, X.; Chen, X.H.; Li, J.; Huang, Q.H.; Hu, Z.Y.; Tu, Y.M. Self-healing polymers based on eugenol via combination of thiol-ene and thiol oxidation reactions. J. Polym. Res. 2016, 23, 1–12. [Google Scholar] [CrossRef]
- Han, L.; Salum, M.L.; Zhang, K.; Froimowicz, P.; Ishida, H. Intrinsic self-initiating thermal ring-opening polymerization of 1, 3- benzoxazines without the influence of impurities using very high purity crystals. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3434–3445. [Google Scholar] [CrossRef]
- Sini, N.K.; Endo, T. Toward elucidating the role of number of oxazine rings and intermediates in the benzoxazine backbone on their thermal characteristics. Macromolecules 2016, 49, 8466–8478. [Google Scholar] [CrossRef]
- Agag, T.; Liu, J.; Graf, R.; Spiess, H.W.; Ishida, H. Benzoxazole resin: A novel class of thermoset polymer via smart benzoxazine resin. Macromolecules 2012, 45, 8991–8997. [Google Scholar] [CrossRef]
- Liu, Y.; Ran, Q.; Gu, Y. Preparation and properties of benzoxazine blends with intumescent flame retardancy. Polym. Degrad. Stab. 2019, 163, 15–24. [Google Scholar] [CrossRef]
- Jubsilp, C.; Singto, J.; Yamo, W.; Rimdusit, S. Effect of graphite particles size on tribological and mechanical properties of polybenzoxazine composites. Chem. Eng. Transac. 2017, 57, 1351–1356. [Google Scholar]
- Wu, J.; Xi, Y.; McCandless, G.T.; Xie, Y.; Menon, R.; Patel, Y.; Yang, D.J.; Iacono, S.T.; Novak, B.M. Synthesis and characterization of partially fluorinated polybenzoxazine resins utilizing Octafluor-ocyclopentene as a versatile building block. Macromolecules 2015, 48, 6087–6095. [Google Scholar] [CrossRef]
- Wang, X.; Zong, L.; Han, J.; Wang, J.; Cheng, L.; Jian, X. Toughening and reinforcing of benzoxazine resins using a new hyperbranched polyether epoxy as a non-phase-separation modifier. Polymer 2017, 121, 217–227. [Google Scholar] [CrossRef]
- Yan, H.Q.; Zhan, Z.M.; Wang, H.Q.; Jie, C.; Fang, Z.P. Synthesis, curing, and thermal stability of low-temperature-cured benzoxazine resins based on natural renewable resources. ACS Appl. Polym. Mater. 2021, 3, 3392–3401. [Google Scholar] [CrossRef]
- Teng, N.; Yang, S.; Dai, J. Making benzoxazine greener and stronger: Renewable resource, microwave irradiation, green solvent and excellent thermal properties. ACS Sustain. Chem. Eng. 2019, 7, 8715–8723. [Google Scholar] [CrossRef]
- Mei, Q.; Wang, H.; Tong, D.; Song, J.Q.; Huang, Z.X. A novel acetylene-functional/silicon-containing benzoxazine resin: Preparation, curing kinetics and thermal properties. Polymers 2020, 12, 999. [Google Scholar] [CrossRef]
- Wang, Z.D.; Yang, M.M.; Cheng, Y.H.; Liu, J.Y.; Xiao, B.; Chen, S.Y.; Huang, J.L.; Xie, Q.; Wu, G.L.; Wu, H.J.; et al. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. Part A Appl. Sci. Manuf. 2019, 118, 302–311. [Google Scholar] [CrossRef]
- Dai, J.Y.; Teng, N.; Shen, X.B.; Liu, Y.; Cao, L.J.; Zhu, J.; Liu, X.Q. Syntheis of biobased benzoxazines suitable for vacuum-assisted resin transfer molding process via introduction of soft silicon segment. Ind. Eng. Chem. Res. 2018, 57, 3091–3102. [Google Scholar] [CrossRef]
- Chen, M.J.; Shao, Z.B.; Wang, X.L.; Chen, L.; Wang, Y.Z. Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen−phosphorus flame retardant. Ind. Eng. Chem. Res. 2012, 51, 9769–9776. [Google Scholar] [CrossRef]
