Multiscale Thermal Investigations of Graphite Doped Polystyrene Thermal Insulation
Abstract
:1. Introduction
Topics of the Paper and Importance of Graphite Polystyrene
2. Materials and Methods
2.1. The Thermal Conductivity of Insulation Materials
2.2. Tested Materials
2.3. Thermal Characterization with Netzsch DSC Sirius 3500
2.4. Structural Investigations with Microscopic Techniques (SEM, OPTICAL)
2.5. Thermal Conductivity and Specific Heat Capacity Measurements with Netzsch 446 HFM
2.6. Wetting Experiments
Sorption Isotherm Measurements
2.7. X-ray Diffractometry Analysis
2.8. The Tested Material
3. Results and Discussion
3.1. Results of the Differentiated Scanning Calorimetry Experiments
3.2. Structural Changes in the Samples after Thermal Annealing Scanning and Optical Microscopy Measurement Results
3.3. Results of the Experiments with the Netzsch 446 HFM Equipment
3.3.1. Thermal Conductivity
3.3.2. Changes in the Compressive Behavior of Samples
3.3.3. Specific Heat Test
3.4. Results of the Wetting Experiments, Sorption Isotherms and Contact Angle
3.5. Results of X-ray Diffraction Measurements
3.6. Infrared Absorption Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berardi, U. A cross-country comparison of the building Energy consumptions and their trends. Resour. Conserv. Recycl. 2017, 123, 230–241. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, M.; Chen, Z.; Chen, Z.; Ji, Y. Physical energy and data-driven models in building energy prediction: A review. Energy Rep. 2022, 8, 2656–2671. [Google Scholar] [CrossRef]
- Nardi, I.; Lucchi, E.; de Rubeis, T.; Ambrosini, D. Quantification of heat energy losses through the building envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography. Build. Environ. 2018, 146, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Jelle, B.P. Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef] [Green Version]
- Fort, J.; Koci, J.; Pokorny, J.; Podolka, L.; Kraus, M.; Cerny, R. Characterization of Responsive Plasters for Passive Moisture and Temperature Control. Appl. Sci. 2020, 10, 9116. [Google Scholar] [CrossRef]
- Moga, L.M.; Bucur, A.; Iancu, I. Current Practices in Energy Retrofit of Buildings. In Environmental and Human Impact of Buildings; Springer Tracts in Civil Engineering; Springer: Cham, Switzerland, 2021; pp. 1–41. [Google Scholar]
- Cai, S.; Zhang, B.; Cremaschi, L. Review of moisture behavior and thermal performance of polystyrene insulation in building applications. Build. Environ. 2017, 123, 50–65. [Google Scholar] [CrossRef]
- Lakatos, Á.; Csarnovics, I. Influence of thermal annealing on structural properties of silica aerogel super insulation material. J. Therm. Anal. Calorim. 2020, 142, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, Á. Stability investigations of the thermal insulating performance of aerogel blanket. Energy Build. 2019, 185, 103–111. [Google Scholar] [CrossRef]
- Nowoświat, A.; Krause, P.; Miros, A. Properties of expanded graphite polystyrene damaged by the impact of solar radiation. J. Build. Eng. 2021, 34, 101920. [Google Scholar] [CrossRef]
- Miros, A. Thermal aging effect on thermal conductivity properties of mineral wool pipe samples at high temperature. In Proceedings of the 3rd World Congress on Mechanical, Chemical, and Material Engineering (MCM’17), Rome, Italy, 8–10 June 2017. Paper No. HTFF 172; ISSN 2369-8136. [Google Scholar]
- Krause, P.; Nowoświat, A. Experimental studies involving the impact of solar radiation on the properties of expanded graphite polystyrene. Energies 2019, 13, 75. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Salman, M. Aging of polymeric insulators (an overview). Rev. Adv. Mater. Sci. 2006, 13, 93–116. [Google Scholar]
- Jelle, B.P. Accelerated climate ageing of building materials, components and structures in the laboratory. J. Mater. Sci. 2012, 47, 6475–6496. [Google Scholar] [CrossRef] [Green Version]
- Török, L. Industry 4.0 from a few aspects, in particular, in respect of the decision making of the Management/Will the new industrial revolution change the traditional management functions. Int. Rev. Appl. Sci. Eng. 2020, 11, 140–146. [Google Scholar]
