Data Fusion Approach to Simultaneously Evaluate the Degradation Process Caused by Ozone and Humidity on Modern Paint Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Weathering Experiments
2.3. Attenuated Total Reflection Fourier Transform-Infrared Spectroscopy (ATR-FTIR)
2.4. Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS)
2.5. Data Organization for Data Fusion
3. Results and Discussion
3.1. Identification and Degradation Investigations
3.1.1. ATR-FTIR Results of Styrene-Acrylics
3.1.2. ATR-FTIR Results of Acrylics
3.1.3. Py-GC/MS Results of Styrene-Acrylics
3.1.4. Py-GC/MS Results of Acrylics
3.2. Data Fusion Evaluation
3.2.1. Styrene-Acrylics
3.2.2. Acrylics
3.3. Semi-Quantitative FTIR Evaluation of Pigment Influence in the Degradation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID | Compound Name | ID | Compound Name |
---|---|---|---|
SC1 | Butyl alcohol (BA) | SC22 | Dibenzil |
SC2 | Toluene | SC23 | Dibenzyl, a-methyl- |
SC3 | Ethylbenzene | SC24 | nBA-styren dimer |
SC4 | Styrene | SC25 | nBA-styren dimer 1 |
SC5 | Benzene, (1-methylethyl)- | SC26 | nBA-styrene dimer 2 |
SC6 | Benzene, 2-propenyl- | SC27 | pnBA dimer |
SC7 | Benzene, propyl- | SC28 | Styrene dimer 1 |
SC8 | n-Butyl methacrylate | SC29 | nBA-styrene dimer 3 |
SC9 | a-Methylstyrene | SC30 | Styrene dimer 2 |
SC10 | Benzeneacetaldehyde, a-methyl- | SC31 | Styrene dimer 3 |
SC11 | Benzene, (1-methylene-2-propenyl)- | SC32 | a-Methyl styrene dimer |
SC12 | Benzene, 3-butenyl- | SC33 | Styrene dimer 4 |
SC13 | Benzene, 1-propynyl- | SC34 | styrene-styrene dimer |
SC14 | Styrene, a-ethyl- | SC35 | Styrene trimer 1 |
SC15 | n-Butyl tiglate | SC36 | nBA trimer |
SC16 | Benzene, (1-ethyl-2-propenyl)- | SC37 | nBA-nBA-styrene trimer 1 |
SC17 | Benzene, 3-butynyl- | SC38 | nBA-nBA-styrene trimer 2 |
SC18 | Naphthalene, 1,2-dihydro- | SC39 | styrene-styrene-nBA trimer |
SC19 | Naphthalene | SC40 | nBA-nBA-styrene trimer 3 |
SC20 | Naphthalene, 1-methyl- | SC41 | styrene trimer 2 |
SC21 | Biphenyl |
ID | Compound Name | ID | Compound Name |
---|---|---|---|
AC1 | Propene | AC14 | n-Butyl methacrylate nBMA |
AC2 | 2-Butene | AC15 | a-Methylstyrene |
AC3 | n-Butyl aldehyde | AC16 | n-Butyl tiglate |
AC4 | Propanoic acid, methyl ester | AC17 | Benzene, (1-ethyl-2-propenyl) |
AC5 | Butyl alcohol | AC18 | BMA sesquimer |
AC6 | Acrylic acid methyl ester | AC19 | nBA-MMA sesquimer |
AC7 | Isobutyric acid, methyl ester | AC20 | nBA-MMA dimer |
AC8 | Methyl methacrylate MMA | AC21 | nBA sesquimer |
AC9 | Toluene | AC22 | pnBA dimer |
AC10 | n-Butyl acetate | AC23 | nBA-nBA trimer |
AC11 | Ethylbenzene | AC24 | nBA-nBA trimer 1 |
AC12 | Butyl acrylate BA | AC25 | nBA-nBA trimer 2 |
AC13 | Styrene | AC26 | pnBA trimer |
References
- Learner, T.J.S. A review of synthetic binding media in twentieth-century paints. Conservator 2000, 24, 96–103. [Google Scholar] [CrossRef]
- Learner, T.J.S.; Smithen, P.; Krueger, J.W.; Schilling, M.R. Modern Paints Uncovered; The Getty Conservation Institute: Los Angeles, CA, USA, 2007. [Google Scholar]
- Ormsby, B.; Hodgkins, R.; Von Aderkas, N. Preliminary Investigations into Two New Acrylic Emulsion Paint Formulations: W&N Artists’ Acrylic Colours and Golden Open Acrylics. E-Preserv. Sci. 2012, 9, 9–16. [Google Scholar]
- De Santis, F.; Di Palo, V.; Allegrini, I. Determination of some atmospheric pollutants inside a museum: Relationship with the concentration outside. Sci. Total Environ. 1992, 127, 211–223. [Google Scholar] [CrossRef]
