Assessment of the Refractive Index and Extinction Coefficient of Graphene-Poly(3-hexylthiophene) Nanocomposites †
Abstract
:1. Introduction
2. Methodology
- (a)
- A search interval is estimated for each parameter. Each interval is supposed to contain a guess for each parameter.
- (b)
- The exhaustive search is applied for the intervals selected in (a). In this step, a first solution for the fitted parameters is obtained. As shown above, the selected parameters are those for which a minimum in the RMSE is obtained.
- (c)
- The search intervals for each parameter are reduced. Each new interval must be centered in the parameters obtained in (b).
- (d)
- Steps (b) to (c) are repeated, in order to improve the calculated parameters, by reducing the RMSE.
3. Results and Discussion
3.1. Optical Parameters
3.1.1. Refractive Index and Extinction Coefficient
3.1.2. Rule of Mixtures Applied to P3HT/G
3.2. Forouhi Bloomer Fit for n and k
3.3. Cauchy Fit for n and k
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolniak, R.; Skotnicka-Zasadzień, B. Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels. Energies 2022, 15, 662. [Google Scholar] [CrossRef]
- Luceño-Sánchez, J.A.; Díez-Pascual, A.M.; Peña Capilla, R. Materials for Photovoltaics: State of Art and Recent Developments. Int. J. Mol. Sci. 2019, 20, 976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracciale, M.P.; Kim, C.; Marrocchi, A. Organic electronics: An overview of key materials, processes, and devices. In Sustainable Strategies in Organic Electronics, 1st ed.; Marrocchi, A., Ed.; Woodhead Publishing: Cambridge, UK, 2022; pp. 4–23. [Google Scholar]
- Díez-Pascual, A.M.; Luceño Sanchez, J.A.; Peña Capilla, R.; García Díaz, P. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rech, J.J.; Neu, J.; Qin, Y.; Samson, S.; Shanahan, J.; Josey, R.F.; Ade, H.; You, W. Designing Simple Conjugated Polymers for Scalable and Efficient Organic Solar Cells. ChemSusChem 2021, 14, 3561–3568. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, Y.; Soltani-Kordshuli, F.; Eslamian, M. Progress in emerging solution-processed thin film solar cells – Part I: Polymer solar cells. Renew. Sustain. Energy Rev. 2016, 56, 347–361. [Google Scholar] [CrossRef]
- Chatterjee, S.; Jinnai, S.; Ie, Y. Nonfullerene acceptors for P3HT-based organic solar cells. J. Mater. Chem. A 2021, 9, 18857–18886. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Yu, S.-W.; Liu, C.-H.; Tsiang, R.C.-C. Morphological and optoelectronic characteristics of nanocomposites comprising graphene nanosheets and poly(3-hexylthiophene). J. Nanosci. Nanotechnol. 2010, 10, 6520–6526. [Google Scholar] [CrossRef]
- Saini, V.; Abdulrazzaq, O.; Bourdo, S.; Dervishi, E.; Petre, A.; Bairi, V.G.; Mustafa, T.; Schnackenberg, L.; Viswanathan, T.; Biris, A.S. Structural and optoelectronic properties of P3HT-graphene composites prepared by in situ oxidative polymerization. J. Appl. Phys. 2012, 112, 054327. [Google Scholar] [CrossRef]
- Shalu, C.; Shukla, M.; Tiwari, A.; Agrawal, J.; Bilgaiyan, A.; Singh, V. Role of solvent used to cast P3HT thin films on the performance of ZnO/P3HT hybrid photo detector. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 115, 113694. [Google Scholar] [CrossRef]
- Rathore, P.; Negi, C.M.S.; Verma, A.; Singh, A.; Chauhan, G.; Inigo, A.R.; Gupta, S.K. Investigation of the optical and electrical characteristics of solution-processed poly (3 hexylthiophene) (P3HT): Multiwall carbon nanotube (MWCNT) composite-based devices. Mater. Res. Express 2017, 4, 085905. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merthe, D.J.; Kresin, V.V. Transparency of graphene and other direct-gap two-dimensional materials. Phys. Rev. B 2016, 94, 205439. [Google Scholar] [CrossRef] [Green Version]
