A Highly Active Chondroitin Sulfate Lyase ABC for Enzymatic Depolymerization of Chondroitin Sulfate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids and Chemicals
2.2. Cloning and Expression of the Recombinant Chon-ABC
2.3. Enzyme Assay
2.4. Biochemical Characterization of the Recombinant Chon-ABC
2.5. Thermal and Storage Stabilities of the Chon-ABC
2.6. Kinetic Parameters of the Recombinant Chon-ABC
2.7. Enzymatic Depolymerization of CS
2.8. Analysis of CS and the Enzymatic Depolymerized Products
2.9. Molecular Docking of the Chon-ABC and Sulfated Glycosaminoglycan
3. Results
3.1. Cloning, Expression, and Purification of the Chon-ABC
3.2. Biochemical Characterization of the Chon-ABC
3.2.1. The Effects of Temperature, pH and Buffer Concentration on the Chon-ABC Activity
3.2.2. The Effects of Metal Ions and Surfactants on the Chon-ABC Activity
3.2.3. The Thermal and Storage Stability of the Chon-ABC
3.2.4. Kinetic Parameters
3.3. The Analysis of the CS and Hydrolyzed CS
3.3.1. The GPC Analysis of the CS and Hydrolyzed CS
3.3.2. HPLC and MS Analysis of the CS and Hydrolyzed CS
3.3.3. The NMR Analysis of the CS and Hydrolyzed CS
3.4. Molecular Docking of the Chon-ABC and Sulfated Glycosaminoglycan
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lauder, R.M. Chondroitin Sulphate: A Complex Molecule with Potential Impacts on a Wide Range of Biological Systems. Complement. Ther. Med. 2009, 17, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Buyue, Y.; Sheehan, J.P. Fucosylated Chondroitin Sulfate Inhibits Plasma Thrombin Generation via Targeting of the Factor IXa Heparin-Binding Exosite. Blood 2009, 114, 3092–3100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Wang, J.; Hu, S.; Wang, Y.; Xue, C.; Li, H. The Effects of Fucosylated Chondroitin Sulfate Isolated from Isostichopus Badionotus on Antimetastatic Activity via Down-Regulation of Hif-1α and Hpa. Food Sci. Biotechnol. 2014, 23, 1643–1651. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Yan, L.; Ding, T.; Linhardt, R.J.; Yu, Y.; Liu, X.; Liu, D.; Ye, X.; Chen, S. Fucosylated Chondroitin Sulfate Oligosaccharides Exert Anticoagulant Activity by Targeting at Intrinsic Tenase Complex with Low FXII Activation: Importance of Sulfation Pattern and Molecular Size. Eur. J. Med. Chem. 2017, 139, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhang, Y.; Ye, X.; Hu, Y.; Ding, T.; Chen, S. Sulfation Pattern of Fucose Branches Affects the Anti-Hyperlipidemic Activities of Fucosylated Chondroitin Sulfate. Carbohydr. Polym. 2016, 147, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Lai, S.; Huang, R.; Wu, M.; Gao, N.; Xu, L.; Qin, H.; Peng, W.; Zhao, J. Structure and Anticoagulant Activity of Fucosylated Glycosaminoglycan Degraded by Deaminative Cleavage. Carbohydr. Polym. 2013, 98, 1514–1523. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Blanco, M.; Fraguas, J.; Pastrana, L.; Pérez-Martín, R. Optimisation of the Extraction and Purification of Chondroitin Sulphate from Head By-Products of Prionace Glauca by Environmental Friendly Processes. Food Chem. 2016, 198, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Michel, B.A.; Stucki, G.; Frey, D.; De Vathaire, F.; Vignon, E.; Bruehlmann, P.; Uebelhart, D. Chondroitins 4 and 6 Sulfate in Osteoarthritis of the Knee: A Randomized, Controlled Trial. Arthritis Rheum. 2005, 52, 779–786. [Google Scholar] [CrossRef]