- Zhao, S.P.; Pei, L.; Zhang, X.; Hu, W.H.; Yan, H.; Zhao, G.Z.; Zhang, C.Y.; Wang, Z. Curing mechanism, thermal and ablative properties of hexa-(4-amino-phenoxy) cyclotriphosphazene/benzoxazine blends. Compos. B. Eng. 2021, 216, 108838–108847. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.Q.; Wei, R.; Zhang, X. Preparation and characterization of bisphenol A-based benzoxazine/montmorillonite nanocomposites. J. Harbin Inst. Technol. 2017, 49, 166–172. [Google Scholar]
- Sponton, M.; Lligadas, G.; Ronda, J.C.; Galia, M.; Cadiz, V. Development of a DOPO-containing benzoxazine and its high-performance flame retardant copolybenzoxazines. Polym. Degrad. Stab. 2009, 94, 1693–1699. [Google Scholar] [CrossRef]
- Selvi, M.; Devarajua, S.; Sethuramana, K.; Revathia, R.; Alagara, M. Cyclotriphosphazene fibre reinforced poly(benzoxazine-co-ε-caprolactam) nanocomposites for flame retardant applications. Chin. J. Polym. Sci. 2014, 32, 1086–1098. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, P.; Lin, R.; Su, J. Promoting ring-opening polymerization of benzoxazine and its thermal property through incorporation of pyrogallol-based benzoxazines. Polym. Bull. 2021, 78, 4403–4417. [Google Scholar] [CrossRef]
- Jian, R.K.; Ai, Y.F.; Xia, L.; Zhang, Z.P.; Wang, D.Y. Organophosphorus heteroaromatic compound towards mechanically reinforced and low-flammability epoxy resin. Composites 2019, 168, 458–466. [Google Scholar] [CrossRef]
- Cao, Z.J.; Wang, L.; Wang, S.X.; Zhao, H.B.; Wang, Y.Z. Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chem. Eng. J. 2019, 361, 1245–1254. [Google Scholar] [CrossRef]
- Li, Y.L.; Kuan, C.F.; Hsu, S.W.; Chen, H.C.; Kuan, H.C.; Lee, F.M.; Yip, M.C.; Chiang, C.L. Preparation, thermal stability and flame-retardant properties of halogen-free polypropylene composites. High. Perform. Polym. 2012, 24, 478–487. [Google Scholar] [CrossRef]
- Liu, X.Y.; Li, Z.Y.; Zhan, G.Z.; Wu, Y.T.; Zhuang, Q.X. Bio-based benzoxazines based on sesamol: Synthesis and properties. J. Appl. Polym. Sci. 2019, 136, 48255–48262. [Google Scholar] [CrossRef]
- Fache, M.; Boutevin, B.; Caillol, S. Vanillin, a key-intermediate of biobased polymers. Eur. Polym. J. 2015, 68, 488–502. [Google Scholar] [CrossRef]
- Tüzün, A.; Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Castor oil-derived benzoxazines: Synthesis, self-metathesis and properties of the resulting thermosets. Eur. Polym. J. 2016, 75, 56–66. [Google Scholar] [CrossRef]
- Zhang, C.; Ling, H.; Gu, Y. Synthesis and curing properties of cardanol-based benzoxazine. Polym. Mater. Sci. Eng. 2011, 27, 92–95. [Google Scholar]
- Zhao, C.X.; Li, P.; He, D.; Li, Y.T.; Lei, F.; Sue, H.J. Flame retardation behavior of polybenzoxazine/α-ZrP nanocomposites. RSC Adv. 2016, 6, 73485–73495. [Google Scholar] [CrossRef]
- Liu, Y.F.; Liao, C.Y.; Hao, Z.Z.; Luo, X.X.; Jing, S.S.; Run, M.T. The polymerization behavior and thermal properties of benzoxazine based on o-allylphenol and 4,40-diaminodiphenyl methane. React. Funct. Polym. 2013, 75, 9–15. [Google Scholar] [CrossRef]