- Hamilton, R.; Kucera, V.; Tidblad, J.; Watt, J. The Effects of Air Pollution on Cultural Heritage; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Tidblad, J.; Kucera, V.; Ferm, M.; Kreislova, K.; Brüggerhoff, S.; Doytchinov, S.; Screpanti, A.; Grøntoft, T.; Yates, T.; de la Fuente, D.; et al. Effects of air pollution on materials and cultural heritage: ICP materials celebrates 25 years of research. Int. J. Corros. 2012, 2012, 496321. [Google Scholar] [CrossRef]
- Poppendieck, D.; Hubbard, H.; Ward, M.; Weschler, C.; Corsi, R.L. Ozone reactions with indoor materials during building disinfection. Atmos. Environ. 2007, 41, 3166–3176. [Google Scholar] [CrossRef]
- Grzywacz, C.M. Monitoring for Gaseous Pollutants in Museum Environments; The Getty Conservation Institute: Los Angeles, CA, USA, 2006. [Google Scholar]
- Franey, J.P.; Graedel, T.E. Corrosive effects of mixtures of pollutants. J. Air Pollut. Control Assoc. 1985, 35, 644–648. [Google Scholar] [CrossRef]
- Camuffo, D.; Fernicola, V.; Bertolin, C. Basic Environmental Mechanisms Affecting Cultural Heritage; Nardini Editore: Florence, Italy, 2010. [Google Scholar]
- Kreislova, K.; Knotkova, D.; Geiplova, H. Atmospheric corrosion of historical industrial structures. In Corrosion and Conservation of Cultural Heritage Metallic Artefacts; Woodhead Publishing: Cambridge, UK, 2013; Volume 15, p. 311. [Google Scholar]
- Christie, R.M. Colour Chemistry; Royal Society of Chemistry: Cambridge, UK, 2015. [Google Scholar]
- Marrion, A. The Chemistry and Physics of Coatings; The Royal Society of Chemistry: Cambridge, UK, 2004. [Google Scholar]
- Whitmore, P.M.; Colaluca, V.G. The natural and accelerated aging of an acrylic artists’ medium. Stud. Conserv. 1995, 40, 51–64. [Google Scholar]
- Cimino, D.; Lamuraglia, R.; Saccani, I.; Berzioli, M.; Izzo, F.C. Assessing the (In) Stability of Urban Art Paints: From Real Case Studies to Laboratory Investigations of Degradation Processes and Preservation Possibilities. Heritage 2022, 5, 581–609. [Google Scholar] [CrossRef]
- Chiantore, O.; Trossarelli, L.; Lazzari, M. Photooxidative degradation of acrylic and methacrylic polymers. Polymer 2000, 41, 1657–1668. [Google Scholar] [CrossRef]
- La Nasa, J.; Campanella, B.; Sabatini, F.; Rava, A.; Shank, W.; Lucero-Gomez, P.; De Luca, D.; Legnaioli, S.; Palleschi, V.; Colombini, M.P.; et al. 60 years of street art: A comparative study of the artists’ materials through spectroscopic and mass spectrometric approaches. J. Cult. Herit. 2021, 48, 129–140. [Google Scholar] [CrossRef]
- Scalarone, D.; Chaintore, O.; Learner, T. Ageing studies of acrylic emulsion paints. Part II. Comparing formulations with poly (EA-co-MMA) and poly (nBA-co-MMA) binders. In Proceedings of the ICOM Committee for Conservation, 14th Triennial Meeting, The Hague, The Netherlands, 12–16 September 2005; James & James: New York, NY, USA, 2005; pp. 350–358. [Google Scholar]
- Domenech-Carbo, M.T.; Silva, M.F.; Aura-Castro, E.; Fuster-Lopez, L.; Kroner, S.; Martinez-Bazan, M.L.; Mas-Barbera, X.; Mecklenburg, M.F.; Osete-Cortina, L.; Domenech, A.; et al. Study of behaviour on simulated daylight ageing of artists’ acrylic and poly(vinyl acetate) paint films. Anal. Bioanal. Chem. 2011, 399, 2921–2937. [Google Scholar] [CrossRef] [PubMed]