- Ovid’ko, I.A. Mechanical properties of graphene. Rev. Adv. Mater. Sci. 2013, 34, 1–11. [Google Scholar]
- Li, Q.; Lu, J.; Gupta, P.; Qiu, M. Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications. Adv. Opt. Mater. 2019, 7, 1900595. [Google Scholar] [CrossRef]
- Presto, D.; Song, V.; Boucher, D. P3HT/graphene composites synthesized using In situ GRIM methods. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 60–76. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, Y.J.; Ryu, S.; Lee, C.J.; Lee, J.U. Preparation of Nanocomposite-Based High Performance Organic Field Effect Transistor via Solution Floating Method and Mechanical Property Evaluation. Polymers 2020, 12, 1046. [Google Scholar] [CrossRef]
- Luceño Sánchez, J.A.; Díez-Pascual, A.M.; Peña Capilla, R.; García Díaz, P. The Effect of Hexamethylene Diisocyanate-Modified Graphene Oxide as a Nanofiller Material on the Properties of Conductive Polyaniline. Polymers 2019, 11, 1032. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.; Upadhyaya, A.; Gupta, S.K.; Verma, A.; Negi, C.M.S. Poly-(3-hexylthiophene)/graphene composite based organic photodetectors: The influence of graphene insertion. Thin Solid Films 2019, 675, 128–135. [Google Scholar] [CrossRef]
- Yadav, A.; Upadhyaya, A.; Gupta, S.K.; Negi, C.M.S. Thermal annealing dependence of charge injection and transport in the P3HT:graphene nanocomposite based devices. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 124, 114351. [Google Scholar] [CrossRef]
- Shariff, N.S.M.; Sarah, M.S.P.; Rusop, M. Optical properties of different graphene concentration in P3HT. AIP Conf. Proc. 2018, 1963, 020019. [Google Scholar] [CrossRef]
- Gueymard, C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- El-Aasser, M.A. Performance Optimization of Bilayer Organic Photovoltaic Cells. J. Optoelectron. Adv. Mater. 2016, 18, 618–627. [Google Scholar]
- Bkakri, R.; Sayari, A.; Shalaan, E.; Wageh, S.; Al-Ghamdi, A.; Bouazizi, A. Effects of the graphene doping level on the optical and electrical properties of ITO/P3HT:Graphene/Au organic solar cells. Superlattices Microstruct. 2014, 76, 461–471. [Google Scholar] [CrossRef]
- AbdulAlmohsin, S.; Cui, J.B. Graphene-Enriched P3HT and Porphyrin-Modified ZnO Nanowire Arrays for Hybrid Solar Cell Applications. J. Phys. Chem. C 2012, 116, 9433–9438. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, G.; Zhang, Y.; Cao, X.; Cao, M.; Yu, Y.; Dai, H.; Yao, J. Solution-processed graphene phototransistor functionalized with P3HT/graphene bulk heterojunction. Opt. Commun. 2018, 425, 161–165. [Google Scholar] [CrossRef]
- Forouhi, A.R.; Bloomer, I. Optical dispersion relations for amorphous semiconductors and amorphous dielectrics. Phys. Rev. B 1986, 34, 7018–7026. [Google Scholar] [CrossRef]
- Johnson, D.I.; Gadd, G.E.; Town, G.E. Total differential optical properties of polymer nanocomposite materials. In Proceedings of the 2006 International Conference on Nanoscience and Nanotechnology, Brisbane, QLD, Australia, 3–7 July 2006. [Google Scholar] [CrossRef]
- Berson, S.; de Bettignies, R.; Bailly, S.; Guillerez, S.; Jousselme, B. Elaboration of P3HT/CNT/PCBM Composites for Organic Photovoltaic Cells. Adv. Funct. Mater. 2007, 17, 3363–3370. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.P.; Nolte, D.D. Strong anomalous optical dispersion of graphene: Complex refractive index measured by Picometrology. Opt. Express 2008, 16, 22105–22112. [Google Scholar] [CrossRef]
- Song, S.; Wan, C.; Zhang, Y. Non-covalent functionalization of graphene oxide by pyrene-block copolymers for enhancing physical properties of poly(methyl methacrylate). RSC Adv. 2015, 5, 79947–79955. [Google Scholar] [CrossRef]