- Salum, L.M.; Iguchi, D.; Arza, C.R.; Han, L.; Ishida, H.; Froimowicz, P. Making benzoxazines greener: Design, synthesis, and polymerization of a bio-based benzoxazine fulfilling two principles of green chemistry. ACS Sustain. Chem. Eng. 2018, 6, 13096–13106. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, J.; Li, R.; Liu, J.; Chen, W.; Xu, Q.; Yi, G. The curing behavior and thermal property of graphene oxide/benzoxazine nanocomposites. Polymer 2013, 12, 3107–3116. [Google Scholar] [CrossRef]
- Ho, T.H.; Hwang, H.J.; Shieh, J.Y.; Chung, M.C. Thermal, physical and flame-retardant properties of phosphorus-containing epoxy cured with cyanate. Ester. React. Funct. Polym. 2009, 69, 176–182. [Google Scholar] [CrossRef]
- Zhao, C.X.; Liu, Y.; Wang, D.Y.; Wang, D.L.; Wang, Y.Z. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym. Degrad. Stab. 2008, 93, 1323–1331. [Google Scholar] [CrossRef]
- He, Q.L.; Yuan, T.T.; Wei, S.Y.; Guo, Z.H. Catalytic and synergistic effects on thermal stability and combustion behavior of polypropylene: Influence of maleic anhydride grafted polypropylene stabilized cobalt nanoparticles. J. Mater. Chem. A. 2013, 1, 13064–13075. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Qiu, Y.; Li, L.; Qian, L.; Xin, F. Terminal group effects of phosphazene-triazine bi-group flame retardant additives in flame retardant polylactic acid composites. Polym. Degrad. Stab. 2017, 140, 166–175. [Google Scholar] [CrossRef]
- Yu, L.; Chen, L.; Dong, L.P.; Li, L.J.; Wang, Y.Z. Organic-inorganic hybrid flame retardant: Preparation, characterization and application in EVA. RSC Adv. 2014, 4, 17812–17821. [Google Scholar] [CrossRef]
- Wang, X.; Romero, M.Q.; Zhang, X.Q.; Wang, R.; Wang, D.Y. Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol-gel process. RSC Adv. 2015, 5, 10647–10655. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.C.; Yao, Y.W. Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins. Polym. Degrad. Stab. 2011, 96, 1720–1724. [Google Scholar] [CrossRef]
- Wei, J.X.; Zhao, C.X.; Li, Y.C.; Li, Y.T.; Sun, Z.M.; Xiang, D.; Li, H. A simple and green strategy for preparing poly(vinyl alcohol)/phosphate cellulose aerogel with enhanced flame-retardant properties. Polym. Eng. Sci. 2021, 61, 693–705. [Google Scholar]
- Gu, J.W.; Zhang, G.C.; Dong, S.L.; Zhang, Y.Q.; Jie, K. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Tech. 2007, 201, 7835–7841. [Google Scholar] [CrossRef]
- Andronescu, C.; Garea, S.A.; Vasile, E.; Iovu, H. Synthesis and characterization of polybenzoxazine/layered double hydroxides nano-composites. Compos. Sci. Technol. 2014, 95, 29–37. [Google Scholar] [CrossRef]
- Dai, J.; Peng, Y.; Teng, N.; Liu, Y.; Liu, C.; Shen, X.; Mahmud, S.; Zhu, J.; Liu, X.C. High-performing and fire-resistant biobased epoxy resin from renewable sources. ACS Sustain. Chem. Eng. 2018, 6, 7589–7599. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, C.X.; He, X.J.; Gou, H.L.; Li, Y.T. Effects of fluorenyl polyphosphazene microspheres on the flame retardant properties of polybenzoxazine resins. Acta Polym. Sin. 2018, 10, 1336–1344. [Google Scholar]
- Wei, Y.X.; Deng, C.; Chen, H.; Wan, L.; Wei, W.C.; Wang, Y.Z. Novel core-Shell hybrid nanosphere towards the mechanical enhancement and fire retardance of polycarbonate. ACS Appl. Mater. Interfaces 2018, 10, 28036–28050. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.N.; Costache, M.; Wilkie, C.A. The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer 2005, 46, 10678–10687. [Google Scholar] [CrossRef]