- Perrin, F.X.; Irigoyen, M.; Aragon, E.; Vernet, J.L. Evaluation of accelerated weathering tests for three paint systems: A comparative study of their aging behaviour. Polym. Degrad. Stab. 2001, 72, 115–124. [Google Scholar] [CrossRef]
- Izzo, F.C.; Balliana, E.; Pinton, F.; Zendri, E. A preliminary study of the composition of commercial oil, acrylic and vinyl paints and their behaviour after accelerated ageing conditions. Conserv. Sci. Cult. Herit. 2014, 14, 353–369. [Google Scholar]
- Feller, L. Artists’ Pigments: A Handbook of Their History and Characteristics; National Gallery of Art: Washington, DC, USA, 1986; Volume 1. [Google Scholar]
- Roy, A. Artists’ Pigments: A Handbook of Their History and Characteristics; National Gallery of Art: Washington, DC, USA, 1993; Volume 2. [Google Scholar]
- Fitzhugh, E.W. Artists’ Pigments: A Handbook of Their History and Characteristics; National Gallery of Art: Washington, DC, USA, 1997; Volume 3. [Google Scholar]
- Berrie, B. Artists’ Pigments: A Handbook of Their History and Characteristics; National Gallery of Art: Washington, DC, USA, 2007; Volume 4. [Google Scholar]
- Azcarate, S.M.; Ríos-Reina, R.; Amigo, J.M.; Goicoechea, H.C. Data Handling in Data Fusion: Methodologies and Applications. TrAC Trends Anal. Chem. 2021, 143, 116355. [Google Scholar] [CrossRef]
- Silvestri, M.; Bertacchini, L.; Durante, C.; Marchetti, A.; Salvatore, E.; Cocchi, M. Application of data fusion techniques to direct geographical traceability indicators. Anal. Chim. Acta 2013, 769, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchet, L.; Smolinska, A. Data fusion in metabolomics and proteomics for biomarker discovery. In Statistical Analysis in Proteomics; Springer: New York, NY, USA, 2016; pp. 209–223. [Google Scholar]
- Ortiz-Villanueva, E.; Benavente, F.; Piña, B.; Sanz-Nebot, V.; Tauler, R.; Jaumot, J. Knowledge integration strategies for untargeted metabolomics based on MCR-ALS analysis of CE-MS and LC-MS data. Anal. Chim. Acta 2017, 978, 10–23. [Google Scholar] [CrossRef]
- Dai, S.; Lin, Z.; Xu, B.; Wang, Y.; Shi, X.; Qiao, Y.; Zhang, J. Metabolomics data fusion between near infrared spectroscopy and high-resolution mass spectrometry: A synergetic approach to boost performance or induce confusion. Talanta 2018, 189, 641–648. [Google Scholar] [CrossRef]
- Haware, R.V.; Wright, P.R.; Morris, K.R.; Hamad, M.L. Data fusion of Fourier transform infrared spectra and powder X-ray diffraction patterns for pharmaceutical mixtures. J. Pharm. Biomed. Anal. 2011, 56, 944–949. [Google Scholar] [CrossRef]
- Wasilewski, T.; Migoń, D.; Gębicki, J.; Kamysz, W. Critical review of electronic nose and tongue instruments prospects in pharmaceutical analysis. Anal. Chim Acta 2019, 1077, 14–29. [Google Scholar] [CrossRef]
- Biancolillo, A.; Bucci, R.; Magrì, A.L.; Magrì, A.D.; Marini, F. Data-fusion for multiplatform characterization of an Italian craft beer aimed at its authentication. Anal. Chim. Acta 2014, 820, 23–31. [Google Scholar] [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data fusion methodologies for food and beverage authentication and quality assessment—A review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Pato, V.M.; Sánchez, C.N.; Domínguez-Soberanes, J.; Méndoza-Pérez, D.E.; Velázquez, R. A multisensor data fusion approach for predicting consumer acceptance of food products. Foods 2020, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.M.; Ruisánchez, I. Data fusion and dual-domain classification analysis of pigments studied in works of art. Anal. Chim. Acta 2006, 558, 274–282. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S.; Calvini, R. Image data fusion applied to pictorial layers recognition. In Proceedings of the 2020 Italian Conference on Optics and Photonics, Parma, Italy, 9–11 September 2020; pp. 1–4. [Google Scholar]
