Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures
Abstract
:1. Introduction
2. Mass Transport Mechanisms within Pervaporation Membranes
3. Material Selection
3.1. Polymeric Membranes
3.2. Inorganic Membranes
3.3. Membranes Based on 2D Materials
3.4. Mixed Matrix Membranes
4. Fabrication Techniques
5. Characterization Techniques
6. Applications
6.1. Organic–Organic Separation
6.2. Removal of Organic Solvents from Water
6.3. Organic Dehydration
6.4. Desalination
7. Future Directions and Research Needs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, P.; Yadav, R. A Review on Volatile Organic Compounds (VOCs) as Environmental Pollutants: Fate and Distribution. Int. J. Plant Environ. 2018, 4, 14–26. [Google Scholar] [CrossRef]
- Rostovtseva, V.; Faykov, I.; Pulyalina, A. A Review of Recent Developments of Pervaporation Membranes for Ethylene Glycol Purification. Membranes 2022, 12, 312. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.A.; Lone, S.R. Hybrid Process (Pervaporation-Distillation): A Review. Int. J. Sci. Eng. Res. 2012, 3, 549–553. [Google Scholar]
- Rostovtseva, V.; Pulyalina, A.; Dubovenko, R.; Faykov, I.; Subbotina, K.; Saprykina, N.; Novikov, A.; Vinogradova, L.; Polotskaya, G. Enhancing Pervaporation Membrane Selectivity by Incorporating Star Macromolecules Modified with Ionic Liquid for Intensification of Lactic Acid Dehydration. Polymers 2021, 13, 1811. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Huang, R.Y.M. Liquid Separation by Membrane Pervaporation: A Review. Ind. Eng. Chem. Res. 1997, 36, 1048–1066. [Google Scholar] [CrossRef]
- Luis, P. Pervaporation; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128134849. [Google Scholar]
- Jyoti, G.; Keshav, A.; Anandkumar, J. Review on Pervaporation: Theory, Membrane Performance, and Application to Intensification of Esterification Reaction. J. Eng. 2015, 2015, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Galiano, F.; Falbo, F.; Figoli, A. Polymeric pervaporation membranes: Organic-organic separation. In Nanostructured Polymer Membranes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 287–310. [Google Scholar]
- Roizard, D.; Favre, E. Trends in design and preparation of polymeric membranes for pervaporation. In Advanced Materials for Membrane Preparation; Bentham Science Publishers Ltd.: Sharjah, United Arab Emirates, 2012; pp. 163–204. [Google Scholar]
- Kahlenberg, L. On the Nature of the Process of Osmosis and Osmotic Pressure with Observations Concerning Dialysis. J. Phys. Chem. 1906, 10, 141–209. [Google Scholar] [CrossRef] [Green Version]
- Kober, P.A. Pervaporation, perstillation and percrystallization. Exp. Biol. Med. 1917, 14, 87–88. [Google Scholar] [CrossRef]
- Luis, P. Fundamental Modelling of Membrane Systems; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128134832. [Google Scholar]
- Binning, R.; Lee, R.; Jennings, J.; Martin, E. Separation of Liquid Mixtures by Permeation. Ind. Eng. Chem. 1961, 53, 45–50. [Google Scholar] [CrossRef]
- Huang, R.Y.M.; Lin, V.J.C. Separation of liquid mixtures by using polymer membranes. I. Permeation of binary organic liquid mixtures through polyethylene. J. Appl. Polym. Sci. 1968, 12, 2615–2631. [Google Scholar] [CrossRef]
- Kucharski, M.; Stelmaszek, J. Separation of liquid mixture by permeation. Int. Chem. Eng. 1967, 7, 618–622. [Google Scholar]
- Néel, J.; Aptel, P.; Clément, R. Basic aspects of pervaporation. Desalination 1985, 53, 297–326. [Google Scholar] [CrossRef]
- Neel, J. Introduction to pervaporation. In Pervaporation Membrane Separation Processes; Huang, R.Y.M., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 1–109. [Google Scholar]
- Neel, J.; Nguyen, Q.T.; Clement, R.; Le Blanc, L. Fractionation of a binary liquid mixture by continuous pervaporation. J. Memb. Sci. 1983, 15, 43–62. [Google Scholar] [CrossRef]
- Aptel, P.; Challard, N.; Cuny, J.; Neel, J. Application of the pervaporation process to separate azeotropic mixtures. J. Memb. Sci. 1976, 1, 271–287. [Google Scholar] [CrossRef]
- Aptel, P.; Cuny, J.; Jozefowicz, J.; Morel, G.; Neel, J. Liquid transport through membranes prepared by grafting of polar monomers onto poly(tetrafluoroethylene) films. I. Some fractionations of liquid mixtures by pervaporation. J. Appl. Polym. Sci. 1972, 16, 1061–1076. [Google Scholar] [CrossRef]
- Bruschke, H. Multi-Layer Membrane and the Use thereof for the Separation of Liquid Mixtures According to the Pervaporation Process. U.S. Patent US4755299A, 10 April 1990. [Google Scholar]
- Nunes, S.P.; Peinemann, K.-V. Membrane Technology: In the Chemical Industry, Second, Revised and Extended Edition; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2006. [Google Scholar] [CrossRef]
- Jonquières, A.; Clément, R.; Lochon, P.; Néel, J.; Dresch, M.; Chrétien, B. Industrial state-of-the-art of pervaporation and vapour permeation in the western countries. J. Memb. Sci. 2002, 206, 87–117. [Google Scholar] [CrossRef]
- Lipnizki, F.; Hausmanns, S.; Ten, P.-K.; Field, R.W.; Laufenberg, G. Organophilic pervaporation: Prospects and performance. Chem. Eng. J. 1999, 73, 113–129. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W. Pervaporation membrane materials: Recent trends and perspectives. J. Memb. Sci. 2021, 636, 119557. [Google Scholar] [CrossRef]
- Eljaddi, T.; Mendez, D.L.M.; Favre, E.; Roizard, D. Development of new pervaporation composite membranes for desalination: Theoretical and experimental investigations. Desalination 2021, 507, 115006. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Sandu, T.; Sârbu, A.; Damian, C.M.; Marin, A.; Vulpe, S.; Budinova, T.; Tsyntsarski, B.; Yardim, M.F.; Sirkecioglu, A. Preparation and characterization of membranes obtained from blends of acrylonitrile copolymers with poly (vinyl alcohol). J. Appl. Polym. Sci. 2014, 131, 41013. [Google Scholar] [CrossRef]
- Jyothi, M.S.; Reddy, K.R.; Soontarapa, K.; Naveen, S.; Raghu, A.V.; Kulkarni, R.V.; Suhas, D.P.; Shetti, N.P.; Nadagouda, M.N.; Aminabhavi, T.M. Membranes for dehydration of alcohols via pervaporation. J. Environ. Manag. 2019, 242, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Bolaños, E.; Zhou, H.; Parkin, G. Membrane Pervaporation for Wastewater Reuse in Microirrigation. J. Environ. Eng. 2005, 131, 1633–1643. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Kaschemekat, J.; Davidson, J.E.; Baker, R.W. Treatment of organic-contaminated wastewater streams by pervaporation. Environ. Prog. 1990, 9, 262–268. [Google Scholar] [CrossRef]
- Kondo, M.; Sato, H. Treatment of wastewater from phenolic resin process by pervaporation. Desalination 1994, 98, 147–154. [Google Scholar] [CrossRef]
- Wu, X.M.; Zhang, Q.G.; Soyekwo, F.; Liu, Q.L.; Zhu, A.M. Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable PIM-1 membrane. AIChE J. 2016, 62, 842–851. [Google Scholar] [CrossRef]
- Li, C.; Gao, M.; Zhu, W.; Wang, N.; Ma, X.; Wu, C.; Wang, Q. Recent advances in the separation and purification of lactic acid from fermentation broth. Process Biochem. 2021, 104, 142–151. [Google Scholar] [CrossRef]
- Gally, C.R.; Benvenuti, T.; da Trindade, C.D.M.; Rodrigues, M.A.S.; Zoppas-Ferreira, J.; Pérez-Herranz, V.; Bernardes, A.M. Electrodialysis for the tertiary treatment of municipal wastewater: Efficiency of ion removal and ageing of ion exchange membranes. J. Environ. Chem. Eng. 2018, 6, 5855–5869. [Google Scholar] [CrossRef]
- Sahebjamee, N.; Soltanieh, M.; Mousavi, S.M.; Heydarinasab, A. Removal of Cu2+, Cd2+ and Ni2+ ions from aqueous solution using a novel chitosan/polyvinyl alcohol adsorptive membrane. Carbohydr. Polym. 2019, 210, 264–273. [Google Scholar] [CrossRef]
- Wang, X.; Min, M.; Liu, Z.; Yang, Y.; Zhou, Z.; Zhu, M.; Chen, Y.; Hsiao, B.S. Poly(ethyleneimine) nanofibrous affinity membrane fabricated via one step wet-electrospinning from poly (vinyl alcohol)-doped poly(ethyleneimine) solution system and its application. J. Memb. Sci. 2011, 379, 191–199. [Google Scholar] [CrossRef]
- Căprărescu, S.; Modrogan, C.; Purcar, V.; Dăncilă, A.M.; Orbuleț, O.D. Study of Polyvinyl Alcohol-SiO2 Nanoparticles Polymeric Membrane in Wastewater Treatment Containing Zinc Ions. Polymers 2021, 13, 1875. [Google Scholar] [CrossRef] [PubMed]
- Căprărescu, S.; Zgârian, R.G.; Tihan, G.T.; Purcar, V.; Eftimie Totu, E.; Modrogan, C.; Chiriac, A.-L.; Nicolae, C.A. Biopolymeric Membrane Enriched with Chitosan and Silver for Metallic Ions Removal. Polymers 2020, 12, 1792. [Google Scholar] [CrossRef] [PubMed]
- Baysak, F.K. A novel approach to Chromium rejection from sewage wastewater by pervaporation. J. Mol. Struct. 2021, 1233, 130082. [Google Scholar] [CrossRef]
- Song, Y.; Pan, F.; Li, Y.; Quan, K.; Jiang, Z. Mass transport mechanisms within pervaporation membranes. Front. Chem. Sci. Eng. 2019, 13, 458–474. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Liang, X.; Yuan, J.; Yang, H.; Wang, S.; Ren, Y.; Wu, H.; Pan, F.; Jiang, Z. Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 2021, 50, 5468–5516. [Google Scholar] [CrossRef] [PubMed]
- Ong, Y.K.; Shi, G.M.; Le, N.L.; Tang, Y.P.; Zuo, J.; Nunes, S.P.; Chung, T.-S. Recent membrane development for pervaporation processes. Prog. Polym. Sci. 2016, 57, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Hansen, C.M. Hansen Solubility Parameters; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780429127526. [Google Scholar]
