Probiotic-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Applications against Pathogenic Strains of Escherichia coli O157:H7
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Bacterial Strains
2.2. Isolation, Identification, and Characterization of AgNP-Producing Probiotics
2.3. Biosynthesis of AgNPs Using Probiotic Strain MAHUQ-74
2.4. Characterization of Biosynthesized AgNPs
2.5. Antimicrobial Activity of Probiotic-Mediated Synthesized AgNPs
2.6. Determination of MIC and MBC
2.7. Morphological Evaluation of Treated Cells Using FE-SEM
3. Results and Discussion
3.1. Isolation, Identification, and Characterization of AgNP-Producing Probiotic
3.2. Biosynthesis of AgNPs Using Strain MAHUQ-74
3.3. Characterization of Biosynthesized AgNPs
3.4. Antimicrobial Activity of Probiotic-Mediated Synthesized AgNPs against Different E. coli O157:H7 Strains
3.5. Determination of MIC and MBC
3.6. Study of Morphogenesis of E. coli O157:H7-Treated Cells Using FE-SEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kedi, P.B.E.; Meva, F.E.; Kotsedi, L. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. Int. J. Nanomed. 2018, 13, 8537–8548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Naggar, N.E.; Hussein, M.H.; El-Sawah, A.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity. Sci. Rep. 2017, 7, 10844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouda, A.; Abdel-Maksoud, G.; Abdel-Rahman, M.A.; Salem, S.S.; Hassan, S.E.D.; El-Sadany, M.A.H. Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int. Biodeterior. Biodegrad. 2019, 142, 160–169. [Google Scholar] [CrossRef]
- Fouda, A.; Abdel-Maksoud, G.; Abdel-Rahman, M.A.; Eid, A.M.; Barghoth, M.G.; El-Sadany, M.A.H. Monitoring the effect of biosynthesized nanoparticles against biodeterioration of cellulose-based materials by Aspergillus niger. Cellulose 2019, 26, 6583–6597. [Google Scholar] [CrossRef]
- Cheon, J.Y.; Kim, S.J.; Rhee, Y.H.; Kwon, O.H.; Park, W.H. Shape-dependent antimicrobial activities of silver nanoparticles. Int. J. Nanomed. 2019, 14, 2773–2780. [Google Scholar] [CrossRef] [Green Version]
- Burduසel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoanta, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology 2018, 16, 14. [Google Scholar] [CrossRef]
- Kandarp, M.; Mihir, S. Synthesis of silver nanoparticles by using sodium borohydride as a reducing agent. Int. J. Eng. Res. Technol. 2013, 2, 1–5. [Google Scholar]
- Al-Jumaili, A.; Mulvey, P.; Kumar, A. Eco-friendly nanocomposites derived from geranium oil and zinc oxide in one step approach. Sci. Rep. 2019, 9, 5973. [Google Scholar] [CrossRef]
- Wang, L.S.; Wang, C.Y.; Yang, C.H.; Hsieh, C.L.; Chen, S.Y.; Shen, C.Y.; Wang, J.J.; Huang, K.S. Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles. Int. J. Nanomed. 2015, 10, 2685–2696. [Google Scholar]
- Raza, S.; Ansari, A.; Siddiqui, N.N.; Ibrahim, F.; Abro, M.I.; Aman, A. Biosynthesis of silver nanoparticles for the fabrication of non-cytotoxic and antibacterial metallic polymer based nanocomposite system. Sci. Rep. 2021, 11, 10500. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Quiroz, C.; Botero, L.E.; Zárate-Triviño, D.; Acevedo-Yepes, N.; Escobar, J.S.; Pérez, V.Z.; Cruz-Riano, L.J. Synthesis and characterization of a silver nanoparticle-containing polymer composite with antimicrobial abilities for application in prosthetic and orthotic devices. Biomater. Res. 2020, 24, 13. [Google Scholar] [CrossRef] [PubMed]