- Du Souich, P.; Garcia, A.G.; Verges, J.; Montell, E. Immunomodulatory and Anti-Inflammatory Effects of Chondroitin Sulphate. J. Cell. Mol. Med. 2009, 13, 1451–1463. [Google Scholar] [CrossRef]
- Henrotin, Y.; Lambert, C. Chondroitin and Glucosamine in the Management of Osteoarthritis: An Update. Curr. Rheumatol. Rep. 2013, 15, 361. [Google Scholar] [CrossRef]
- Bakalash, S.; Rolls, A.; Lider, O.; Schwartz, M. Chondroitin Sulfate-Derived Disaccharide Protects Retinal Cells from Elevated Intraocular Pressure in Aged and Immunocompromised Rats. Investig. Opthalmol. Vis. Sci. 2007, 48, 1181. [Google Scholar] [CrossRef] [PubMed]
- Ebert, S.; Schoeberl, T.; Walczak, Y.; Stoecker, K.; Stempfl, T.; Moehle, C.; Weber, B.H.F.; Langmann, T. Chondroitin Sulfate Disaccharide Stimulates Microglia to Adopt a Novel Regulatory Phenotype. J. Leukoc. Biol. 2008, 84, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Kenawy, E.-R.; Sonbol, F.I.; Sun, J.; Al-Etewy, M.; Ali, A.; Huizi, L.; El-Zawawy, N.A. Pharmaceutical Potential of a Novel Chitosan Derivative Schiff Base with Special Reference to Antibacterial, Anti-Biofilm, Antioxidant, Anti-Inflammatory, Hemocompatibility and Cytotoxic Activities. Pharm. Res. 2019, 36, 5. [Google Scholar] [CrossRef]
- Guo, L.-B.; Zhu, C.-Y.; Wu, Y.-B.; Fan, X.-M.; Zhang, Y.-W. A Novel Chondroitin AC Lyase from Pedobacter Xixiisoli: Cloning, Expression, Characterization and the Application in the Preparation of Oligosaccharides. Enzym. Microb. Technol. 2021, 146, 109765. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Ye, X.; Guo, X.; Liao, N.; Yin, X.; Hu, Y.; Sun, Y.; Liu, D.; Chen, S. Depolymerization of Fucosylated Chondroitin Sulfate from Sea Cucumber, Pearsonothuria Graeffei, via 60Co Irradiation. Carbohydr. Polym. 2013, 93, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Ruan, L.; Shang, D.; Wu, Y.; Lu, Y.; Lu, P.; Yang, Y.; Wei, Y.; Dong, X.; Ren, D.; et al. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Potent Target for Breast Cancer Therapy. Cancer Biother. Radiopharm. 2016, 31, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Su, W.-B.; Guo, L.-B.; Zhang, Y.-W. Cloning, Expression, and Characterization of a Novel Heparinase I from Bacteroides Eggerthii. Prep. Biochem. Biotechnol. 2020, 50, 477–485. [Google Scholar] [CrossRef]
- Shively, J.E.; Conrad, H.E. Nearest Neighbor Analysis of Heparin: Identification and Quantitation of the Products Formed by Selective Depolymerization Procedures. Biochemistry 1976, 15, 3943–3950. [Google Scholar] [CrossRef]
- Du, F.; Lou, J.; Jiang, R.; Fang, Z.; Zhao, X.; Niu, Y.; Zou, S.; Zhang, M.; Gong, A.; Wu, C. Hyaluronic Acid-Functionalized Bismuth Oxide Nanoparticles for Computed Tomography Imaging-Guided Radiotherapy of Tumor. Int. J. Nanomed. 2017, 12, 5973–5992. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Zhou, Z.; Wang, Y.; Huang, H.; Du, G.; Chen, J. Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends Biotechnol. 2018, 36, 806–818. [Google Scholar] [CrossRef]