- Zhang, Y.; Benes, N.E.; Lammertink, R.G.H. Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chem. Eng. J. 2016, 284, 1342–1347. [Google Scholar] [CrossRef]
- Yong, W.F.; Salehian, P.; Zhang, L.; Chung, T.S. Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2–C4 alcohols dehydration via pervaporation. J. Memb. Sci. 2017, 523, 430–438. [Google Scholar] [CrossRef]
- Randová, A.; Bartovská, L.; Hovorka, Š.; Izák, P.; Poloncarzová, M.; Bartovský, T. Low-density polyethylene in mixtures of hexane and benzene derivates. Chem. Pap. 2010, 64, 652–656. [Google Scholar] [CrossRef]
- Liu, L.; Kentish, S.E. Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature. J. Memb. Sci. 2018, 553, 63–69. [Google Scholar] [CrossRef]
- Dawiec, A.; Witek-Krowiak, A.; Podstawczyk, D.; Pokomeda, K. Mathematical modeling of sorption step in pervaporative aroma compounds recovery from the multicomponent solution. Chem. Eng. Sci. 2015, 129, 78–90. [Google Scholar] [CrossRef]
- Jain, M.; Attarde, D.; Gupta, S.K. Removal of thiophene from n-heptane/thiophene mixtures by spiral wound pervaporation module: Modelling, validation and influence of operating conditions. J. Memb. Sci. 2015, 490, 328–345. [Google Scholar] [CrossRef]
- Mafi, A.; Raisi, A.; Hatam, M.; Aroujalian, A. A mathematical model for mass transfer in hydrophobic pervaporation for organic compounds separation from aqueous solutions. J. Memb. Sci. 2012, 423–424, 175–188. [Google Scholar] [CrossRef]
- Ricci, E.; De Angelis, M.G. Modelling mixed-gas sorption in glassy polymers for CO 2 removal: A sensitivity analysis of the dual mode sorption model. Membranes 2019, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Boutilier, M.S.H.; Kidambi, P.R.; Jang, D.; Hadjiconstantinou, N.G.; Karnik, R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 2017, 12, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Lipnizki, F.; Trägårdh, G. Modelling of pervaporation: Models to analyze and predict the mass transport in pervaporation. Sep. Purif. Methods 2001, 30, 49–125. [Google Scholar] [CrossRef]
- Ye, P.; Zhang, Y.; Wu, H.; Gu, X. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes. AIChE J. 2016, 62, 2468–2478. [Google Scholar] [CrossRef]
- Pera-Titus, M.; Fité, C.; Sebastián, V.; Lorente, E.; Llorens, J.; Cunill, F. Modeling pervaporation of ethanol/water mixtures within “real” zeolite NaA membranes. Ind. Eng. Chem. Res. 2008, 47, 3213–3224. [Google Scholar] [CrossRef]
- Shieh, J.J.; Huang, R.Y.M. A Pseudophase-Change Solution-Diffusion Model for Pervaporation. I. Single Component Permeation. Sep. Sci. Technol. 1998, 33, 767–785. [Google Scholar] [CrossRef]
- Neto, J.M.; Pinho, M.N. Mass transfer modelling for solvent dehydration by pervaporation. Sep. Purif. Technol. 2000, 18, 151–161. [Google Scholar] [CrossRef]
- Verhoef, A.; Degrève, J.; Huybrechs, B.; van Veen, H.; Pex, P.; Van der Bruggen, B. Simulation of a hybrid pervaporation–distillation process. Comput. Chem. Eng. 2008, 32, 1135–1146. [Google Scholar] [CrossRef]
- Kuhn, J.; Stemmer, R.; Kapteijn, F.; Kjelstrup, S.; Gross, J. A non-equilibrium thermodynamics approach to model mass and heat transport for water pervaporation through a zeolite membrane. J. Memb. Sci. 2009, 330, 388–398. [Google Scholar] [CrossRef]
- Toikka, A.; Naumkin, P.; Penkova, A. Approximation and analysis of pervaporation of binary mixtures using nonequilibrium thermodynamics approach. Chem. Eng. Res. Des. 2015, 104, 669–680. [Google Scholar] [CrossRef]
- Moon, J.D.; Freeman, B.D.; Hawker, C.J.; Segalman, R.A. Can Self-Assembly Address the Permeability/Selectivity Trade-Offs in Polymer Membranes? Macromolecules 2020, 53, 5649–5654. [Google Scholar] [CrossRef]
- Zimmerman, C.M.; Singh, A.; Koros, W.J. Tailoring mixed matrix composite membranes for gas separations. J. Memb. Sci. 1997, 137, 145–154. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, 1138–1148. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, C.P.; Freeman, B.D.; Kalika, D.S.; Kalakkunnath, S. Aromatic polyimide and polybenzoxazole membranes for the fractionation of aromatic/aliphatic hydrocarbons by pervaporation. J. Memb. Sci. 2012, 390–391, 182–193. [Google Scholar] [CrossRef]
- Baker, R.W.; Wijmans, J.G.; Huang, Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Memb. Sci. 2010, 348, 346–352. [Google Scholar] [CrossRef]
- Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van Der Bruggen, B. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 2019, 48, 2665–2681. [Google Scholar] [CrossRef]
- Yang, Y.; Miao, L.; Hu, J.; Liu, G.; Tu, Y.; Lin, S.; Liu, F.; Li, F.; Wu, Y.; Zhang, G.; et al. Hydrophilization of polysulfone membranes using a binary graft copolymer. J. Mater. Chem. A 2014, 2, 10410–10423. [Google Scholar] [CrossRef]
- Takahashi, A.; Yang, F.H.; Yang, R.T. New sorbents for desulfurization by π-complexation: Thiophene/benzene adsorption. Ind. Eng. Chem. Res. 2002, 41, 2487–2496. [Google Scholar] [CrossRef]
- Yang, R.T. Adsorbents: Fundamentals and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; ISBN 0471297410. [Google Scholar]
- Bermejo, E.; Castiñeiras, A.; García-Santos, I.; Rodríguez-Riobó, R. In situ generation of functionalized 1,2,4-triazole-5-thiones containing pyridine or pyrazine moieties and their coordination to HgII. CrystEngComm 2016, 18, 3428–3446. [Google Scholar] [CrossRef]
- Hunter, C.A.; Sanders, J.K.M. The Nature of π-π Interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, B.; Zhang, X.; Scherman, O.A. Supramolecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Acc. Chem. Res. 2014, 47, 2106–2115. [Google Scholar] [CrossRef]
- Liu, J.; Hua, D.; Zhang, Y.; Japip, S.; Chung, T.S. Precise Molecular Sieving Architectures with Janus Pathways for Both Polar and Nonpolar Molecules. Adv. Mater. 2018, 30, 1705933. [Google Scholar] [CrossRef]
- Gautam, L.; Warkar, S.G.; Ahmad, S.I.; Kant, R.; Jain, M. A review on carboxylic acid cross-linked polyvinyl alcohol: Properties and applications. Polym. Eng. Sci. 2022, 62, 225–246. [Google Scholar] [CrossRef]
- Dmitrenko, M.E.; Penkova, A.V.; Missyul, A.B.; Kuzminova, A.I.; Markelov, D.A.; Ermakov, S.S.; Roizard, D. Development and investigation of mixed-matrix PVA-fullerenol membranes for acetic acid dehydration by pervaporation. Sep. Purif. Technol. 2017, 187, 285–293. [Google Scholar] [CrossRef]
- Penkova, A.V.; Dmitrenko, M.E.; Ermakov, S.S.; Toikka, A.M.; Roizard, D. Novel green PVA-fullerenol mixed matrix supported membranes for separating water-THF mixtures by pervaporation. Environ. Sci. Pollut. Res. 2017, 25, 20354–20362. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Penkova, A.; Kuzminova, A.; Missyul, A.; Ermakov, S.; Roizard, D. Development and characterization of new pervaporation PVA membranes for the dehydration using bulk and surface modifications. Polymers 2018, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Dmitrenko, M.; Kuzminova, A.; Zolotarev, A.; Ermakov, S.; Roizard, D.; Penkova, A. Enhanced Pervaporation Properties of PVA-Based Membranes Modified with Polyelectrolytes. Application to IPA Dehydration. Polymers 2019, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Vane, L.M. Review: Membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation. J. Chem. Technol. Biotechnol. 2019, 94, 343–365. [Google Scholar] [CrossRef] [PubMed]
- Dmitrenko, M.; Kuzminova, A.; Zolotarev, A.; Liamin, V.; Markelov, D.; Semenov, K.; Plisko, T.; Bildyukevich, A.; Penkova, A. Novel pervaporation membranes based on hydroxyethyl cellulose/polyvinyl alcohol modified with fullerene derivatives for enhanced isopropanol dehydration. J. Mater. Res. 2021, 36, 4986–5001. [Google Scholar] [CrossRef]
- Kurkuri, M.D.; Toti, U.S.; Aminabhavi, T.M. Syntheses and Characterization of Blend Membranes of Sodium Alginate and Poly (vinyl alcohol) for the Pervaporation Separation of Water + Isopropanol Mixtures. J. Appl. Polym. Sci. 2002, 86, 3642–3651. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Liu, Q.; Li, W.; Xing, W. Fabrication of ionic liquids-functionalized PVA catalytic composite membranes to enhance esterification by pervaporation. J. Memb. Sci. 2019, 584, 268–281. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; González-Valdez, J.; Ahmad, M.Z. High-performance pervaporation chitosan-based membranes: New insights and perspectives. Rev. Chem. Eng. 2021, 37, 959–974. [Google Scholar] [CrossRef]
- Han, Y.; Wang, K.; Lai, J.; Liu, Y. Hydrophilic chitosan-modi fi ed polybenzoimidazole membranes for pervaporation dehydration of isopropanol aqueous solutions. J. Memb. Sci. 2014, 463, 17–23. [Google Scholar] [CrossRef]
- Nikbakht Fini, M.; Soroush, S.; Montazer-Rahmati, M. Synthesis and Optimization of Chitosan Ceramic-Supported Membranes in Pervaporation Ethanol Dehydration. Membranes 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Lu, L.; Chen, X.; Jiang, Z. Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes. Sep. Purif. Technol. 2008, 58, 429–436. [Google Scholar] [CrossRef]