- De Queiroz Baddini, A.L.; de Paula Santos, J.L.V.; Tavares, R.R.; de Paula, L.S.; da Costa Araújo Filho, H.; Freitas, R.P. PLS-DA and data fusion of visible Reflectance, XRF and FTIR spectroscopy in the classification of mixed historical pigments. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2022, 265, 120384. [Google Scholar] [CrossRef] [PubMed]
- Calvini, R.; Pigani, L. Toward the Development of Combined Artificial Sensing Systems for Food Quality Evaluation: A Review on the Application of Data Fusion of Electronic Noses, Electronic Tongues and Electronic Eyes. Sensors 2022, 22, 577. [Google Scholar] [CrossRef] [PubMed]
- Schwolow, S.; Gerhardt, N.; Rohn, S.; Weller, P. Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—Is it worth to go the extra mile? Anal. Bioanal. Chem. 2019, 411, 6005–6019. [Google Scholar] [CrossRef]
- Lanza, I.; Lolli, V.; Segato, S.; Caligiani, A.; Contiero, B.; Lotto, A.; Galaverna, G.; Magrin, L.; Cozzi, G. Use of GC–MS and 1H NMR low-level data fusion as an advanced and comprehensive metabolomic approach to discriminate milk from dairy chains based on different types of forage. Int. Dairy J. 2021, 123, 105174. [Google Scholar] [CrossRef]
- Malegori, C.; Buratti, S.; Benedetti, S.; Oliveri, P.; Ratti, S.; Cappa, C.; Lucisano, M. A modified mid-level data fusion approach on electronic nose and FT-NIR data for evaluating the effect of different storage conditions on rice germ shelf life. Talanta 2020, 206, 120208. [Google Scholar] [CrossRef]
- Doeswijk, T.G.; Smilde, A.K.; Hageman, J.A.; Westerhuis, J.A.; Van Eeuwijk, F.A. On the increase of predictive performance with high-level data fusion. Anal. Chim. Acta 2011, 705, 41–47. [Google Scholar] [CrossRef]
- Michel, A.A.; Martin, M. Doctor blades. In Sol-Gel Technologies for Glass Producers and Users; Springer: London, UK, 2004; pp. 89–92. [Google Scholar]
- European Environmental Agency. Available online: https://www.eea.europa.eu/ (accessed on 11 May 2020).
- Wiesinger, R.; Pagnin, L.; Anghelone, M.; Moretto, L.M.; Orsega, E.F.; Schreiner, M. Pigment and Binder Concentrations in Modern Paint Samples Determined by IR and Raman Spectroscopy. Angew. Chem. Int. Ed. 2018, 57, 7401–7407. [Google Scholar] [CrossRef] [Green Version]
- Izzo, F.C.; Carrieri, A.; Bartolozzi, G.; Keulen, H.; Lorenzon, I.; Balliana, E.; Cucci, C.; Grazzi, F.; Picollo, M. Elucidating the composition and the state of conservation of nitrocellulose-based animation cells by means of non-invasive and micro-destructive techniques. J. Cult. Herit. 2019, 35, 254–262. [Google Scholar] [CrossRef]
- Van Keulen, H.; Schilling, M. AMDIS & EXCEL: A Powerful Combination for Evaluating THM-Py-GC/MS Results from European Lacquers. Stud. Conserv. 2019, 64, S74–S80. [Google Scholar]
- Papliaka, Z.E.; Andrikopoulos, K.S.; Varella, E.A. Study of the stability of a series of synthetic colorants applied with styrene-acrylic copolymer, widely used in contemporary paintings, concerning the effects of accelerated ageing. J. Cult. Herit. 2010, 11, 381–391. [Google Scholar] [CrossRef]