- Takashima, M.; Watanabe, I.; Miyanaga, A.; Eguchi, T. Substrate Specificity of Chondroitinase ABC I Based on Analyses of Biochemical Reactions and Crystal Structures in Complex with Disaccharides. Glycobiology 2021, 31, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Imada, K.; Oka, H.; Kawasaki, D.; Miura, N.; Sato, T.; Ito, A. Anti-arthritic action mechanisms of natural chondroitin sulfate in human articular chondrocytes and synovial fibroblasts. Biol. Pharm. Bull. 2010, 33, 410–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinga, Z.; Yina, F.; Mao, G.; Feng, W.; Zou, Y.; Yec, Z.; Yang, L.; Wu, X. Purification, Characterization and Antioxidant Activities of Enzymolysis Polysaccharide from Grifola Frondosa. Iran. J. Pharm. Res. 2017, 16, 347–356. [Google Scholar]
- Kasinathan, N.; Volety, S.M.; Josyula, V.R. Chondroitinase: A Promising Therapeutic Enzyme. Crit. Rev. Microbiol. 2014, 42, 474–484. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Feng, Y.; Chen, L.; Yuan, Q. Enzyme Activity Enhancement of Chondroitinase ABC I from Proteus Vulgaris by Site-Directed Mutagenesis. RSC Adv. 2015, 5, 76040–76047. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Yuan, Q. Expression, Purification and Thermostability of MBP-Chondroitinase ABC I from Proteus vulgaris. Int. J. Biol. Macromol. 2015, 72, 6–10. [Google Scholar] [CrossRef]
- Prabhakar, V.; Capila, I.; Bosques, C.J.; Pojasek, K.; Sasisekharan, R. Chondroitinase ABC I from Proteus Vulgaris: Cloning, Recombinant Expression and Active Site Identification. Biochem. J. 2005, 386, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Shaya, D.; Hahn, B.-S.; Park, N.Y.; Sim, J.-S.; Kim, Y.S.; Cygler, M. Characterization of Chondroitin Sulfate Lyase ABC from Bacteroides Thetaiotaomicron WAL2926. Biochemistry 2008, 47, 6650–6661. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.W.; Kim, B.T.; Shin, H.Y.; Kim, W.S.; Lee, K.S.; Kim, Y.S.; Kim, D.H. Purification and Characterization of Novel Chondroitin ABC and AC Lyases from Bacteroides stercoris HJ-15, a Human Intestinal Anaerobic Bacterium. Eur. J. Biochem. 2002, 269, 2934–2940. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, J.; Zhang, J.; Jiang, Y.; Shen, Z.; Guan, H.; Jiang, X. Purification and Characterization of Chondroitinase ABC from Acinetobacter Sp. C26. Int. J. Biol. Macromol. 2017, 95, 80–86. [Google Scholar] [CrossRef]
- Bagherzadeh, K.; Maleki, M.; Golestani, A.; Khajeh, K.; Amanlou, M. Chondroitinase ABC I Thermal Stability Is Enhanced by Site-Directed Mutagenesis: A Molecular Dynamic Simulations Approach. J. Biomol. Struct. Dyn. 2018, 36, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, Q.; Deng, Z.; Brady, B.; Xia, N.; Zhou, Y.; Shi, H. Highly Sensitive Protein Detection via Covalently Linked Aptamer to MoS2 and Exonuclease-Assisted Amplification Strategy. Int. J. Nanomed. 2017, 12, 7847–7853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, W.; Wang, Y.; Zhu, J.; Mao, C.; Wang, Q.; Huan, F.; Cheng, J.; Liu, Y.; Wang, J.; Xiao, H. The Toxic Effects of Bisphenol A on the Mouse Spermatocyte GC-2 Cell Line: The Role of the Ca2+-Calmodulin-Ca2+/Calmodulin-Dependent Protein Kinase II Axis. J. Appl. Toxicol. 2015, 35, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Z.; Chen, Z. High-Level Production of ChSase ABC I by Co-Expressing Molecular Chaperones in Escherichia Coli. Int. J. Biol. Macromol. 2018, 119, 779–784. [Google Scholar] [CrossRef]