- Otvagina, K.; Penkova, A.; Dmitrenko, M.; Kuzminova, A.; Sazanova, T.; Vorotyntsev, A.; Vorotyntsev, I. Novel Composite Membranes Based on Chitosan Copolymers with Polyacrylonitrile and Polystyrene: Physicochemical Properties and Application for Pervaporation Dehydration of Tetrahydrofuran. Membranes 2019, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Fazlifard, S.; Mohammadi, T.; Bakhtiari, O. Chitosan/ZIF-8 Mixed-Matrix Membranes for Pervaporation Dehydration of Isopropanol. Chem. Eng. Technol. 2017, 40, 648–655. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, G.; Ye, H.; Jin, W.; Cui, Z. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J. Memb. Sci. 2018, 563, 625–632. [Google Scholar] [CrossRef]
- Kuila, S.B.; Ray, S.K. Dehydration of dioxane by pervaporation using filled blend membranes of polyvinyl alcohol and sodium alginate. Carbohydr. Polym. 2014, 101, 1154–1165. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Charkhi, A.; Minuchehr, A.; Ahmadi, S.J. Dehydration of acetonitrile using cross-linked sodium alginate membrane containing nano-sized NaA zeolite. Chem. Pap. 2017, 71, 1143–1153. [Google Scholar] [CrossRef]
- Xing, R.; Pan, F.; Zhao, J.; Cao, K.; Gao, C.; Yang, S.; Liu, G.; Wu, H.; Jiang, Z. Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration. RSC Adv. 2016, 6, 14381–14392. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Zolotarev, A.; Liamin, V.; Kuzminova, A.; Mazur, A.; Semenov, K.; Ermakov, S.; Penkova, A. Novel Membranes Based on Hydroxyethyl Cellulose/Sodium Alginate for Pervaporation Dehydration of Isopropanol. Polymers 2021, 13, 674. [Google Scholar] [CrossRef]
- Chapman, P.D.; Oliveira, T.; Livingston, A.G.; Li, K. Membranes for the dehydration of solvents by pervaporation. J. Memb. Sci. 2008, 318, 5–37. [Google Scholar] [CrossRef]
- Raza, W.; Wang, J.; Yang, J.; Tsuru, T. Progress in pervaporation membranes for dehydration of acetic acid. Sep. Purif. Technol. 2021, 262, 118338. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Galiano, F.; Figoli, A. Recent advances in pervaporation hollow fiber membranes for dehydration of organics. Chem. Eng. Res. Des. 2020, 164, 68–85. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Liamin, V.; Kuzminova, A.; Mazur, A.; Lahderanta, E.; Ermakov, S.; Penkova, A. Novel Mixed Matrix Sodium Alginate–Fullerenol Membranes: Development, Characterization, and Study in Pervaporation Dehydration of Isopropanol. Polymers 2020, 12, 864. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Liamin, V.; Lahderanta, E.; Ermakov, S.; Penkova, A. Mixed matrix membranes based on sodium alginate modified by fullerene derivatives with L-amino acids for pervaporation isopropanol dehydration. J. Mater. Sci. 2021, 56, 7765–7787. [Google Scholar] [CrossRef]
- Kuzminova, A.I.; Dmitrenko, M.E.; Poloneeva, D.Y.; Selyutin, A.A.; Mazur, A.S.; Emeline, A.V.; Mikhailovskii, V.Y.; Solovyev, N.D.; Ermakov, S.S.; Penkova, A.V. Sustainable composite pervaporation membranes based on sodium alginate modified by metal organic frameworks for dehydration of isopropanol. J. Memb. Sci. 2021, 626, 119194. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Liamin, V.; Kuzminova, A.; Lahderanta, E.; Solovyev, N.; Penkova, A. Modification Approaches to Enhance Dehydration Properties of Sodium Alginate-Based Pervaporation Membranes. Membranes 2021, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Kuzminova, A.; Dmitrenko, M.; Mazur, A.; Ermakov, S.; Penkova, A. Novel Pervaporation Membranes Based on Biopolymer Sodium Alginate Modified by FeBTC for Isopropanol Dehydration. Sustainability 2021, 13, 6092. [Google Scholar] [CrossRef]
- Kazemzadeh, A.; Mousavi, S.M.; Mehrzad, J.; Motavalizadehkakhky, A.; Hosseiny, M. Cellulose acetate/nylon 66 blend membranes for pervaporation dehydration of isopropanol. Desalin. Water Treat. 2020, 194, 203–213. [Google Scholar] [CrossRef]
- Lv, J.H.; Xiao, G.M. Dehydration of water/pyridine mixtures by pervaporation using cellulose acetate/polyacrylonitrile blend membrane. Water Sci. Technol. 2011, 63, 1695–1700. [Google Scholar] [CrossRef]
- Zhou, K.; Zhang, Q.G.; Han, G.L.; Zhu, A.M.; Liu, Q.L. Pervaporation of water–ethanol and methanol–MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes. J. Memb. Sci. 2013, 448, 93–101. [Google Scholar] [CrossRef]
- Ge, L.; Wu, L.; Wu, B.; Wang, G.; Xu, T. Preparation of monovalent cation selective membranes through annealing treatment. J. Memb. Sci. 2014, 459, 217–222. [Google Scholar] [CrossRef]
- Zhang, Y.; Rhim, J.W.; Feng, X. Improving the stability of layer-by-layer self-assembled membranes for dehydration of alcohol and diol. J. Memb. Sci. 2013, 444, 22–31. [Google Scholar] [CrossRef]
- Zhao, Q.; An, Q.F.; Ji, Y.; Qian, J.; Gao, C. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. J. Memb. Sci. 2011, 379, 19–45. [Google Scholar] [CrossRef]
- Wu, J.-K.; Ye, C.-C.; Liu, T.; An, Q.-F.; Song, Y.-H.; Lee, K.-R.; Hung, W.-S.; Gao, C.-J. Synergistic effects of CNT and GO on enhancing mechanical properties and separation performance of polyelectrolyte complex membranes. Mater. Des. 2017, 119, 38–46. [Google Scholar] [CrossRef]
- Kalyuzhnaya, R.I.; Rudman, A.R.; Vengerova, N.A.; Razvodovskii, E.F.; Eltsefon, B.S.; Zezin, A.B. Conditions of formation and properties of membranes from polyelectrolyte complexes on basis of weak polyelectrolytes. Vysokomol. Soedin. Seriya A 1975, 17, 2786–2792. [Google Scholar]
- Kalyuzhnaya, R.I.; Volynskii, A.L.; Rudman, A.R.; Vengerova, N.A.; Razvodovskii, E.F.; Eltsefon, B.S.; Zezin, A.B. Investigation of mechanical-properties of membranes from polyelectrolyte complexes on basis of weak polyelectrolytes. Vysokomol. Soedin. Seriya A 1976, 18, 71–76. [Google Scholar]
- Kikuchi, Y.; Kubota, N.; Maruo, K.; Goto, Y. properties of membranes from polyelectrolyte complexes consisting of methyl glycol chitosan, {[}2-(diethylamino)ethyl]dextran, and poly(potassium vinyl sulfate). Makromol. Chem. Macromol. Chem. Phys. 1987, 188, 2631–2642. [Google Scholar] [CrossRef]
- Schwarz, H.H.; Richau, K.; Paul, D. Membranes from polyelectrolyte complexes. Polym. Bull. 1991, 25, 95–100. [Google Scholar]
- Wang, Y.; Goh, S.H.; Chung, T.S.; Na, P. Polyamide-imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1–C4 alcohols. J. Memb. Sci. 2009, 326, 222–233. [Google Scholar] [CrossRef]
- Wu, D.; Martin, J.; Du, J.; Zhang, Y.; Lawless, D.; Feng, X. Thin film composite membranes comprising of polyamide and polydopamine for dehydration of ethylene glycol by pervaporation. J. Memb. Sci. 2015, 493, 622–635. [Google Scholar] [CrossRef]
- Huang, S.-H.; Liu, Y.-Y.; Huang, Y.-H.; Liao, K.-S.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Study on characterization and pervaporation performance of interfacially polymerized polyamide thin-film composite membranes for dehydrating tetrahydrofuran. J. Memb. Sci. 2014, 470, 411–420. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Huang, S.-H.; Chang, M.-W.; Lai, C.-L.; Tsai, H.-A.; Hung, W.-S.; Hu, C.-C.; Lee, K.-R. Ultraviolet-initiated graft polymerization of acrylic acid onto thin-film polyamide surface for improved ethanol dehydration performance of pervaporation membranes. Sep. Purif. Technol. 2020, 235, 116155. [Google Scholar] [CrossRef]
- Zuo, J.; Wang, Y.; Sun, S.P.; Chung, T.-S. Molecular design of thin film composite (TFC) hollow fiber membranes for isopropanol dehydration via pervaporation. J. Memb. Sci. 2012, 405–406, 123–133. [Google Scholar] [CrossRef]
- Zhang, X.; Zhan, Z.-M.; Cheng, F.-Y.; Xu, Z.-L.; Jin, P.-R.; Liu, Z.-P.; Ma, X.-H.; Xu, X.-R.; Van der Bruggen, B. Thin-Film Composite Membrane Prepared by Interfacial Polymerization on the Integrated ZIF-L Nanosheets Interface for Pervaporation Dehydration. ACS Appl. Mater. Interfaces 2021, 13, 39819–39830. [Google Scholar] [CrossRef]
- Li, C.-L.; Huang, S.-H.; Liaw, D.-J.; Lee, K.-R.; Lai, J.-Y. Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution. Sep. Purif. Technol. 2008, 62, 694–701. [Google Scholar] [CrossRef]
- Huang, S.-H.; Jiang, G.J.; Liaw, D.-J.; Li, C.-L.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Effects of the polymerization and pervaporation operating conditions on the dehydration performance of interfacially polymerized thin-film composite membranes. J. Appl. Polym. Sci. 2009, 114, 1511–1522. [Google Scholar] [CrossRef]
- Huang, S.-H.; Hung, W.-S.; Liaw, D.-J.; Tsai, H.-A.; Jiang, G.J.; Lee, K.-R.; Lai, J.-Y. Positron annihilation study on thin-film composite pervaporation membranes: Correlation between polyamide fine structure and different interfacial polymerization conditions. Polymer 2010, 51, 1370–1376. [Google Scholar] [CrossRef]
- Huang, S.-H.; Hung, W.-S.; Liaw, D.-J.; Lo, C.-H.; Chao, W.-C.; Hu, C.-C.; Li, C.-L.; Lee, K.-R.; Lai, J.-Y. Interfacially polymerized thin-film composite polyamide membranes: Effects of annealing processes on pervaporative dehydration of aqueous alcohol solutions. Sep. Purif. Technol. 2010, 72, 40–47. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Zolotarev, A.; Plisko, T.; Burts, K.; Liamin, V.; Bildyukevich, A.; Ermakov, S.; Penkova, A. Effect of the Formation of Ultrathin Selective Layers on the Structure and Performance of Thin-Film Composite Chitosan/PAN Membranes for Pervaporation Dehydration. Membranes 2020, 10, 153. [Google Scholar] [CrossRef]
- Ong, Y.K.; Wang, H.; Chung, T. A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation. Chem. Eng. Sci. 2012, 79, 41–53. [Google Scholar] [CrossRef]