- Huq, M.A. Biogenic Silver Nanoparticles Synthesized by Lysinibacillus xylanilyticus MAHUQ-40 to control antibiotic-resistant human pathogens Vibrio parahaemolyticus and Salmonella Typhimurium. Front. Bioeng. Biotechnol. 2020, 8, 1407. [Google Scholar] [CrossRef] [PubMed]
- Poulose, S.; Panda, T.; Nair, P.P.; Théodore, T. Biosynthesis of silver nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Lee, S.Y.; Siddiqi, M.Z.; Balusamy, S.R.; Ashrafudoulla, M.; Rupa, E.J.; Huq, M.A. Ecofriendly synthesis of silver nanoparticles by Terrabacter humi sp. nov. and their antibacterial application against antibiotic-resistant pathogens. Int. J. Mol. Sci. 2020, 21, 9746. [Google Scholar] [CrossRef] [PubMed]
- Abou, E.N.; Kholoud, M.M.; Eftaiha, A.A.; Al-Warthan, A.; Ammar, R.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010, 3, 135–140. [Google Scholar] [CrossRef] [Green Version]
- David, D. The relationship between biomaterials and nanotechnology. Biomaterials 2008, 29, 1737–1738. [Google Scholar]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar]
- Kruis, F.E.; Fissan, H.; Rellinghaus, B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Mater. Sci. Eng. B 2000, 69, 329–334. [Google Scholar] [CrossRef]
- Tran, Q.H.; Le-Adv, A.T. Silver nanoparticles: Synthesis, properties, toxicology, applications, and perspectives. Nat. Sci. Nanosci. Nanotechnol. 2013, 4, 033001. [Google Scholar] [CrossRef] [Green Version]
- Nasrollahzadeh, M. Green synthesis and catalytic properties of palladium nanoparticles for the direct reductive amination of aldehydes and hydrogenation of unsaturated ketones. New J. Chem. 2014, 38, 5544–5550. [Google Scholar] [CrossRef]
- Firdhouse, M.J.; Lalitha, P.J. Biosynthesis of silver nanoparticles and its applications. J. Nanotechnol. 2015, 1, 829526. [Google Scholar] [CrossRef] [Green Version]
- Huq, M.A. Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int. J. Mol. Sci. 2020, 21, 1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yurtluk, T.; Akçay, F.A.; Avcı, A. Biosynthesis of silver nanoparticles using novel Bacillus sp. SBT8. Prep. Biochem. Biotechnol. 2018, 48, 151–159. [Google Scholar] [CrossRef]
- El-Dein, M.M.N.; Baka, Z.A.; Abou-Dobara, M.I.; El-Sayed, A.K.; El-Zahed, M.M. Extracellular biosynthesis, optimization, characterization, and antimicrobial potential of Escherichia coli D8 silver nanoparticles. Biotech. Food Sci. 2021, 10, 648–656. [Google Scholar]
- Markus, J.; Mathiyalagan, R.; Kim, Y.-J.; Abbai, R.; Singh, P.; Ahn, S.; Perez, Z.E.J.; Hurh, J.; Yang, D.C. Intracellular synthesis of gold nanoparticles with antioxidant activity by probiotic Lactobacillus kimchicus DCY51T isolated from Korean kimchi. Enzym. Microb. Technol. 2016, 95, 85–93. [Google Scholar] [CrossRef]
- Jo, J.H.; Singh, P.; Kim, Y.J.; Wang, C.; Mathiyalagan, R.; Jin, C.-G.; Yang, D.C. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2015, 44, 1576–1581. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Pandit, S.; Mokkapati, S.; Garnæs, J.; Mijakovic, I. A Sustainable approach for the green synthesis of silver nanoparticles from Solibacillus isronensis sp. and their application in biofilm inhibition. Molecules 2020, 25, 2783. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Jers, C.; Abhayraj, S.; Garnæs, J.; Mijakovic, I. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci. Rep. 2021, 11, 12619. [Google Scholar] [CrossRef]