- McCormick, H.W.; Brower, F.M.; Kin, L. The effect of molecular weight distribution on the physical properties of polystyrene. J. Polym. Sci. 1959, 39, 87–100. [Google Scholar] [CrossRef]
- Shanshan, C.; Cremaschi, L.; Afshin, J.G. Pipe insulation thermal conductivity under dry and wet condensing conditions with moisture ingress: A critical review. HVAC R Res. 2014, 20, 458–479. [Google Scholar]
- Koru, M. Determination of Thermal Conductivity of Closed-Cell Insulation Materials That Depend on Temperature and Density. Arab. J. Sci. Eng. 2016, 41, 4337–4346. [Google Scholar] [CrossRef]
- Schiavoni, S.; Alessandro, F.D.; Bianchi, F.; Asdrubali, F. Insulation materials for the building sector: A review and comparative analysis. Renew. Sust. Energy Rev. 2016, 62, 988–1011. [Google Scholar] [CrossRef]
- Gnip, I.Y.; Kersulis, V.; Vejelis, S.; Vaitkus, S. Water absorption of expanded polystyrene boards. Polym. Test. 2006, 25, 635–641. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Lakatos, Á.; Deák, I.; Berardi, U. Thermal Characterization Of Different Graphite Polystyrene. Int. Rev. Appl. Sci. Eng. 2018, 9, 163–168. [Google Scholar] [CrossRef]
- Mohammad, H.; Stepashkin, A.A.; Tcherdyntsev, V.V. Effect of Graphite Filler Type on the Thermal Conductivity and Mechanical Behavior of Polysulfone-Based Composites. Polymers 2022, 14, 399. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Oh, B.K.; Cho, T. Compressive properties of graphite-embedded expanded polystyrene for vibroacoustic engineering applications. Compos. Part B Eng. 2016, 93, 252–264. [Google Scholar] [CrossRef]
- Xiao, M.; Sun, L.; Liu, J.; Li, Y.; Gong, K. Synthesis and properties of polystyrene/graphite nanocomposites. Polymer 2002, 43, 2245–2248. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Chen, S.; Yang, R. Effects of graphite on styrene suspension polymerization and flame retarded expandable polystyrene. Gongcheng/Polym. Mater. Sci. Eng. 2016, 32, 6–11. [Google Scholar]
- Blazejczyk, A.; Jastrzebski, C.; Wierzbicki, M. Change in Conductive–Radiative Heat Transfer—Mechanism Forced by Graphite Microfiller, in Expanded Polystyrene Thermal, Insulation—Experimental and Simulated Investigations. Materials 2020, 13, 2626. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tu, R.; Cheng, X.; Zhu, S.; Ma, J.; Fang, T. Experimental Study of Thermal Behavior of Insulation Material Rigid Polyurethane in Parallel, Symmetric, and Adjacent Building Façade Constructions. Polymers 2018, 10, 1104. [Google Scholar] [CrossRef] [Green Version]
- Jara, A.D.; Betemariam, A.; Woldetinsae, G.; Kim, J.Y. Purification, application and current market trend of natural graphite: A review. Int. J. Min. Sci. Technol. 2019, 29, 671–689. [Google Scholar] [CrossRef]
- Berardi, U.; Naldi, M. The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy Build. 2017, 144, 262–275. [Google Scholar] [CrossRef]
- DIN 51007; Thermal Analysis—Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC)—General Principles. Deutsches Institut fur Normung E.V.: Berlin, Germany, 2019.
- ASTM E 1269; Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. ASTM: West Conshohocken, PA, USA, 2018.
- Lakatos, Á.; Csarnovics, I.; Csík, A. Systematic Analysis of Micro-Fiber Thermal Insulations from a Thermal Properties Point of View. Appl. Sci. 2021, 11, 4943. [Google Scholar] [CrossRef]
- Erdman, N.; Bell, D.C.; Reichelt, R. Scanning Electron Microscopy. In Springer Handbook of Microscopy; Hawkes, P., Spence, J.C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 229–318. [Google Scholar]
- EN ISO 10456:2007; Building Materials and Products. Hygrothermal Properties. Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values. ISO: Geneva, Switzerland, 2007.
- EN ISO 8301:1991; Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Heat Flow Meter Apparatus. ISO: Geneva, Switzerland, 1991.
- Lakatos, Á.; Csík, A.; Csarnovics, I. Experimental verification of thermal properties of the aerogel blanket. Case Stud. Therm. Eng. 2021, 25, 100966. [Google Scholar] [CrossRef]
- ISO 12571:2013; Hygrothermal Performance of Building Materials and Products—Determination of Hygroscopic Sorption Properties. ISO: Geneva, Switzerland, 2013.