- Menard, R.; Negrell, C.; Ferry, L.; Sonnier, R.; David, G. Synthesis of biobased phosphorus-containing flame retardants for epoxy thermosets comparison of additive and reactive approaches. Polym. Degrad. Stab. 2015, 120, 300–312. [Google Scholar] [CrossRef]
- Korobeinichev, O.P.; Shvartsberg, V.M.; Shmakov, A.G.; Bolshova, T.A.; Jayaweera, T.M.; Melius, C.F.; Pitz, W.J.; Westbrook, C.K.; Curran, H. Flame inhibition by phosphorus-containing compounds in lean and rich propane flames. Proc. Combust. Inst. 2005, 30, 2353–2360. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Zhang, T.; Zou, B.; Hu, W.; Wang, B.; Zhan, J.; Ma, C.; Hu, Y. Synthesis of a novel liquid phosphorus-containing flame retardant for flexible polyurethane foam: Combustion behaviors and thermal properties. Polym. Degrad. Stab. 2020, 171, 109029–109038. [Google Scholar] [CrossRef]
Sample | Ti (°C) | Tp (°C) | Tf (°C) |
---|---|---|---|
Ba | 210 | 234 | 286 |
Ba/D-fu-1% | 206 | 230 | 285 |
Ba/D-fu-3% | 206 | 232 | 285 |
Ba/D-fu-5% | 204 | 229 | 281 |
Sample | Tonset (°C) | Tmax (°C) | Char Residue (%) | |||||
---|---|---|---|---|---|---|---|---|
700 °C | 800 °C | |||||||
Air | N2 | Air | N2 | Air | N2 | Air | N2 | |
PBa | 376 | 355 | 408 | 410 | 5 ± 0.13 | 36 ± 0.33 | 0.34 ± 0.17 | 34 ± 0.16 |
PBa/PD-fu-1% | 362 | 353 | 389 | 400 | 19 ± 0.25 | 37 ± 1.30 | 1.26 ± 0.14 | 36 ± 0.91 |
PBa/PD-fu-3% | 366 | 348 | 382 | 388 | 14 ± 0.32 | 37 ± 0.49 | 2.34 ± 0.11 | 36 ± 0.41 |
PBa/PD-fu-5% | 366 | 351 | 378 | 380 | 12 ± 0.50 | 38 ± 0.60 | 2.64 ± 0.26 | 37 ± 0.98 |
Sample | TTI (s) | PHRR (kW/m2) | Mass Loss (%) | FPI (s·m2/kW) | LOI (%) | UL-94 |
---|---|---|---|---|---|---|
Pure PBa | 83 | 330 | 77.9% | 0.25 | 21 | NR |
PBa/PD-fu-1% | 82 | 332 | 74.4% | 0.25 | 25 | V-1 |
PBa/PD-fu-3% | 76 | 258 | 73.7% | 0.29 | 29 | V-0 |
PBa/PD-fu-5% | 75 | 258 | 71.7% | 0.29 | 34 | V-0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Sun, Z.; Wei, J.; Li, Y.; Xiang, D.; Wu, Y.; Que, Y. A Phosphorous-Containing Bio-Based Furfurylamine Type Benzoxazine and Its Application in Bisphenol-A Type Benzoxazine Resins: Preparation, Thermal Properties and Flammability. Polymers 2022, 14, 1597. https://doi.org/10.3390/polym14081597
Zhao C, Sun Z, Wei J, Li Y, Xiang D, Wu Y, Que Y. A Phosphorous-Containing Bio-Based Furfurylamine Type Benzoxazine and Its Application in Bisphenol-A Type Benzoxazine Resins: Preparation, Thermal Properties and Flammability. Polymers. 2022; 14(8):1597. https://doi.org/10.3390/polym14081597
Chicago/Turabian StyleZhao, Chunxia, Zhangmei Sun, Jixuan Wei, Yuntao Li, Dong Xiang, Yuanpeng Wu, and Yusheng Que. 2022. "A Phosphorous-Containing Bio-Based Furfurylamine Type Benzoxazine and Its Application in Bisphenol-A Type Benzoxazine Resins: Preparation, Thermal Properties and Flammability" Polymers 14, no. 8: 1597. https://doi.org/10.3390/polym14081597
APA StyleZhao, C., Sun, Z., Wei, J., Li, Y., Xiang, D., Wu, Y., & Que, Y. (2022). A Phosphorous-Containing Bio-Based Furfurylamine Type Benzoxazine and Its Application in Bisphenol-A Type Benzoxazine Resins: Preparation, Thermal Properties and Flammability. Polymers, 14(8), 1597. https://doi.org/10.3390/polym14081597