- Ming, Y.; Lieu, N.; Zuo, J.; Chung, T. Aromatic polyimide and crosslinked thermally rearranged poly (benzoxazole-co-imide) membranes for isopropanol dehydration via pervaporation. J. Memb. Sci. 2016, 499, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.J.; Su, W.C.; Lai, J.Y.; Liu, Y.L. Hydrophilically surface-modified and crosslinked polybenzimidazole membranes for pervaporation dehydration on tetrahydrofuran aqueous solutions. J. Memb. Sci. 2015, 475, 496–503. [Google Scholar] [CrossRef]
- Shi, G.M.; Yang, T.; Chung, T.S. Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. J. Memb. Sci. 2012, 415–416, 577–586. [Google Scholar] [CrossRef]
- Wang, Y.; Gruender, M.; Xu, S. Polybenzimidazole (PBI) Membranes for Phenol Dehydration via Pervaporation. Ind. Eng. Chem. Res. 2014, 53, 18291–18303. [Google Scholar] [CrossRef]
- Tengvall, P. 4.6 Protein Interactions with Biomaterials. In Comprehensive Biomaterials II; Elsevier: Amsterdam, The Netherlands, 2017; pp. 70–84. [Google Scholar]
- Law, K.-Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett. 2014, 5, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Polotskaya, G.A.; Penkova, A.V.; Toikka, A.M.; Pientka, Z.; Brozova, L.; Bleha, M. Transport of small molecules through polyphenylene oxide membranes modified by fullerene. Sep. Sci. Technol. 2007, 42, 333–347. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Chepeleva, A.; Liamin, V.; Mazur, A.; Semenov, K.; Solovyev, N.; Penkova, A. Novel Mixed Matrix Membranes Based on Polyphenylene Oxide Modified with Graphene Oxide for Enhanced Pervaporation Dehydration of Ethylene Glycol. Polymers 2022, 14, 691. [Google Scholar] [CrossRef] [PubMed]
- Abdul Wahab, M.S.; Rahman, S.A.; Samah, R.A. Hydrophilic enhancement of Polysulfone membrane via Graphene Oxide embedded thin film nanocomposite for Isopropanol dehydration. Vacuum 2020, 180, 109569. [Google Scholar] [CrossRef]
- Faykov, I.I.; Rostovtseva, V.A.; Tyan, N.S.; Pulyalina, A.Y. A Deep Eutectic Solvent as a Modifier of Polyphenylene Oxide Membranes for Acetic Acid Dehydration. Membr. Membr. Technol. 2021, 3, 124–130. [Google Scholar] [CrossRef]
- Polotskaya, G.; Pulyalina, A.; Lebedev, V.; Török, G.; Rudakova, D.; Vinogradova, L. Novel view at hybrid membranes containing star macromolecules using neutron scattering and pervaporation dehydration of acetic acid. Mater. Des. 2020, 186, 108352. [Google Scholar] [CrossRef]
- Liu, W.; Ji, S.-L.; Guo, H.-X.; Gao, J.; Qin, Z.-P. In situ cross-linked-PDMS/BPPO membrane for the recovery of butanol by pervaporation. J. Appl. Polym. Sci. 2014, 131, 40004. [Google Scholar] [CrossRef]
- Rostovtseva, V.; Pulyalina, A.; Rudakova, D.; Vinogradova, L.; Polotskaya, G. Strongly Selective Polymer Membranes Modified with Heteroarm Stars for the Ethylene Glycol Dehydration by Pervaporation. Membranes 2020, 10, 86. [Google Scholar] [CrossRef]
- Penkova, A.V.; Dmitrenko, M.E.; Sokolova, M.P.; Chen, B.; Plisko, T.V.; Markelov, D.A.; Ermakov, S.S. Impact of fullerene loading on the structure and transport properties of polysulfone mixed-matrix membranes. J. Mater. Sci. 2016, 51, 7652–7659. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Song, Z.W. Interfacial resistance of dual-layer asymmetric hollow fiber pervaporation membranes formed by co-extrusion. J. Polym. Res. 2011, 18, 2505–2514. [Google Scholar] [CrossRef]
- Liou, R.-M.; Chen, S.-H.; Lai, C.-L.; Hung, M.-Y.; Huang, C.-H. Effect of ammonium groups of sulfonated polysulfone membrane on its pervaporation performance. Desalination 2011, 278, 91–97. [Google Scholar] [CrossRef]
- Golubev, G.S.; Borisov, I.L.; Volkov, V.V. Thermopervaporative Removal of Isopropanol and Butanol from Aqueous Media Using Membranes Based on Hydrophobic Polysiloxanes. Pet. Chem. 2018, 58, 975–982. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Wang, N.; Fan, H.; Zhang, R.; Zhang, G.; Ji, S. Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles. J. Memb. Sci. 2015, 492, 322–330. [Google Scholar] [CrossRef]
- Yu, S.; Pan, F.; Yang, S.; Ding, H.; Jiang, Z.; Wang, B.; Li, Z.; Cao, X. Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chem. Eng. Sci. 2015, 135, 479–488. [Google Scholar] [CrossRef]
- Yang, W.; Su, X.; Zheng, T.; Zhang, Q.; Jiao, J.; Meng, L.; Qing, W.; Zhai, C. Fabricating a ZIF-8@Polydimethylsiloxane (PDMS)/PVDF mixed matrix composite membrane for separation of ethanol from aqueous solution via vapor permeation. Z. Anorg. Allg. Chem. 2022, 648, e202100379. [Google Scholar] [CrossRef]
- Han, Z.; Zhao, Y.; Jiang, H.; Sheng, A.; Li, H.; Jia, H.; Yun, Z.; Wei, Z.; Wang, H. (3-Aminopropyl) Triethoxysilane-Modified ZIF-90 Nanoparticle/Polydimethylsiloxane Mixed Matrix Membranes for Ethanol Recovery via Pervaporation. ACS Appl. Nano Mater. 2022, 5, 183–194. [Google Scholar] [CrossRef]
- Zhu, H.; Pan, Y.; Sun, X.; Liu, G.; Qiu, M.; Ding, X.; Fan, Y.; Jin, W. Recycle of ceramic substrate of PDMS/ceramic composite membranes towards alcohol-permselective pervaporation. J. Memb. Sci. 2021, 640, 119835. [Google Scholar] [CrossRef]
- Borisov, I.L.; Golubev, G.S.; Vasilevsky, V.P.; Volkov, A.V.; Volkov, V.V. Novel hybrid process for bio-butanol recovery: Thermopervaporation with porous condenser assisted by phase separation. J. Memb. Sci. 2017, 523, 291–300. [Google Scholar] [CrossRef]
- Si, Z.; Wang, Y.; Liu, C.; Xue, T.; Yang, S.; Li, G.; Zhang, C.; Chen, B.; Cai, D.; Qin, P. Fluoroalkyl-grafted methacrylate-PDMS membranes using fluoromonomer as a diluent for enhancing biobutanol pervaporation. Green Chem. 2021, 23, 7053–7064. [Google Scholar] [CrossRef]
- Sawatdiruk, S.; Charoensuppanimit, P.; Faungnawakij, K.; Klaysom, C. POSS/PDMS composite pervaporation membranes for furfural recovery. Sep. Purif. Technol. 2021, 278, 119281. [Google Scholar] [CrossRef]
- Genduso, G.; Missinne, A.; Ali, Z.; Ogieglo, W.; Van der Bruggen, B.; Pinnau, I. Hydrophobic polydimethylsiloxane thin-film composite membranes for the efficient pervaporative desalination of seawater and brines. Sep. Purif. Technol. 2022, 280, 119819. [Google Scholar] [CrossRef]
- Unlu, D. Concentration of aroma compounds by pervaporation process using polyvinyl chloride membrane. Flavour Fragr. J. 2019, 34, 493–505. [Google Scholar] [CrossRef]
- Talluri, V.P.; Tleuova, A.; Hosseini, S.; Vopicka, O. Selective Separation of 1-Butanol from Aqueous Solution through Pervaporation Using PTSMP-Silica Nano Hybrid Membrane. Membranes 2020, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Golubev, G.S.; Borisov, I.L.; Volkov, V.V.; Volkov, A.V. High-Performance Reinforced PTMSP Membranes for Thermopervaporation Removal of Alcohols from Aqueous Media. Membr. Membr. Technol. 2020, 2, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Talluri, V.P.; Patakova, P.; Moucha, T.; Vopicka, O. Transient and Steady Pervaporation of 1-Butanol–Water Mixtures through a Poly[1-(Trimethylsilyl)-1-Propyne] (PTMSP) Membrane. Polymers 2019, 11, 1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubreuil, M.F.S.; Vandezande, P.; Van Hecke, W.H.S.; Porto-Carrero, W.J.; Dotremont, C.T.E. Study on ageing/fouling phenomena and the effect of upstream nanofiltration on in-situ product recovery of n-butanol through poly[1-(trimethylsilyl)-1-propyne] pervaporation membranes. J. Memb. Sci. 2013, 447, 134–143. [Google Scholar] [CrossRef]
- Adymkanov, S.V.; Yampol’skii, Y.P.; Polyakov, A.M.; Budd, P.M.; Reynolds, K.J.; McKeown, N.B.; Msayib, K.J. Pervaporation of alcohols through highly permeable PIM-1 polymer films. Polym. Sci. Ser. A 2008, 50, 444–450. [Google Scholar] [CrossRef]
- Butt, T.H.; Tamime, R.; Budd, P.M.; Harrison, W.J.; Shamair, Z.; Khan, A.L. Enhancing the organophilic separations with mixed matrix membranes of PIM-1 and bimetallic Zn/Co-ZIF filler. Sep. Purif. Technol. 2022, 283, 120216. [Google Scholar] [CrossRef]
- Alberto, M.; Luque-Alled, J.M.; Gao, L.; Iliut, M.; Prestat, E.; Newman, L.; Haigh, S.J.; Vijayaraghavan, A.; Budd, P.M.; Gorgojo, P. Enhanced organophilic separations with mixed matrix membranes of polymers of intrinsic microporosity and graphene-like fillers. J. Memb. Sci. 2017, 526, 437–449. [Google Scholar] [CrossRef]
- Contreras-Martínez, J.; Mohsenpour, S.; Ameen, A.W.; Budd, P.M.; García-Payo, C.; Khayet, M.; Gorgojo, P. High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS Appl. Mater. Interfaces 2021, 13, 42635–42649. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, H.; Su, P.; Zhang, X.; Zheng, J.; Lu, Y.; Liu, Q. PIM-1/PDMS hybrid pervaporation membrane for high-efficiency separation of n-butanol-water mixture under low concentration. Sep. Purif. Technol. 2019, 216, 83–91. [Google Scholar] [CrossRef]
- Lan, Y.; Peng, P. Preparation of polymer of intrinsic microporosity composite membranes and their applications for butanol recovery. J. Appl. Polym. Sci. 2019, 136, 46912. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.; Peng, P.; Chen, P. Preparation of polymers of intrinsic microporosity composite membranes incorporated with modified nano-fumed silica for butanol separation. Adv. Polym. Technol. 2018, 37, 3297–3304. [Google Scholar] [CrossRef]
- Alberto, M.; Bhavsar, R.; Luque-Alled, J.M.; Prestat, E.; Gao, L.; Budd, P.M.; Vijayaraghavan, A.; Szekely, G.; Holmes, S.M.; Gorgojo, P. Study on the formation of thin film nanocomposite (TFN) membranes of polymers of intrinsic microporosity and graphene-like fillers: Effect of lateral flake size and chemical functionalization. J. Memb. Sci. 2018, 565, 390–401. [Google Scholar] [CrossRef]