- Middleton, J.; Burks, B.; Wells, T.; Setters, A.M.; Jasiuk, I.; Predecki, P.; Hoffman, J.; Kumosa, M. The effect of ozone on polymer degradation in Polymer Core Composite Conductors. Polym. Degrad. Stab. 2013, 98, 436–445. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Bernard, F.; Eyglunent, G.; Daële, V.; Mellouki, A. Kinetics and products of gas-phase reactions of ozone with methyl methacrylate, methyl acrylate, and ethyl acrylate. J. Phys. Chem. A 2010, 114, 8376–8383. [Google Scholar] [CrossRef]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.J.; Voit, B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef]
- Gomes De Oliveira, A.G.; Wiercigroch, E.; De Andrade Gomes, J.; Malek, K. Infrared and Raman spectroscopy of automotive paints for forensic identification of natural weathering. Anal. Methods 2018, 10, 1203–1212. [Google Scholar] [CrossRef]
- Allen, N.S.; Edge, M.; Mourelatou, D.; Wilkinson, A.; Liauw, C.M.; Dolores Parellada, M.; Voit, B. Influence of ozone on styrene-ethylene-butylene-styrene (SEBS) copolymer. Polym. Degrad. Stab. 2003, 79, 297–307. [Google Scholar] [CrossRef]
- Pagnin, L.; Zendri, Z.; Izzo, F.C. How can ozone and relative humidity affect artists’ alkyd paints? A FT-IR and Py-GC/MS systematic study. Polym. J. 2022. submitted for publication. [Google Scholar]
- Wiesinger, R.; Martina, I.; Kleber, C.; Schreiner, M. Influence of relative humidity and ozone on atmospheric silver corrosion. Corros. Sci. 2013, 77, 69–76. [Google Scholar] [CrossRef]
- Phipps, P.B.P.; Rice, D.W. The Role of Water in Atmospheric Corrosion. Corros. Chem. 1979, 19, 235–261. [Google Scholar]
- Learner, T.J.S. Analysis of Modern Paints; The Getty Conservation Institute: Los Angeles, CA, USA, 2005. [Google Scholar]
- Anghelone, M.; Stoytschew, V.; Jembrih-Simbürger, D.; Schreiner, M. Spectroscopic methods for the identification and photostability study of red synthetic organic pigments in alkyd and acrylic paints. Microchem. J. 2018, 139, 155–163. [Google Scholar] [CrossRef]
- Digney-Peer, S.; Bumstock, A.; Leamer, T.; Khanjian, H.; Hoogland, F.; Boon, J. The Migration of Surfactants in Acrylic Emulsion Paint Films. Stud. Conserv. 2004, 49, 202–207. [Google Scholar] [CrossRef]
- Pagnin, L.; Wiesinger, R.; Koyun, A.N.; Schreiner, M. The Effect of Pollutant Gases on Surfactant Migration in Acrylic Emulsion Films: A Comparative Study and Preliminary Evaluation of Surface Cleaning. Polymers 2021, 13, 1941. [Google Scholar] [CrossRef] [PubMed]
- Ormsby, B.; Learner, T.; Schilling, M.; Druzik, J.; Khanjian, H.; Foster, G.; Sloan, M. The effects of surface cleaning on acrylic emulsion paintings: A preliminary investigation. Tate Pap. 2006, 6, 1–14. [Google Scholar]
- Ormsby, B.; Foster, G.; Learner, T.; Ritchie, S.; Schilling, M. Improved controlled relative humidity dynamic mechanical analysis of artists’ acrylic emulsion paints: Part II. General properties and accelerated ageing. J. Therm. Anal. Calorim. 2007, 90, 503–508. [Google Scholar] [CrossRef]
- Kampasakali, E.; Ormsby, B.; Cosentino, A.; Miliani, C.; Learner, T. A preliminary evaluation of the surfaces of acrylic emulsion paint films and the effects of wet-cleaning treatment by atomic force microscopy (AFM). Stud. Conserv. 2011, 56, 216–230. [Google Scholar] [CrossRef]