- Du, J.; Sing, H.; Yi, T.H. Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Artif. Cells. Nanomed. Biotechnol. 2017, 45, 211–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Singh, H.; Kim, Y.J. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym. Microb. Technol. 2016, 86, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Costa, O.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, P.C.B. Bacillus: Barron’s Medical Microbiology, 4th ed.; University of Texas Medical Branch: Galveston, TX, USA, 1996; ISBN 0-9631172-1-1. [Google Scholar]
- Mandell, G.L.; Bennett, J.E.; Dolin, R. Mandell, Douglas, and Bennett’s. Principles and Practice of Infectious Diseases, 7th ed.; Livingstone, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; p. 4028. ISBN 978-0-443-06839-3. [Google Scholar]
- Rahal, E.A.; Kazzi, N.; Nassar, F.J.; Matar, G.M. Escherichia coli O157:H7-Clinical aspects and novel treatment approaches. Front. Cell Infect. Microbiol. 2012, 2, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, X.T.; Siddiqi, M.Z.; Liu, Q.Z.; Lee, S.M.; Im, W.T. Devosia ginsengisoli sp. nov., isolated from ginseng cultivation soil. Int. J. Syst. Evol. Microbiol. 2020, 70, 1489–1495. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Siddiqi, M.Z.; Im, W.T. Hankyongella ginsenosidimutans gen. nov., sp. nov., isolated from mineral water with ginsenoside coverting activity. Antonie Van Leeuwenhoek 2020, 113, 719–727. [Google Scholar] [CrossRef]
- Akter, S.; Huq, M.A. Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11 and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes. Artif. Cells Nanomed. Biotechnol. 2020, 48, 672–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindaraju, K.; Kiruthiga, V.; Kumar, G.; Singaravelu, G. Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum Wightii grevilli and their antibacterial effects. J. Nanosci. Nanotechnol. 2009, 9, 5497–5501. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, E.; De Cesari, S.; Landini, G.; Riccobono, E.; Pallecchi, L.; Rossolini, G.M.; Gavioli, L. Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Kumar-Krishnan, S.; Prokhorov, E.; Hernández-Iturriaga, M.; Mota-Morales, J.D.; Vázquez-Lepe, M.; Kovalenko, Y.; Luna-Bárcenas, G. Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. Eur. Polym. J. 2015, 67, 242–251. [Google Scholar] [CrossRef]
- Sotiriou, G.A.; Pratsinis, S.E. Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol. 2010, 44, 5649–5654. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Yamanaka, M.; Hara, K.; Kudo, J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 2005, 71, 7589–7593. [Google Scholar] [CrossRef] [Green Version]
API 20 NE | Result | API ZYM | Result |
---|---|---|---|
Reduction of nitrate (API 20 NE) | + | Esterase (C4) | w |
Esterase lipase (C8) | w | ||
Alkaline phosphatase | + | ||
Lipase (C-14) | - | ||
Hydrolysis of: | Acid phosphatase | w | |
Esculine | + | Leucine arylamidase | + |
Gelatine | + | Valine arylamidase | - |
Urea | - | Cystine arylamidase | - |
4-nitrophenyl-BD-galactopyranoside | + | Trypsin | - |
Utilization of: | α-chymotrypsin | - | |
D-glucose | + | β-glucuronidase | - |
D-maltose | + | Naphthol-AS-BI-phosphohydrolase | w |
D-mannose | + | N-acetyl-β-glucosaminidase | - |
D-mannitol | + | α-mannosidase | - |
L-arabinose | + | α-glucosidase | + |
N-acetyl-glucosamine | + | α-galactosidase | + |
Trisodium citrate | + | β-glucosidase | + |
Phenylacetic acid | - | β-galactosidase | - |
α-fucosidase | - | ||
+, Positive; -, Negative; w, Weakly positive. |