- Gao, L.; Alberto, M.; Gorgojo, P.; Szekely, G.; Budd, P.M. High-flux PIM-1/PVDF thin film composite membranes for 1-butanol/water pervaporation. J. Memb. Sci. 2017, 529, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Ye, H.; Dong, C.; Wu, Y.; Shi, S. Preparation and characterization of PIM-1 and PIM-1/PU-blend membranes for pervaporation separation of phenol from water. Desalin. Water Treat. 2019, 138, 68–79. [Google Scholar] [CrossRef]
- Zereshki, S.; Figoli, A.; Madaeni, S.S.; Simone, S.; Jansen, J.C.; Esmailinezhad, M.; Drioli, E. Poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes: Effect of membrane composition on pervaporation separation of ethanol/cyclohexane mixture. J. Memb. Sci. 2010, 362, 105–112. [Google Scholar] [CrossRef]
- Singha, N.R.; Kuila, S.B.; Das, P.; Ray, S.K. Separation of toluene–methanol mixtures by pervaporation using crosslink IPN membranes. Chem. Eng. Process. Process Intensif. 2009, 48, 1560–1565. [Google Scholar] [CrossRef]
- Ma, X.; Hu, C.; Guo, R.; Fang, X.; Wu, H.; Jiang, Z. HZSM5-filled cellulose acetate membranes for pervaporation separation of methanol/MTBE mixtures. Sep. Purif. Technol. 2008, 59, 34–42. [Google Scholar] [CrossRef]
- Cai, B.; Zhou, Y.; Gao, C. Modified performance of cellulose triacetate hollow fiber membrane. Desalination 2002, 146, 331–336. [Google Scholar] [CrossRef]
- Gozzelino, G.; Malucelli, G. Permeation of methanol/methyl-t-butyl ether mixtures through poly(ethylene-co-vinyl acetate) films. Colloids Surf. A Physicochem. Eng. Asp. 2004, 235, 35–44. [Google Scholar] [CrossRef]
- Yoshida, W.; Cohen, Y. Ceramic-supported polymer membranes for pervaporation of binary organic/organic mixtures. J. Memb. Sci. 2003, 213, 145–157. [Google Scholar] [CrossRef]
- Jonquieres, A.; Dole, C.; Clement, R.; Lochon, P. Synthesis and characterization of new highly permeable polyamideimides from dianhydride monomers containing amide functions: An application to the purification of a fuel octane enhancer (ETBE) by pervaporation. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 614–630. [Google Scholar] [CrossRef]
- Touchal, S.; Roizard, D.; Perrin, L. Pervaporation properties of polypyrrolidinone-based membranes for EtOH/ETBE mixtures separation. J. Appl. Polym. Sci. 2006, 99, 3622–3630. [Google Scholar] [CrossRef]
- Mandal, S. Separation of methanol–benzene and methanol–toluene mixtures by pervaporation: Effects of thermodynamics and structural phenomenon. J. Memb. Sci. 2002, 201, 175–190. [Google Scholar] [CrossRef]
- Polotskaya, G.A.; Krasnopeeva, E.L.; Kalyuzhnaya, L.M.; Saprykina, N.N.; Vinogradova, L.V. Mixed matrix membranes with hybrid star-shaped macromolecules for mono- and dihydric alcohols pervaporation. Sep. Purif. Technol. 2015, 143, 192–200. [Google Scholar] [CrossRef]
- Polotskaya, G.A.; Lebedev, V.T.; Pulyalina, A.Y.; Vinogradova, L.V. Structure and transport properties of pervaporation membranes based on polyphenylene oxide and heteroarm star polymers. Pet. Chem. 2016, 56, 920–930. [Google Scholar] [CrossRef]
- Khayet, M.; Villaluenga, J.P.G.; Godino, M.P.; Mengual, J.I.; Seoane, B.; Khulbe, K.C.; Matsuura, T. Preparation and application of dense poly (phenylene oxide) membranes in pervaporation. J. Colloid Interface Sci. 2004, 278, 410–422. [Google Scholar] [CrossRef]
- Polotskaya, G.A.; Penkova, A.V.; Pientka, Z.; Toikka, A.M. Polymer membranes modified by fullerene C60 for pervaporation of organic mixtures. Desalin. Water Treat. 2010, 14, 83–88. [Google Scholar] [CrossRef]
- Khayet, M.; Villaluenga, J.P.G.; Valentin, J.L.; López-Manchado, M.A.; Mengual, J.I.; Seoane, B. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles: Characterization and application in pervaporation. Polymer 2005, 46, 9881–9891. [Google Scholar] [CrossRef]
- Khayet, M.; Villaluenga, J.P.G.; Valentin, J.L.; López-Manchado, M.A.; Mengual, J.I.; Seoane, B. Poly(2,6-dimethyl-1,4-phenylene oxide) mixed matrix pervaporation membranes. Desalination 2006, 200, 376–378. [Google Scholar] [CrossRef]
- An, Q.; Qian, J.; Sun, H.; Wang, L.; Zhang, L.; Chen, H. Compatibility of PVC/EVA blends and the pervaporation of their blend membranes for benzene/cyclohexane mixtures. J. Memb. Sci. 2003, 222, 113–122. [Google Scholar] [CrossRef]
- Zahlan, H.; Saeed, W.S.; Alqahtani, S.; Aouak, T. Separation of Benzene/Cyclohexane Mixtures by Pervaporation Using Poly (Ethylene-Co-Vinylalcohol) and Carbon Nanotube-Filled Poly (Vinyl Alcohol-Co-Ethylene) Membranes. Separations 2020, 7, 68. [Google Scholar] [CrossRef]
- Aouinti, L.; Roizard, D.; Hu, G.H.; Thomas, F.; Belbachir, M. Investigation of pervaporation hybrid polyvinylchloride membranes for the separation of toluene–n-heptane mixtures—case of clays as filler. Desalination 2009, 241, 174–181. [Google Scholar] [CrossRef]
- Aouinti, L.; Roizard, D.; Belbachir, M. PVC–activated carbon based matrices: A promising combination for pervaporation membranes useful for aromatic–alkane separations. Sep. Purif. Technol. 2015, 147, 51–61. [Google Scholar] [CrossRef]
- Genduso, G.; Farrokhzad, H.; Latré, Y.; Darvishmanesh, S.; Luis, P.; Van der Bruggen, B. Polyvinylidene fluoride dense membrane for the pervaporation of methyl acetate–methanol mixtures. J. Memb. Sci. 2015, 482, 128–136. [Google Scholar] [CrossRef]
- Wu, T.; Wang, N.; Li, J.; Wang, L.; Zhang, W.; Zhang, G.; Ji, S. Tubular thermal crosslinked-PEBA/ceramic membrane for aromatic/aliphatic pervaporation. J. Memb. Sci. 2015, 486, 1–9. [Google Scholar] [CrossRef]
- Wolińska-Grabczyk, A. Effect of the hard segment domains on the permeation and separation ability of the polyurethane-based membranes in benzene/cyclohexane separation by pervaporation. J. Memb. Sci. 2006, 282, 225–236. [Google Scholar] [CrossRef]
- Rychlewska, K.; Konieczny, K. Application of commercial PEBA-based membranes in separation of sulfur compounds from gasoline by vacuum pervaporation. Desalin. Water Treat. 2017, 64, 332–338. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Boczkaj, G. Pervaporation zeolite-based composite membranes for solvent separations. Molecules 2021, 26, 1242. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Chen, S.; Liu, J.; Hong, Z.; Wang, J.; Li, Z.; Gao, X.; Xu, R.; Gu, X. TiO2-decorated NaA zeolite membranes with improved separation stability for pervaporation dehydration of N, N-Dimethylacetamide. J. Memb. Sci. 2021, 634, 119398. [Google Scholar] [CrossRef]
- Kazemimoghadam, M.; Mohammadi, T. Evaluation of pervaporation condition and synthesis gels for NaA zeolite membranes. Desalin. Water Treat. 2014, 52, 2966–2974. [Google Scholar] [CrossRef]
- Qiu, H.; Jiang, J.; Peng, L.; Liu, H.; Gu, X. Choline chloride templated CHA zeolite membranes for solvents dehydration with improved acid stability. Microporous Mesoporous Mater. 2019, 284, 170–176. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Abe, C.; Ikeda, A. Pervaporative Dehydration of Organic Solvents Using High-Silica CHA-Type Zeolite Membrane. Membranes 2021, 11, 229. [Google Scholar] [CrossRef]
- Li, G.; Ma, S.; Ye, F.; Luo, Y.; Fan, S.; Lang, X.; Wang, Y.; Zhou, L. Permeation characteristics of a T-type zeolite membrane for bio-oil pervaporation dehydration. Microporous Mesoporous Mater. 2021, 315, 110884. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, L.; Zhang, C.; Wang, X.; Liu, H.; Wang, J.; Yan, W.; Gu, X. Extraction of butanol from ABE solution by MFI zeolite membranes. Sep. Purif. Technol. 2020, 242, 116771. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, C.; Peng, L.; Wang, X.; Kong, Q.; Gu, X. Enhanced Stability of MFI Zeolite Membranes for Separation of Ethanol/Water by Eliminating Surface Si–OH Groups. ACS Appl. Mater. Interfaces 2018, 10, 3175–3180. [Google Scholar] [CrossRef]
- Wang, Z.; Ge, Q.; Shao, J.; Yan, Y. High Performance Zeolite LTA Pervaporation Membranes on Ceramic Hollow Fibers by Dipcoating−Wiping Seed Deposition. J. Am. Chem. Soc. 2009, 131, 6910–6911. [Google Scholar] [CrossRef]
- Xu, X.; Nikolaeva, D.; Hartanto, Y.; Luis, P. MOF-based membranes for pervaporation. Sep. Purif. Technol. 2021, 278, 119233. [Google Scholar] [CrossRef]
- Knozowska, K.; Thür, R.; Kujawa, J.; Kolesnyk, I.; Ivo, F.; Vankelecom, J.; Kujawski, W. Fluorinated MOF-808 with various modulators to fabricate high-performance hybrid membranes with enhanced hydrophobicity for organic-organic pervaporation. Sep. Purif. Technol. 2021, 264, 118315. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, Y.; Li, D.; Bu, X.; Feng, P. Metal–Organic Frameworks for Separation. Adv. Mater. 2018, 30, 1705189. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Prasetya, N.; Li, K. Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. J. Memb. Sci. 2020, 615, 118493. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wang, J.; Gascon, J.; Li, J.; Van Der Bruggen, B. Metal-organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 2017, 46, 7124–7144. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Lin, Y.S. Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chem. Commun. 2013, 49, 1196–1198. [Google Scholar] [CrossRef]