- Jablonski, E.; Learner, T.; Hayes, J.; Golden, M. Conservation concerns for acrylic emulsion paints. Stud. Conserv. 2003, 48, 3–12. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Schreiner, M. SO2- and NOx-initiated atmospheric degradation of polymeric films: Morphological and chemical changes, influence of relative humidity and inorganic pigments. Microchem. J. 2021, 164, 106087. [Google Scholar] [CrossRef]
- Pintus, V.; Wei, S.; Schreiner, M. UV ageing studies: Evaluation of lightfastness declarations of commercial acrylic paints. Anal. Bioanal. Chem. 2012, 402, 1567–1584. [Google Scholar] [CrossRef]
- Germinario, G.; Van der Werf, I.D.; Sabbatini, L. Chemical characterisation of spray paints by a multi-analytical (Py/GC–MS, FTIR, μ-Raman) approach. Microchem. J. 2016, 124, 929–939. [Google Scholar] [CrossRef]
- Tsuge, S.; Ohtani, H.; Watanabe, C. Pyrolysis-GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Bauer, P.; Buettner, A. Characterization of odorous and potentially harmful substances in artists’ acrylic paint. Front. Public Health 2018, 6, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajuelo, M.; Rodríguez, A.; Baeza-Romero, M.T.; Aranda, A.; Díaz-de-Mera, Y.; Rodríguez, D. Secondary organic aerosol formation from α-methylstyrene atmospheric degradation: Role of NOx level, relative humidity and inorganic seed aerosol. Atmos. Res. 2019, 230, 104631. [Google Scholar] [CrossRef]
- Hellgren, A.; Weissenborn, P.; Holmberg, K. Surfactants in water-borne paints. Prog. Org. Coat. 1999, 35, 79–87. [Google Scholar] [CrossRef]
- Germinario, G.; Mirabile, A.; Sabbatini, L. Pyrolysis gas chromatography—Mass spectrometry of pressure sensitive adhesive tapes. J. Anal. Appl. Pyrolysis 2020, 151, 104904. [Google Scholar] [CrossRef]
- Nguyen, T.; Tri Nguyen, P.; Nguyen, T.D.; El Aidani, R.; Trinh, V.; Decker, C. Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings. Polym. Degrad. Stab. 2016, 128, 65–76. [Google Scholar] [CrossRef]
- Pintus, V.; Wei, S.; Schreiner, M. Accelerated UV ageing studies of acrylic, alkyd, and polyvinyl acetate paints: Influence of inorganic pigments. Microchem. J. 2016, 124, 949–961. [Google Scholar] [CrossRef]
- Anghelone, M.; Jembrih-Simbürger, D.; Schreiner, M. Influence of phthalocyanine pigments on the photo-degradation of alkyd artists’ paints under different conditions of artificial solar radiation. Polym. Degrad. Stab. 2016, 134, 157–168. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Weber, J.; Schreiner, M. Photodegradation Kinetics of Alkyd Paints: The Influence of Varying Amounts of Inorganic Pigments on the Stability of the Synthetic Binder. Front. Mater. 2020, 7, 423. [Google Scholar]
Pigment Name | Chemical Composition | Colour Index (C.I.) Number |
Titanium white | TiO2 | PW6 |
Cadmium yellow | CdS | PY37 |
Cobalt green | Co2TiO4 | PG50 |
Hydrated chromium oxide green | Cr2O3 · 2H2O | PG18 |
Cobalt blue | CoO · Al2O3 | PB28 |
Cerulean blue | CoSnO3 | PB35 |
Artificial ultramarine blue | Na8–10Al6Si6O29S2–4 | PB29 |
Iron oxide red | Fe2O3 | PR101 |
Manganese violet | NH4MnP2O7 | PV16 |
Binder Name | Chemical Composition | Commercial Name |
Acrylic emulsion | p(nBA/MMA) | Plextol® D498 |
Styrene-acrylic emulsion | Styrene acrylate co-polymer | Acronal® S790 |
Sample Name | RT (min) | Compounds | m/z |
---|---|---|---|
Styrene-acrylic emulsion | 0.97 | 2-Butene | 41 (56) |
1.40 | n-Butyl aldehyde | 44 (27, 72) | |
1.79 | Butyl alcohol | 56 (31) | |
2.46 | Toluene | 91 | |
2.78 | n-Butyl acetate | 43 (56) | |
3.13 | Ethylbenzene | 91 (106) | |
3.33 | Styrene | 104 (78) | |