- Yamagata, T.; Saito, H.; Habuchi, O.; Suzuki, S. Purification and Properties of Bacterial Chondroitinases and Chondrosulfatases. J. Biol. Chem. 1968, 243, 1523–1535. [Google Scholar] [CrossRef]
- Bougatef, H.; Krichen, F.; Capitani, F.; Amor, I.B.; Maccari, F.; Mantovani, V.; Galeotti, F.; Volpi, N.; Bougatef, A.; Sila, A. Chondroitin Sulfate/Dermatan Sulfate from Corb (Sciaena Umbra) Skin: Purification, Structural Analysis and Anticoagulant Effect. Carbohydr. Polym. 2018, 196, 272–278. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, H.J.C.; Spoel, D.; Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Rani, A.; Goyal, A. A New Member of Family 8 Polysaccharide Lyase Chondroitin AC Lyase (Ps PL8A) from Pedobacter Saltans Displays Endo- and Exo-Lytic Catalysis. J. Mol. Catal. B Enzym. 2016, 134, 215–224. [Google Scholar] [CrossRef]
- Lan, R.; Li, Y.; Shen, R.; Yu, R.; Jing, L.; Guo, S. Preparation of Low-Molecular-Weight Chondroitin Sulfates by Complex Enzyme Hydrolysis and Their Antioxidant Activities. Carbohydr. Polym. 2020, 241, 116302. [Google Scholar] [CrossRef]
- Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Sulfonylation of Quinoline n -Oxides with Aryl Sulfonyl Chlorides via Copper-Catalyzed C–H Bonds Activation. Org. Lett. 2013, 15, 1270–1273. [Google Scholar] [CrossRef] [PubMed]
- Hook, M.; Thunberg, L.; Fransson, L.-A.; Linker, A. Structure of the Antithrombin-Binding Site in Heparin. Proc. Natl. Acad. Sci. USA 1979, 76, 3198–3202. [Google Scholar]
- Zaia, J. Principles of Mass Spectrometry of Glycosaminoglycans. J. Biomacromol. Mass Spectrom. 2005, 1, 3–26. [Google Scholar]
- Yamada, S.; Yoshida, K.; Sugiura, M.; Sugahara, K. One- and Two-Dimensional 1H-NMR Characterization of Two Series of Sulfated Disaccharides Prepared from Chondroitin Sulfate and Heparan Sulfate/Heparin by Bacterial Eliminase Digestion. J. Biochem. 1992, 112, 440–447. [Google Scholar] [CrossRef]
- Volpi, N. Disaccharide Mapping of Chondroitin Sulfate of Different Origins by High-Performance Capillary Electrophoresis and High-Performance Liquid Chromatography. Carbohydr. Polym. 2004, 55, 273–281. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Jin, Z. Separation and Purification of Low-Molecular-Weight Chondroitin Sulfates and Their Anti-Oxidant Properties. Bangladesh J. Pharmacol. 2016, 11, S61–S67. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.-M.; Huang, J.-Y.; Ling, X.-M.; Wei, W.; Su, W.-B.; Zhang, Y.-W. A Highly Active Chondroitin Sulfate Lyase ABC for Enzymatic Depolymerization of Chondroitin Sulfate. Polymers 2022, 14, 1770. https://doi.org/10.3390/polym14091770
Fan X-M, Huang J-Y, Ling X-M, Wei W, Su W-B, Zhang Y-W. A Highly Active Chondroitin Sulfate Lyase ABC for Enzymatic Depolymerization of Chondroitin Sulfate. Polymers. 2022; 14(9):1770. https://doi.org/10.3390/polym14091770
Chicago/Turabian StyleFan, Xiao-Man, Jia-Ying Huang, Xiao-Min Ling, Wei Wei, Wen-Bin Su, and Ye-Wang Zhang. 2022. "A Highly Active Chondroitin Sulfate Lyase ABC for Enzymatic Depolymerization of Chondroitin Sulfate" Polymers 14, no. 9: 1770. https://doi.org/10.3390/polym14091770
APA StyleFan, X. -M., Huang, J. -Y., Ling, X. -M., Wei, W., Su, W. -B., & Zhang, Y. -W. (2022). A Highly Active Chondroitin Sulfate Lyase ABC for Enzymatic Depolymerization of Chondroitin Sulfate. Polymers, 14(9), 1770. https://doi.org/10.3390/polym14091770