- Huang, K.; Li, Q.; Liu, G.; Shen, J.; Guan, K.; Jin, W. A ZIF-71 Hollow Fiber Membrane Fabricated by Contra-Diffusion. ACS Appl. Mater. Interfaces 2015, 7, 16157–16160. [Google Scholar] [CrossRef]
- Diestel, L.; Bux, H.; Wachsmuth, D.; Caro, J. Pervaporation studies of n-hexane, benzene, mesitylene and their mixtures on zeolitic imidazolate framework-8 membranes. Microporous Mesoporous Mater. 2012, 164, 288–293. [Google Scholar] [CrossRef]
- Ibrahim, A.; Lin, Y.S. Pervaporation Separation of Organic Mixtures by MOF-5 Membranes. Ind. Eng. Chem. Res. 2016, 55, 8652–8658. [Google Scholar] [CrossRef]
- Zhou, H.; Lv, L.; Liu, G.; Jin, W.; Xing, W. PDMS/PVDF composite pervaporation membrane for the separation of dimethyl carbonate from a methanol solution. J. Memb. Sci. 2014, 471, 47–55. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Keser Demir, N.; Chen, J.P.; Li, K. Applications of water stable metal-organic frameworks. Chem. Soc. Rev. 2016, 45, 5107–5134. [Google Scholar] [CrossRef]
- Wang, R.; Guo, J.; Xue, J.; Wang, H. Covalent Organic Framework Membranes for Efficient Chemicals Separation. Small Struct. 2021, 2, 2100061. [Google Scholar] [CrossRef]
- Yang, H.; Wu, H.; Pan, F.; Li, Z.; Ding, H.; Liu, G.; Jiang, Z.; Zhang, P.; Cao, X.; Wang, B. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. J. Memb. Sci. 2016, 520, 583–595. [Google Scholar] [CrossRef]
- Wu, G.; Li, Y.; Geng, Y.; Jia, Z. In situ preparation of COF-LZU1 in poly(ether-block-amide) membranes for efficient pervaporation of n-butanol/water mixture. J. Memb. Sci. 2019, 581, 1–8. [Google Scholar] [CrossRef]
- Cao, C.; Wang, H.; Wang, M.; Liu, Y.; Zhang, Z.; Liang, S.; Yuhan, W.; Pan, F.; Jiang, Z. Conferring efficient alcohol dehydration to covalent organic framework membranes via post-synthetic linker exchange. J. Memb. Sci. 2021, 630, 119319. [Google Scholar] [CrossRef]
- Fan, H.; Xie, Y.; Li, J.; Zhang, L.; Zheng, Q.; Zhang, G. Ultra-high selectivity COF-based membranes for biobutanol production. J. Mater. Chem. A 2018, 6, 17602–17611. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, X.; Cheng, X.; Pan, F.; Wu, H.; Liu, G.; Song, Y.; Cao, X.; Jiang, Z. Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. J. Memb. Sci. 2018, 565, 331–341. [Google Scholar] [CrossRef]
- Wang, M.; Pan, F.; Yang, H.; Cao, Y.; Wang, H.; Song, Y.; Lu, Z.; Sun, M.; Wu, H.; Jiang, Z. Constructing channel-mediated facilitated transport membranes by incorporating covalent organic framework nanosheets with tunable microenvironments. J. Mater. Chem. A 2019, 7, 9912–9923. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Wang, N.; Guo, H.; Zhang, W.-H.; Li, X.; Ji, S.; An, Q.-F. Covalent organic frameworks hybird membrane with optimized mass transport nanochannel for aromatic/aliphatic mixture pervaporation. J. Memb. Sci. 2020, 598, 117652. [Google Scholar] [CrossRef]
- Liu, G.; Jin, W.; Xu, N. Two-Dimensional-Material Membranes: A New Family of High-Performance Separation Membranes. Angew. Chemie Int. Ed. 2016, 55, 13384–13397. [Google Scholar] [CrossRef]
- Huang, K.; Liu, G.; Lou, Y.; Dong, Z.; Shen, J.; Jin, W. A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution. Angew. Chemie Int. Ed. 2014, 53, 6929–6932. [Google Scholar] [CrossRef]
- Hung, W.-S.; An, Q.-F.; De Guzman, M.; Lin, H.-Y.; Huang, S.-H.; Liu, W.-R.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon 2014, 68, 670–677. [Google Scholar] [CrossRef]
- Yang, H.; Yang, L.; Wang, H.; Xu, Z.; Zhao, Y.; Luo, Y.; Nasir, N.; Song, Y.; Wu, H.; Pan, F.; et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 2019, 10, 2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Wu, H.; Zhao, Y.; Wang, M.; Song, Y.; Cheng, X.; Wang, H.; Cao, X.; Pan, F.; Jiang, Z. Ultrathin heterostructured covalent organic framework membranes with interfacial molecular sieving capacity for fast water-selective permeation. J. Mater. Chem. A 2020, 8, 19328–19336. [Google Scholar] [CrossRef]
- Shen, J.; Liu, G.; Ji, Y.; Liu, Q.; Cheng, L.; Guan, K.; Zhang, M.; Liu, G.; Xiong, J.; Yang, J.; et al. 2D MXene Nanofilms with Tunable Gas Transport Channels. Adv. Funct. Mater. 2018, 28, 1801511. [Google Scholar] [CrossRef]
- Ding, L.; Wei, Y.; Li, L.; Zhang, T.; Wang, H.; Xue, J.; Ding, L.X.; Wang, S.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 2018, 9, 155. [Google Scholar] [CrossRef]
- Liu, G.; Shen, J.; Ji, Y.; Liu, Q.; Liu, G.; Yang, J.; Jin, W. Two-dimensional Ti2CT: X MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. J. Mater. Chem. A 2019, 7, 12095–12104. [Google Scholar] [CrossRef]
- Liu, G.; Shen, J.; Liu, Q.; Liu, G.; Xiong, J.; Yang, J.; Jin, W. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Memb. Sci. 2018, 548, 548–558. [Google Scholar] [CrossRef]
- Dai, L.; Huang, K.; Xia, Y.; Xu, Z. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion. Green Energy Environ. 2021, 6, 193–211. [Google Scholar] [CrossRef]
- Ding, L.; Li, L.; Liu, Y.; Wu, Y.; Lu, Z.; Deng, J.; Wei, Y.; Caro, J.; Wang, H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296–302. [Google Scholar] [CrossRef]
- Ding, L.; Wei, Y.; Wang, Y.; Chen, H.; Caro, J.; Wang, H. A Two-Dimensional Lamellar Membrane: MXene Nanosheet Stacks. Angew. Chemie Int. Ed. 2017, 56, 1825–1829. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Van der Bruggen, B. An MXene-based membrane for molecular separation. Environ. Sci. Nano 2020, 7, 1289–1304. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Huang, Z.; Zhang, L.; Xie, Y.-B.; An, Q.-F.; Ji, S. A vertically channeled lamellar membrane for molecular sieving of water from organic solvents. J. Mater. Chem. A 2018, 6, 18095–18102. [Google Scholar] [CrossRef]
- Penkova, A.V.; Polotskaya, G.A.; Toikka, A.M.; Trchová, M.; Šlouf, M.; Urbanová, M.; Brus, J.; Brožová, L.; Pientka, Z. Structure and pervaporation properties of poly (phenylene- Iso-phthalamide) membranes modified by fullerene C60. Macromol. Mater. Eng. 2009, 294, 432–440. [Google Scholar] [CrossRef]
- Dmitrenko, M.E.; Penkova, A.V.; Kuzminova, A.I.; Atta, R.R.; Zolotarev, A.A.; Mazur, A.S.; Vezo, O.S.; Lahderanta, E.; Markelov, D.A.; Ermakov, S.S. Development and investigation of novel polyphenylene isophthalamide pervaporation membranes modified with various fullerene derivatives. Sep. Purif. Technol. 2019, 226, 241–251. [Google Scholar] [CrossRef]
- Dmitrenko, M.E.; Penkova, A.V.; Atta, R.R.; Zolotarev, A.A.; Plisko, T.V.; Mazur, A.S.; Solovyev, N.D.; Ermakov, S.S. The development and study of novel membrane materials based on polyphenylene isophthalamide—Pluronic F127 composite. Mater. Des. 2019, 165, 107596. [Google Scholar] [CrossRef]
- Penkova, A.V.; Acquah, S.F.; Piotrovskiy, L.B.; Markelov, D.A.; Semisalova, A.S.; Kroto, H.W. Fullerene derivatives as nano-additives in polymer composites. Russ. Chem. Rev. 2017, 86, 530–566. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, S.; Wu, Y.; Shi, S.; Xiao, G. Recent advances of pervaporation separation in dmf/h2o solutions: A review. Membranes 2021, 11, 455. [Google Scholar] [CrossRef]
- Chung, T.-S.; Jiang, L.Y.; Li, Y.; Kulprathipanja, S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007, 32, 483–507. [Google Scholar] [CrossRef]
- Benzaqui, M.; Semino, R.; Carn, F.; Tavares, S.R.; Menguy, N.; Giménez-Marqués, M.; Bellido, E.; Horcajada, P.; Berthelot, T.; Kuzminova, A.I.; et al. Covalent and Selective Grafting of Polyethylene Glycol Brushes at the Surface of ZIF-8 for the Processing of Membranes for Pervaporation. ACS Sustain. Chem. Eng. 2019, 7, 6629–6639. [Google Scholar] [CrossRef]
- Penkova, A.V.; Kuzminova, A.I.; Dmitrenko, M.E.; Surkova, V.A.; Liamin, V.P.; Markelov, D.A.; Komolkin, A.V.; Poloneeva, D.Y.; Laptenkova, A.V.; Selyutin, A.A.; et al. Novel pervaporation mixed matrix membranes based on polyphenylene isophtalamide modified by metal–organic framework UiO-66(NH2)-EDTA for highly efficient methanol isolation. Sep. Purif. Technol. 2021, 263, 118370. [Google Scholar] [CrossRef]
- Bae, T.H.; Lee, J.S.; Qiu, W.; Koros, W.J.; Jones, C.W.; Nair, S. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chemie Int. Ed. 2010, 49, 9863–9866. [Google Scholar] [CrossRef]
- Shen, J.; Liu, G.; Huang, K.; Jin, W.; Lee, K.R.; Xu, N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew. Chemie Int. Ed. 2015, 54, 578–582. [Google Scholar] [CrossRef]
- Koros, W.J.; Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 2017, 16, 289–297. [Google Scholar] [CrossRef]
- Sano, T.; Yanagishita, H.; Kiyozumi, Y.; Mizukami, F.; Haraya, K. Separation of ethanol/water mixture by silicalite membrane on pervaporation. J. Memb. Sci. 1994, 95, 221–228. [Google Scholar] [CrossRef]
- te Hennepe, H.J.C.; Bargeman, D.; Mulder, M.H.V.; Smolders, C.A. Zeolite-filled silicone rubber membranes. Part 1. Membrane preparation and pervaporation results. J. Memb. Sci. 1987, 35, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Shi, Q.; Yan, H.; Ji, S.; Dong, J.; Zhang, G. Simultaneous Spray Self-Assembly of Highly Loaded ZIF-8-PDMS Nanohybrid Membranes Exhibiting Exceptionally High Biobutanol-Permselective Pervaporation. Angew. Chemie Int. Ed. 2014, 53, 5578–5582. [Google Scholar] [CrossRef]
- Mao, H.; Zhen, H.-G.; Ahmad, A.; Zhang, A.-S.; Zhao, Z.-P. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. J. Memb. Sci. 2019, 573, 344–358. [Google Scholar] [CrossRef]