3.37 | Butyl acrylate BA | 55 (73) | |
3.69 | Benzene, 2-propenyl- | 117 (91) | |
3.88 | n-Butyl methacrylate nBMA | 69 (41, 87, 56) | |
3.93 | α-Methylstyrene | 118 (103, 78) | |
4.35 | Benzene, 3-butenyl- | 91 (132) | |
4.44 | Styrene, α-ethyl- | 117 (132) | |
5.05 | Benzene, (1-ethyl-2-propenyl)- | 118 | |
5.15 | Benzene, 3-butynyl- | 91 (129) | |
5.28 | Naphthalene, 1,2-dihydro- | 130 (129, 115) | |
5.45 | Naphthalene | 128 (127, 102) | |
6.25 | Naphthalene, 1-methyl- | 142 (141, 115) | |
6.98 | Biphenyl | 154 (153, 152) | |
8.11 | Bibenzyl | 91 (182, 65) | |
8.33 | Bibenzyl, α-methyl- | 105 (104, 77) | |
9.07 | nBA-styrene dimer | 91 (115) | |
9.11 | nBA-styrene dimer 1 | 91 (104) | |
9.38 | nBA-styrene dimer 2 | 91 (130) | |
9.41 | pnBA dimer | 127 (98) | |
9.62 | Styrene dimer 1 | 91 (130, 104) | |
9.64 | nBA-styrene dimer 3 | 131 (91, 115) | |
10.35 | Styrene dimer 2 | 117 (91, 115) | |
10.81 | Styrene dimer 3 | 130 (115, 91) | |
11.09 | a-Methyl styrene dimer | 118 (91, 117) | |
11.30 | Styrene dimer 4 | 143 (142, 128) | |
11.47 | Styrene-styrene dimer | 142 (129, 115) | |
13.35 | Styrene trimer 1 | 91 (128, 171) | |
13.84 | nBA trimer | 41 (57, 134) | |
14.07 | nBA-nBA-styrene trimer 1 | 98 (91, 126) | |
14.22 | nBA-nBA-styrene trimer 2 | 212 (142, 118) | |
14.34 | Styrene-styrene-nBA trimer | 91 (117) | |
14.47 | nBA-nBA-styrene trimer 3 | 131 (91, 117) | |
14.62 | Styrene trimer 2 | 91 (117, 115) |
Sample Name | RT (min) | Compounds | m/z |
---|---|---|---|
Acrylic emulsion | 0.97 | 2-Butene | 41 (28, 56) |
1.40 | n-Butyl aldehyde | 44 (27, 72) | |
1.48 | Acrylic acid methyl ester | 55 (27, 85) | |
1.56 | Propanoic acid methyl ester | 57 (29, 88) | |
1.79 | Butyl alcohol | 56 (31) | |
2.07 | Methyl methacrylate MMA | 69 (41, 100) | |
2.78 | n-Butyl acetate | 43 (56) | |
3.37 | Butyl acrylate BA | 55 (73) | |
3.89 | n-Butyl methacrylate nBMA | 69 (41, 87, 56) | |
4.47 | n-Butyl tiglate | 83 (55, 101) | |
5.54 | BMA sesquimer | 121 (126, 136, 67) | |
7.30 | nBA-MMA sesquimer | 143 (129, 83) | |
7.53 | nBA-MMA dimer | 112 (67, 95) | |
9.07 | nBA sesquimer | 115 (87, 171) | |
9.41 | pnBA dimer | 127 (126, 98) | |
12.06 | nBA-nBA trimer | 195 (93, 194) | |
12.22 | nBA-nBA trimer 1 | 195 (93, 194, 250) | |
12.85 | nBA-nBA trimer 2 | 149 (148, 121) | |
13.86 | pnBA trimer | 181 (134, 236) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagnin, L.; Calvini, R.; Sterflinger, K.; Izzo, F.C. Data Fusion Approach to Simultaneously Evaluate the Degradation Process Caused by Ozone and Humidity on Modern Paint Materials. Polymers 2022, 14, 1787. https://doi.org/10.3390/polym14091787
Pagnin L, Calvini R, Sterflinger K, Izzo FC. Data Fusion Approach to Simultaneously Evaluate the Degradation Process Caused by Ozone and Humidity on Modern Paint Materials. Polymers. 2022; 14(9):1787. https://doi.org/10.3390/polym14091787
Chicago/Turabian StylePagnin, Laura, Rosalba Calvini, Katja Sterflinger, and Francesca Caterina Izzo. 2022. "Data Fusion Approach to Simultaneously Evaluate the Degradation Process Caused by Ozone and Humidity on Modern Paint Materials" Polymers 14, no. 9: 1787. https://doi.org/10.3390/polym14091787
APA StylePagnin, L., Calvini, R., Sterflinger, K., & Izzo, F. C. (2022). Data Fusion Approach to Simultaneously Evaluate the Degradation Process Caused by Ozone and Humidity on Modern Paint Materials. Polymers, 14(9), 1787. https://doi.org/10.3390/polym14091787