- Novak, V.; Zach, J. Study of the efficiency and durability of hydrophobization modifications of building elements. IOP Conf. Ser. Mater. Sci. Eng. 2019, 583, 012032. [Google Scholar] [CrossRef]
- Hourston, D.J.; Song, M.; Hammiche, A.; Pollock, H.M.; Reading, M. Modulated differential scanning calorimetry: 2. Studies of physical ageing in polystyrene. Polymer 1996, 37, 243–247. [Google Scholar] [CrossRef]
- Kočí, V.; Maděra, J.; Trník, A.; Černý, R. Heat transport and storage processes in differential scanning calorimeter: Computational analysis and model validation. Int. J. Heat Mass Transf. 2019, 136, 355–364. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Wan, X. Study on Properties of Graphite Polystyrene Permeable Composite Insulation Board. IOP Conf. Ser. Mater. Sci. Eng. 2020, 744, 012043. [Google Scholar] [CrossRef]
- Brun, N.; Bourson, P.; Margueron, S.; Duc, M. Study of the thermal behavior of syndiotactic and atactic polystyrene by Raman spectroscopy. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2011; Volume 53, p. 856. [Google Scholar]
- Ibrahim, S.S. Low Percolation Behaviour of Polystyrene Carbon Nanoparticles(PS/CNPs) Composite. J. Mater. Environ. Sci. 2011, 2, 118–127. [Google Scholar]
- Ferkl, P.; Pokorny, R.; Bobak, M.; Kosek, J. Heat transfer in one-dimensional micro- and nano-cellular foams. Chem. Eng. Sci. 2013, 97, 50–58. [Google Scholar] [CrossRef]
- Lakatos, Á. Thermal conductivity of insulations approached from a new aspect. J. Therm. Anal. Calorim. 2018, 133, 329–335. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Teller, E. On a theory of Van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Fang, J.; Xuan, Y.; Li, Q. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci. China Technol. Sci. 2010, 53, 3088–3093. [Google Scholar] [CrossRef]
- Huang, G.; Xu, J.; Geng, P.; Li, J. Carrier Flotation of Low-Rank Coal with Polystyrene. Minerals 2020, 10, 452. [Google Scholar] [CrossRef]
- Wang, K. Preparation and Characteristics of Polystyrene/Attapulgite Composites via in-situ Suspension Polymerization. MATEC Web Conf. 2016, 67, 06095. [Google Scholar] [CrossRef] [Green Version]
- Ain, Q.T.; Haq, S.H.; Alshammari, A.; Al-Mutlaq, M.A.; Anjum, M.N. The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein J. Nanotechnol. 2019, 10, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Ezeonu, S.; Egonnaya, E.; Nweze, C. Electrical and structural properties of polystyrene/graphite composite by direct mixing method. Adv. Phys. Ther. Appl. 2019, 81, 11–15. [Google Scholar]
- Yang, J.; Li, S.; Jiang, H.; Su, C.; Shao, Y.; Gao, Y.; Li, J. Preparation of recycled graphite/expanded polystyrene by a facile solvent dissolution method. J. Mater. Sci. 2019, 54, 1197–1204. [Google Scholar] [CrossRef]
- Pan, J.; Chen, F.; Cabrera, D.E.; Min, Z.; Ruan, S.; Wu, M.; Zhang, D.; Castro, J.M.; Lee, J.L. Carbon particulate and controlled-hydrolysis assisted extrusion foaming of semicrystalline polyethylene terephthalate for the enhanced thermal insulation property. J. Cell. Plast. 2021, 57, 695–716. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, D.; Wu, M.; Ruan, S.; Castro, J.M.; Lee, J.L.; Chen, F. Impacts of Carbonaceous Particulates on Extrudate Semicrystalline Polyethylene Terephthalate Foams: Nonisothermal Crystallization, Rheology, and Infrared Attenuation Studies. Ind. Eng. Chem. Res. 2020, 59, 15586–15597. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Thermal conductivity at 10 °C mean | 0.032 W/mK |
Dimensional stability | at 70 °C it is 3% |
Compressive stress at 10% compression | 80 kPa |
Components | C, O, H |
Sample | Density [kg/m3] |
---|---|
As received | 16.83 |
70 °C | 16.51 |
100 °C | 23.27 |
110 °C | 43.21 |
xc | xc | w | w | Sigma | FWHM | |
---|---|---|---|---|---|---|
Value | Standard Error | Value | Standard Error | Value | Value | |
As received | 12.45 | 0.29 | 5.55 | 1.17 | 2.77 | 6.54 |
70 °C | 10.43 | 0.38 | 6.79 | 2.95 | 3.39 | 8.00 |
100 °C | 9.99 | 0.1736 | 4.83 | 1.71 | 2.41 | 5.68 |
110 °C | 7.5 | 0.054 | 3.30 | 0.18 | 1.65 | 3.89 |
Sample | Contact Angle [°] | Est. Err. (±) |
---|---|---|
As received | 109.67 | 2.22 |
70 °C | 110.83 | 1.55 |
100 °C | 111.67 | 3.05 |
110 °C | 112.17 | 3.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakatos, Á.; Csík, A. Multiscale Thermal Investigations of Graphite Doped Polystyrene Thermal Insulation. Polymers 2022, 14, 1606. https://doi.org/10.3390/polym14081606
Lakatos Á, Csík A. Multiscale Thermal Investigations of Graphite Doped Polystyrene Thermal Insulation. Polymers. 2022; 14(8):1606. https://doi.org/10.3390/polym14081606
Chicago/Turabian StyleLakatos, Ákos, and Attila Csík. 2022. "Multiscale Thermal Investigations of Graphite Doped Polystyrene Thermal Insulation" Polymers 14, no. 8: 1606. https://doi.org/10.3390/polym14081606
APA StyleLakatos, Á., & Csík, A. (2022). Multiscale Thermal Investigations of Graphite Doped Polystyrene Thermal Insulation. Polymers, 14(8), 1606. https://doi.org/10.3390/polym14081606