- Li, Y.; Wee, L.H.; Martens, J.A.; Vankelecom, I.F.J. ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery. J. Mater. Chem. A 2014, 2, 10034–10040. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.-H.; Lin, Y.-F.; Huang, Y.-S.; Tung, K.-L.; Chang, K.-S.; Chen, J.-T.; Hung, W.-S.; Lee, K.-R.; Lai, J.-Y. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures. J. Memb. Sci. 2013, 438, 105–111. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Q.; Zhao, J.; Hua, Y.; Sun, J.; Duan, J.; Jin, W. High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity. J. Memb. Sci. 2017, 544, 68–78. [Google Scholar] [CrossRef]
- Xu, Y.M.; Chung, T.S. High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. J. Memb. Sci. 2017, 531, 16–26. [Google Scholar] [CrossRef]
- Xu, Y.M.; Japip, S.; Chung, T.S. Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. J. Memb. Sci. 2018, 549, 217–226. [Google Scholar] [CrossRef]
- Xu, Y.M.; Japip, S.; Chung, T.-S. UiO-66-NH2 incorporated dual-layer hollow fibers made by immiscibility induced phase separation (I2PS) process for ethanol dehydration via pervaporation. J. Memb. Sci. 2020, 595, 117571. [Google Scholar] [CrossRef]
- Yang, H.; Wu, H.; Yao, Z.; Shi, B.; Xu, Z.; Cheng, X.; Pan, F.; Liu, G.; Jiang, Z.; Cao, X. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. J. Mater. Chem. A 2018, 6, 583–591. [Google Scholar] [CrossRef]
- Li, S.; Li, P.; Cai, D.; Shan, H.; Zhao, J.; Wang, Z.; Qin, P.; Tan, T. Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300. J. Memb. Sci. 2019, 579, 141–150. [Google Scholar] [CrossRef]
- Cao, K.; Jiang, Z.; Zhao, J.; Zhao, C.; Gao, C.; Pan, F.; Wang, B.; Cao, X.; Yang, J. Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. J. Memb. Sci. 2014, 469, 272–283. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, Y.; He, G.; Xing, R.; Pan, F.; Jiang, Z.; Zhang, P.; Cao, X.; Wang, B. Incorporating Zwitterionic Graphene Oxides into Sodium Alginate Membrane for Efficient Water/Alcohol Separation. ACS Appl. Mater. Interfaces 2016, 8, 2097–2103. [Google Scholar] [CrossRef]
- Guan, K.; Liang, F.; Zhu, H.; Zhao, J.; Jin, W. Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance. ACS Appl. Mater. Interfaces 2018, 10, 13903–13913. [Google Scholar] [CrossRef]
- Salehian, P.; Chung, T.-S. Thermally treated ammonia functionalized graphene oxide/polyimide membranes for pervaporation dehydration of isopropanol. J. Memb. Sci. 2017, 528, 231–242. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Yang, H.; An, Q.; Li, B.; Ji, S. Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation. J. Memb. Sci. 2018, 559, 8–18. [Google Scholar] [CrossRef]
- Tang, W.; Lou, H.; Li, Y.; Kong, X.; Wu, Y.; Gu, X. Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions. J. Memb. Sci. 2019, 581, 93–104. [Google Scholar] [CrossRef]
- Jafari, A.; Mortaheb, H.R.; Gallucci, F. Performance of octadecylamine-functionalized graphene oxide nanosheets in polydimethylsiloxane mixed matrix membranes for removal of toluene from water by pervaporation. J. Water Process Eng. 2022, 45, 102497. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Zhan, J.-Y.; Ang, M.B.M.Y.; Yeh, S.-C.; Tsai, H.-A.; Jeng, R.-J. Improved performance of nanocomposite polyimide membranes for pervaporation fabricated by embedding spirobisindane structure-functionalized graphene oxide. Sep. Purif. Technol. 2021, 265, 118470. [Google Scholar] [CrossRef]
- Yang-Yang, J.; Shi-Qi, D.; Xin-Yi, Y.; Jun-Ze, L.; Shen-Xuan-Xiang, S.; Ting, W.; Li-Guang, W. Preparation and Pervaporation Property of GO-AgNP/PI Mixed Matrix Membranes. Chin. J. Inorg. Chem. 2016, 32, 1345–1352. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, F.; Wang, M.; Li, W.; Song, Y.; Liu, G.; Yang, H.; Gao, B.; Wu, H.; Jiang, Z. Hybrid membranes for pervaporation separations. J. Memb. Sci. 2017, 541, 329–346. [Google Scholar] [CrossRef]
- Torabi, B.; Ameri, E. Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem. Eng. J. 2016, 288, 461–772. [Google Scholar] [CrossRef]
- Cha-Umpong, W.; Dong, G.; Razmjou, A.; Chen, V. Effect of oscillating temperature and crystallization on graphene oxide composite pervaporation membrane for inland brine desalination. J. Memb. Sci. 2019, 588, 117210. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, L.; Wang, N.; Li, J.; Ji, S.; Guo, H.; Zhang, G.; Zhang, Z. In situ ultraviolet-light-induced TiO2 nanohybrid superhydrophilic membrane for pervaporation dehydration. Sep. Purif. Technol. 2014, 122, 32–40. [Google Scholar] [CrossRef]
- Xue, C.; Liu, F.; Xu, M.; Zhao, J.; Chen, L.; Ren, J.; Bai, F.; Yang, S.-T. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production. Biotechnol. Bioeng. 2016, 113, 120–129. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, X.; Li, C.; Hao, X.; Wang, Y.; Guan, G. ZIF-8 incorporated polyether block amide membrane for phenol permselective pervaporation with high efficiency. Sep. Purif. Technol. 2016, 166, 252–261. [Google Scholar] [CrossRef]
- Dudek, G.; Gnus, M.; Turczyn, R.; Strzelewicz, A.; Krasowska, M. Pervaporation with chitosan membranes containing iron oxide nanoparticles. Sep. Purif. Technol. 2014, 133, 8–15. [Google Scholar] [CrossRef]
- Gao, B.; Jiang, Z.; Zhao, C.; Gomaa, H.; Pan, F. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. J. Memb. Sci. 2015, 492, 230–241. [Google Scholar] [CrossRef]
- Tsai, H.-A.; Chen, Y.-L.; Huang, S.-H.; Hu, C.-C.; Hung, W.-S.; Lee, K.-R.; Lai, J.-Y. Preparation of polyamide/polyacrylonitrile composite hollow fiber membrane by synchronous procedure of spinning and interfacial polymerization. J. Memb. Sci. 2018, 551, 261–272. [Google Scholar] [CrossRef]
- Huang, A.; Feng, B. Synthesis of novel graphene oxide-polyimide hollow fiber membranes for seawater desalination. J. Memb. Sci. 2018, 548, 59–65. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Wan, Y.; Jin, W. Fabrication of high silicalite-1 content filled PDMS thin composite pervaporation membrane for the separation of ethanol from aqueous solutions. J. Memb. Sci. 2017, 524, 1–11. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, R.; Jin, W. Novel organic-inorganic pervaporation membrane with a superhydrophobic surface for the separation of ethanol from an aqueous solution. Sep. Purif. Technol. 2014, 127, 61–69. [Google Scholar] [CrossRef]
- Souza, V.C.; Quadri, M.G.N. Organic-inorganic hybrid membranes in separation processes: A 10-year review. Braz. J. Chem. Eng. 2013, 30, 683–700. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.; Zhang, R.; Cao, B.; Li, P. Preparation of Thermally Imidized Polyimide Nano fi ltration Membranes with Macrovoid-Free Structures. Ind. Eng. Chem. Res. 2020, 59, 14096–14105. [Google Scholar] [CrossRef]
- Zhao, X.; Tong, Z.; Liu, X.; Wang, J.; Zhang, B.; Accepted, J. Facile preparation of polyamide-graphene oxide composite membranes for upgrading pervaporation desalination performances of hypersaline solutions. Ind. Eng. Chem. Res. 2020, 59, 11232–11238. [Google Scholar] [CrossRef]
- Zhang, G.; Li, J.; Ji, S. Self-assembly of novel architectural nanohybrid multilayers and their selective separation of solvent-water mixtures. AIChE J. 2012, 58, 1456–1464. [Google Scholar] [CrossRef]
- Chaudhari, S.; Cho, K.; Joo, S.; An, B.; Lee, S.; Yun, S.; Lee, G.; Park, J.; Shon, M.; Park, Y. Layer-by-layer of graphene oxide-chitosan assembly on PVA membrane surface for the pervaporation separation of water-isopropanol mixtures. Korean J. Chem. Eng. 2021, 38, 411–421. [Google Scholar] [CrossRef]
- Dmitrenko, M.E.; Penkova, A.V.; Kuzminova, A.I.; Morshed, M.; Larionov, M.I.; Alem, H.; Zolotarev, A.A.; Ermakov, S.S.; Roizard, D. Investigation of new modification strategies for PVA membranes to improve their dehydration properties by pervaporation. Appl. Surf. Sci. 2018, 450, 527–537. [Google Scholar] [CrossRef]
- Halakoo, E.; Feng, X. Self-assembled membranes from polyethylenimine and graphene oxide for pervaporation dehydration of ethylene glycol. J. Memb. Sci. 2020, 616, 118583. [Google Scholar] [CrossRef]
- Li, B.; Liu, W.; Wu, H.; Yu, S.; Cao, R.; Jiang, Z. Desulfurization of model gasoline by bioinspired oleophilic nanocomposite membranes. J. Memb. Sci. 2012, 415–416, 278–287. [Google Scholar] [CrossRef]
- Shahverdi, M.; Baheri, B.; Rezakazemi, M.; Motaee, E.; Mohammadi, T. Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym. Eng. Sci. 2013, 53, 1487–1493. [Google Scholar] [CrossRef]
- Prihatiningtyas, I.; Hartanto, Y.; Ballesteros, M.S.R.; Van der Bruggen, B. Cellulose triacetate/LUDOX-SiO2 nanocomposite for synthesis of pervaporation desalination membranes. J. Appl. Polym. Sci. 2021, 138, 50000. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.; Wu, L.; Wei, G. Fabrication, properties, performances, and separation application of polymeric pervaporation membranes: A review. Polymers 2020, 12, 1466. [Google Scholar] [CrossRef]
- Meng, J.; Zhao, P.; Cao, B.; Lau, C.H.; Xue, Y.; Zhang, R.; Li, P. Fabricating thin-film composite membranes for pervaporation desalination via photo-crosslinking. Desalination 2021, 512, 115128. [Google Scholar] [CrossRef]
- Ichimura, K.; Iwata, S.; Mochizuki, S.; Ohmi, M.; Adachi, D. Revisit to the photocrosslinking behavior of PVA-SbQ as a water-soluble photopolymer with anomalously low contents of quaterized stilbazol side chains. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4094–4102. [Google Scholar] [CrossRef]