Element | Weight % | Atomic % |
---|---|---|
Cu K | 39.77 | 52.85 |
Ag L | 60.23 | 47.15 |
Totals | 100.00 | 100.00 |
No. | Strains | Origin |
---|---|---|
1 | Escherichia coli O157:H7 2257 | E. coli O157:H7 FDIU strain |
2 | Escherichia coli O157:H7 8624 | Wild-type E. coli O157:H7, a clinical isolate |
3 | Escherichia coli O157: NM 3204-92 | International vaccine institute clinical specimen |
4 | Escherichia coli O157:H7 ATCC 43895 | About the outbreak of raw hamburger and hemorrhagic colitis |
5 | Escherichia coli O157:H7 ATCC 35150 | Feces, human |
6 | Escherichia coli O157:H7 ATCC 43889 | Isolated from the stool of a patient with hemolytic uremic syndrome in North Carolina |
7 | Escherichia coli O157:H7 ATCC 43890 | Human feces, California |
8 | Escherichia coli O157:H7 ATCC 43894 | Human feces from an outbreak of hemorrhagic colitis, Michigan |
9 | Escherichia coli ATCC 25922 | Clinical isolate |
FDIU, Federal Disease Investigation Unit (Washington State University) |
No. | Pathogenic Strains | Zone of Inhibition(mm) | |
---|---|---|---|
50 µL | 100 µL | ||
1 | E. coli O157:H7 2257 | 10.1 | 24 |
2 | E. coli O157:H7 8624 | 10.1 | 17 |
3 | E. coli O157: NM 3204-92 | 10.1 | 16 |
4 | E. coli O157:H7 ATCC 43895 | - | 16 |
5 | E. coli O157:H7 ATCC 35150 | 10 | 18 |
6 | E. coli O157:H7 ATCC 43889 | 10.1 | 16 |
7 | E. coli O157:H7 ATCC 43890 | 10 | 16 |
8 | E. coli O157:H7 ATCC 43894 | 10 | 19 |
9 | E. coli ATCC 25922 | 10.1 | 22 |
-, no inhibition zone |
No. | Pathogenic Species | Antibiotic | Zone of Inhibition (mm) |
---|---|---|---|
1 | E. coli O157:H7 2257 | Erythromycin | - |
Vancomycin | - | ||
Penicillin G | - | ||
2 | E. coli O157:H7 8624 | Erythromycin | - |
Vancomycin | - | ||
Penicillin G | - | ||
3 | E. coli O157: NM 3204-92 | Erythromycin | - |
Vancomycin | - | ||
Penicillin G | - | ||
4 | E. coli O157:H7 ATCC 43895 | Erythromycin | - |
Vancomycin | - | ||
Penicillin G | - | ||
5 | E. coli O157:H7 ATCC 35150 | Erythromycin | - |
Vancomycin | - | ||
Penicillin G | - | ||
6 | E. coli O157:H7 ATCC 43889 | Erythromycin | 15 |
Vancomycin | 10 | ||
Penicillin G | 9 | ||
7 | E. coli O157:H7 ATCC 43890 | Erythromycin | 17 |
Vancomycin | 10 | ||
Penicillin G | 9 | ||
8 | E. coli O157:H7 ATCC 43894 | Erythromycin | 10 |
Vancomycin | 8 | ||
Penicillin G | - | ||
9 | E. coli ATCC 25922 | Erythromycin | - |
Vancomycin | - | ||
Penicillin G | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lee, S.-Y.; Akter, S.; Huq, M.A. Probiotic-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Applications against Pathogenic Strains of Escherichia coli O157:H7. Polymers 2022, 14, 1834. https://doi.org/10.3390/polym14091834
Wang X, Lee S-Y, Akter S, Huq MA. Probiotic-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Applications against Pathogenic Strains of Escherichia coli O157:H7. Polymers. 2022; 14(9):1834. https://doi.org/10.3390/polym14091834
Chicago/Turabian StyleWang, Xiaoqing, Sun-Young Lee, Shahina Akter, and Md. Amdadul Huq. 2022. "Probiotic-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Applications against Pathogenic Strains of Escherichia coli O157:H7" Polymers 14, no. 9: 1834. https://doi.org/10.3390/polym14091834
APA StyleWang, X., Lee, S. -Y., Akter, S., & Huq, M. A. (2022). Probiotic-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Applications against Pathogenic Strains of Escherichia coli O157:H7. Polymers, 14(9), 1834. https://doi.org/10.3390/polym14091834