- Li, W.; Cheng, G.; Liang, Y.; Tian, B.; Liang, X.; Peng, L.; Hight-Walker, A.R.; Gundlach, D.J.; Nguyen, N.V. Broadband optical properties of graphene by spectroscopic ellipsometry. Carbon 2016, 99, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Abo Riziq, A.; Erlick, C.; Dinar, E.; Rudich, Y. Optical properties of absorbing and non-absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy. Atmos. Chem. Phys. 2007, 7, 1523–1536. [Google Scholar] [CrossRef] [Green Version]
- Zeranska-Chudek, K.; Łapińska, A.; Wroblewska, A.; Judek, J.; Duzynska, A.; Pawlowski, M.; Witowski, A.M.; Zdrojek, M. Study of the absorption coefficient of graphene-polymer composites. Sci. Rep. 2018, 8, 9132. [Google Scholar] [CrossRef] [PubMed]
- Paton, K.R.; Coleman, J.N. Relating the optical absorption coefficient of nanosheet dispersions to the intrinsic monolayer absorption. Carbon 2016, 107, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, F.A.; White, H.E. Fundamentals of optics. Indian J. Phys. 1957, 25, 265–266. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, D.C.; Sheik-Bahae, M.; Hagan, D.J.; Van Stryland, E.W. Kramers-Krönig relations in nonlinear optics. Opt. Quantum Electron. 1992, 24, 1–30. [Google Scholar] [CrossRef]
Sample | Conductivity (S/m) |
---|---|
P3HT | 9.273 × 10−3 |
P3HT/G 0.2 wt% | 1.467 × 10−2 |
P3HT/G 1 wt% | 1.549 × 10−2 |
P3HT/G 2 wt% | 1.500 × 10−2 |
P3HT/G 10 wt% | 1.878 × 10−2 |
G Loading (wt%) | RMSE (%) |
---|---|
0.1 | 4.87 |
0.5 | 4.86 |
1 | 5.72 |
3 | 5.49 |
5 | 3.04 |
G Loading (wt%) | Tabulated Eg (eV) | Optimized Eg (eV) | A (eV) | B (eV) | C (eV)2 | (eV) | n RMSE (%) | k RMSE (%) |
---|---|---|---|---|---|---|---|---|
0.1 wt% | 2.0335 | 1.7 | 0.2730 | 4.4360 | 5.0200 | 3.1000 | 8.06 | 8.88 |
0.5 wt% | 2.0659 | 1.7 | 0.1950 | 4.5980 | 5.3800 | 3.2800 | 9.08 | 10.08 |
1 wt% | 2.0578 | 1.7 | 0.2790 | 4.4360 | 5.0200 | 3.2060 | 8.66 | 8.60 |
3 wt% | 2.0555 | 1.7 | 0.2820 | 4.4360 | 5.0200 | 3.2200 | 8.61 | 8.40 |
5 wt% | 2.0335 | 1.7 | 0.2490 | 4.4540 | 5.0600 | 3.0520 | 7.64 | 10.60 |
G Loading (wt%) | Index | A | B (nm2) | C (nm4) | D (nm6) | RMSE (%) |
---|---|---|---|---|---|---|
0 | n | 1.2721 | 8.7069 | −2490.000 | 170.7312 | 4.63 |
k | −4.8152 | 33.6520 | −6426.763 | 380.7333 | 10.40 | |
0.1 | n | 1.3079 | 8.5623 | −2138.199 | 110.0000 | 5.94 |
k | −8.5932 | 60.0863 | −12,177.988 | 783.9081 | 6.41 | |
0.5 | n | 1.3460 | 6.4353 | −1168.750 | 2.8906 | 5.87 |
k | −8.9982 | 60.1133 | −11,743.359 | 724.7188 | 6.72 | |
1 | n | 1.3203 | 9.0273 | −2349.000 | 132.0000 | 5.84 |
k | −8.7457 | 61.1368 | −12,379.167 | 796.1458 | 5.98 | |
3 | n | 1.3305 | 9.0271 | −2349.028 | 132.0000 | 5.81 |
k | −8.5944 | 59.8669 | −12,040.960 | 768.3500 | 5.98 | |
5 | n | 1.2924 | 8.2404 | −2039.611 | 103.8333 | 5.64 |
k | −7.6083 | 52.7656 | −10,511.359 | 660.5156 | 8.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco Davoise, L.; Peña Capilla, R.; Díez-Pascual, A.M. Assessment of the Refractive Index and Extinction Coefficient of Graphene-Poly(3-hexylthiophene) Nanocomposites. Polymers 2022, 14, 1828. https://doi.org/10.3390/polym14091828
Velasco Davoise L, Peña Capilla R, Díez-Pascual AM. Assessment of the Refractive Index and Extinction Coefficient of Graphene-Poly(3-hexylthiophene) Nanocomposites. Polymers. 2022; 14(9):1828. https://doi.org/10.3390/polym14091828
Chicago/Turabian StyleVelasco Davoise, Lara, Rafael Peña Capilla, and Ana M. Díez-Pascual. 2022. "Assessment of the Refractive Index and Extinction Coefficient of Graphene-Poly(3-hexylthiophene) Nanocomposites" Polymers 14, no. 9: 1828. https://doi.org/10.3390/polym14091828
APA StyleVelasco Davoise, L., Peña Capilla, R., & Díez-Pascual, A. M. (2022). Assessment of the Refractive Index and Extinction Coefficient of Graphene-Poly(3-hexylthiophene) Nanocomposites. Polymers, 14(9), 1828. https://doi.org/10.3390/polym14091828