- Alqaheem, Y.; Alomair, A.A. Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes 2020, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Rao, X.; Zhou, Q.; Wen, Q.; Ou, Z.; Fu, L.; Gong, Y.; Du, X.; Huo, C. High-Performance and Water Resistant PVA-Based Films Modified by Air Plasma Treatment. Membranes 2022, 12, 249. [Google Scholar] [CrossRef]
- Rao, X.; Ou, Z.; Zhou, Q.; Fu, L.; Gong, Y.; Wen, Q.; Du, X.; Liang, C. Green cross-linked coir cellulose nanocrystals/poly (vinyl alcohol) composite films with enhanced water resistance, mechanical properties, and thermal stability. J. Appl. Polym. Sci. 2022, 52361. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Atta, R.; Zolotarev, A.; Kuzminova, A.; Ermakov, S.; Penkova, A. Development of Novel Membranes Based on Polyvinyl Alcohol Modified by Pluronic F127 for Pervaporation Dehydration of Isopropanol. Sustainability 2022, 14, 3561. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Sadrzadeh, M.; Matsuura, T. Thermally stable polymers for advanced high-performance gas separation membranes. Prog. Energy Combust. Sci. 2018, 66, 1–41. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Springer: Moscow, Russia, 1999; ISBN 5-03-003114-6. [Google Scholar]
- Luo, H.; Agata, W.-A.S.; Geise, G.M. Connecting the Ion Separation Factor to the Sorption and Diffusion Selectivity of Ion Exchange Membranes. Ind. Eng. Chem. Res. 2020, 59, 14189–14206. [Google Scholar] [CrossRef]
- Guan, H.M.; Chung, T.S.; Huang, Z.; Chng, M.L.; Kulprathipanja, S. Poly (vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol-water mixture. J. Memb. Sci. 2006, 268, 113–122. [Google Scholar] [CrossRef]
- Msahel, A.; Galiano, F.; Pilloni, M.; Russo, F.; Hafiane, A.; Castro-muñoz, R.; Kumar, V.B.; Gedanken, A.; Ennas, G.; Porat, Z.; et al. Exploring the Effect of Iron Metal-Organic Framework Particles in Polylactic Acid Membranes for the Azeotropic Separation of Organic/Organic Mixtures by Pervaporation. Membranes 2021, 11, 65. [Google Scholar] [CrossRef]
- Amarante, R.C.A.; Donaldson, A.A. Pervaporation separation of ethanol and 2-ethylhexanol mixtures using cellulose acetate propionate and poly (1-vinylpyrrolidone-co-vinyl acetate) blend membranes. Sep. Purif. Technol. 2021, 258, 117953. [Google Scholar] [CrossRef]
- Kujawa, J.; Cerneaux, S.; Kujawski, W. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. J. Memb. Sci. 2015, 474, 11–19. [Google Scholar] [CrossRef]
- Peng, M.; Vane, L.M.; Liu, S.X. Recent advances in VOCs removal from water by pervaporation. J. Hazard. Mater. 2003, 98, 69–90. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, M.; Pan, F.; Wang, L.; Liao, J.; Nie, T.; Zhao, J.; Cao, K.; Zhan, L.; Jiang, Z. Pervaporation dehydration of an acetone/water mixture by hybrid membranes incorporated with sulfonated carbon molecular sieves. RSC Adv. 2016, 6, 55272–55281. [Google Scholar] [CrossRef]
- Tong, Z.; Liu, X.; Zhang, B. Sulfonated graphene oxide based membranes with enhanced water transport capacity for isopropanol pervaporation dehydration. J. Memb. Sci. 2020, 612, 118446. [Google Scholar] [CrossRef]
- Jullok, N.; Darvishmanesh, S.; Luis, P.; Van der Bruggen, B. The potential of pervaporation for separation of acetic acid and water mixtures using polyphenylsulfone membranes. Chem. Eng. J. 2011, 175, 306–315. [Google Scholar] [CrossRef]
- Hsieh, C.W.; Li, B.X.; Suen, S.Y. Alicyclic polyimide/sio2 mixed matrix membranes for water/n-butanol pervaporation. Membranes 2021, 11, 564. [Google Scholar] [CrossRef]
- De Guzman, M.R.; Ang, M.B.M.Y.; Huang, S.-H.; Hu, F.-C.; Chiao, Y.-H.; Tsai, H.-A.; Lee, K.-R. Cosolvent-Driven Interfacial Polymerization for Superior Separation Performance of Polyurea-Based Pervaporation Membrane. Polymers 2021, 13, 1179. [Google Scholar] [CrossRef]
- Kudasheva, A.; Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Pervaporation of water/ethanol mixtures through polyimide based mixed matrix membranes containing ZIF-8, ordered mesoporous silica and ZIF-8-silica core-shell spheres. J. Chem. Technol. Biotechnol. 2015, 90, 669–677. [Google Scholar] [CrossRef]
- Escorihuela, J.; Sahuquillo, Ó.; García-Bernabé, A.; Giménez, E.; Compañ, V. Phosphoric acid doped polybenzimidazole (PBI)/Zeolitic imidazolate framework composite membranes with significantly enhanced proton conductivity under low humidity conditions. Nanomaterials 2018, 8, 775. [Google Scholar] [CrossRef] [Green Version]
- Castro-Muñoz, R.; Buera-González, J.; de la Iglesia, Ó.; Galiano, F.; Fíla, V.; Malankowska, M.; Rubio, C.; Figoli, A.; Téllez, C.; Coronas, J. Towards the dehydration of ethanol using pervaporation cross-linked poly(vinyl alcohol)/graphene oxide membranes. J. Memb. Sci. 2019, 582, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Pervaporation dehydration of ethyl acetate via PBI/PEI hollow fiber membranes. Ind. Eng. Chem. Res. 2015, 54, 3082–3089. [Google Scholar] [CrossRef]
- Liu, G.; Liu, S.; Ma, K.; Wang, H.; Wang, X.; Liu, G.; Jin, W. Polyelectrolyte functionalized ti2ct x mxene membranes for pervaporation dehydration of isopropanol/water mixtures. Ind. Eng. Chem. Res. 2020, 59, 4732–4741. [Google Scholar] [CrossRef]
- Liu, X.W.; Cao, Y.; Li, Y.X.; Xu, Z.L.; Li, Z.; Wang, M.; Ma, X.H. High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution. J. Memb. Sci. 2019, 576, 26–35. [Google Scholar] [CrossRef]
- Cai, W.; Cheng, X.; Chen, X.; Li, J.; Pei, J. Poly(vinyl alcohol)-Modified Membranes by Ti3C2Txfor Ethanol Dehydration via Pervaporation. ACS Omega 2020, 5, 6277–6287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z.; Li, N.; Wang, Q.; Bolto, B. Desalination by pervaporation. Emerg. Technol. Sustain. Desalin. Handb. 2018, 205–226. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Breakthroughs on tailoring pervaporation membranes for water desalination: A review. Water Res. 2020, 187, 116428. [Google Scholar] [CrossRef] [PubMed]
- Cha-Umpong, W.; Hosseini, E.; Razmjou, A.; Zakertabrizi, M.; Korayem, A.H.; Chen, V. New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane. J. Memb. Sci. 2020, 598, 117687. [Google Scholar] [CrossRef]
- Ding, M.; Xu, H.; Chen, W.; Yang, G.; Kong, Q.; Ng, D. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination. J. Memb. Sci. 2020, 600, 117871. [Google Scholar] [CrossRef]
- Qin, D.; Zhang, R.; Cao, B.; Li, P. Fabrication of high-performance composite membranes based on hierarchically structured electrospun nanofiber substrates for pervaporation desalination. J. Memb. Sci. 2021, 638, 119672. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, S.; Meng, D.; Qi, H.; Zhao, F.; Li, X.; Cui, P.; Wang, Y.; Xu, D.; Ma, Y. Energy efficient and environmentally friendly pervaporation-distillation hybrid process for ternary azeotrope purification. Comput. Chem. Eng. 2021, 147, 107236. [Google Scholar] [CrossRef]
- Zong, C.; Guo, Q.; Shen, B.; Yang, X.; Zhou, H.; Jin, W. Heat-Integrated Pervaporation–Distillation Hybrid System for the Separation of Methyl Acetate–Methanol Azeotropes. Ind. Eng. Chem. Res. 2021, 60, 10327–10337. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Galiano, F.; Briceño, K.; Marino, T.; Molino, A.; Christensen, K.V.; Figoli, A. Advances in biopolymer-based membrane preparation and applications. J. Memb. Sci. 2018, 564, 562–586. [Google Scholar] [CrossRef]
- Mamba, F.B.; Mbuli, B.S.; Ramontja, J. Recent Advances in Biopolymeric Membranes towards the Removal of Emerging Organic Pollutants from Water. Membranes 2021, 11, 798. [Google Scholar] [CrossRef]
- Kim, D.; Nunes, S.P. Green solvents for membrane manufacture: Recent trends and perspectives. Curr. Opin. Green Sustain. Chem. 2021, 28, 100427. [Google Scholar] [CrossRef]
- Figoli, A.; Marino, T.; Simone, S.; Di Nicolò, E.; Li, X.-M.; He, T.; Tornaghi, S.; Drioli, E. Towards non-toxic solvents for membrane preparation: A review. Green Chem. 2014, 16, 4034. [Google Scholar] [CrossRef]
- Babu, R.P.; O’Connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopakumar, D.A.; Thomas, S.; Grohens, Y. Nanocelluloses as innovative polymers for membrane applications. In Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements; Elsevier: Amsterdam, The Netherlands, 2016; pp. 253–275. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshmy, K.S.; Lal, D.; Nair, A.; Babu, A.; Das, H.; Govind, N.; Dmitrenko, M.; Kuzminova, A.; Korniak, A.; Penkova, A.; et al. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers 2022, 14, 1604. https://doi.org/10.3390/polym14081604
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, et al. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers. 2022; 14(8):1604. https://doi.org/10.3390/polym14081604
Chicago/Turabian StyleLakshmy, Kadavil Subhash, Devika Lal, Anandu Nair, Allan Babu, Haritha Das, Neethu Govind, Mariia Dmitrenko, Anna Kuzminova, Aleksandra Korniak, Anastasia Penkova, and et al. 2022. "Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures" Polymers 14, no. 8: 1604. https://doi.org/10.3390/polym14081604
APA StyleLakshmy, K. S., Lal, D., Nair, A., Babu, A., Das, H., Govind, N., Dmitrenko, M., Kuzminova, A., Korniak, A., Penkova, A., Tharayil, A., & Thomas, S. (2022). Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers, 14(8), 1604. https://doi.org/10.3390/polym14081604