Influence of Resin Content and Density on Water Resistance of Bamboo Scrimber Composite from a Bonding Interface Structure Perspective
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Preparation of BSC
2.3. Characterizations
2.3.1. Water Resistance
2.3.2. Morphological Characterizations
2.3.3. Mercury Intrusion Porosimetry (MIP)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Dimensional Stability
3.2. Bonding Interface Morphology
3.3. Macroscopic Interface Failure Morphology
3.4. Analysis of Porosity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.Y.; Wang, X.Q.; Li, Y.Q.; Huang, P.; Yang, B.; Hu, N.; Fu, S.Y. High-Performance Bamboo Steel Derived from Natural Bamboo. ACS Appl. Mater. Interfaces 2021, 13, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhou, H.; Lu, Q.; Gao, H.; Lu, L. Extra Strengthening and Work Hardening in Gradient Nanotwinned Metals. Science 2018, 362, eaau1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The Wood from the Trees: The Use of Timber in Construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Orsini, F.; Marrone, P. Approaches for a Low-Carbon Production of Building Materials: A Review. J. Clean. Prod. 2019, 241, 118380. [Google Scholar] [CrossRef]
- Rao, F.; Ji, Y.; Li, N.; Zhang, Y.; Chen, Y.; Yu, W. Outdoor Bamboo-Fiber-Reinforced Composite: Influence of Resin Content on Water Resistance and Mechanical Properties. Constr. Build. Mater. 2020, 261, 120022. [Google Scholar] [CrossRef]
- Guo, W.; Kalali, E.N.; Wang, X.; Xing, W.; Zhang, P.; Song, L.; Hu, Y. Processing Bulk Natural Bamboo into a Strong and Flame-Retardant Composite Material. Ind. Crops Prod. 2019, 138, 111478. [Google Scholar] [CrossRef]
- Anwar, U.M.K.; Paridah, M.T.; Hamdan, H.; Sapuan, S.M.; Bakar, E.S. Effect of Curing Time on Physical and Mechanical Properties of Phenolic-Treated Bamboo Strips. Ind. Crops Prod. 2009, 29, 214–219. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Bhat, I.U.H.; Jawaid, M.; Zaidon, A.; Hermawan, D.; Hadi, Y.S. Bamboo Fibre Reinforced Biocomposites: A Review. Mater. Des. 2012, 42, 353–368. [Google Scholar] [CrossRef]
- Yu, W.; Yu, Y. Development and Prospect of Wood and Bamboo Scrimber Industry in China. China Wood Ind. 2013, 27, 5–8. [Google Scholar]
- Huang, Y.; Ji, Y.; Yu, W. Development of Bamboo Scrimber: A Literature Review. J. Wood Sci. 2019, 65, 25. [Google Scholar] [CrossRef]
- Kumar, A.; Vlach, T.; Laiblova, L.; Hrouda, M.; Kasal, B.; Tywoniak, J.; Hajek, P. Engineered Bamboo Scrimber: Influence of Density on the Mechanical and Water Absorption Properties. Constr. Build. Mater. 2016, 127, 815–827. [Google Scholar] [CrossRef]
- Sharma, B.; Gatóo, A.; Bock, M.; Ramage, M. Engineered Bamboo for Structural Applications. Constr. Build. Mater. 2015, 81, 66–73. [Google Scholar] [CrossRef]
- Shangguan, W.; Gong, Y.; Zhao, R.; Ren, H. Effects of Heat Treatment on the Properties of Bamboo Scrimber. J. Wood Sci. 2016, 62, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Rao, F.; Rao, F.; Rao, F.; Zhu, X.; Zhang, Y.; Ji, Y.; Lei, W.; Li, N.; Zhang, Z.; Chen, Y.; et al. Construction and Building Materials Water Resistance and Mechanical Properties of Bamboo Scrimber Composite Made from Different Units of Bambusa Chungii as a Function of Resin Content. Constr. Build. Mater. 2022, 335, 127250. [Google Scholar] [CrossRef]
- Rao, F.; Ji, Y.; Huang, Y.; Li, N.; Zhang, Y.; Chen, Y.; Yu, W. Influence of Resin Molecular Weight on Bonding Interface, Water Resistance, and Mechanical Properties of Bamboo Scrimber Composite. Constr. Build. Mater. 2021, 292, 123458. [Google Scholar] [CrossRef]
- Shams, M.I.; Yano, H.; Endou, K. Compressive Deformation of Wood Impregnated with Low Molecular Weight Phenol Formaldehyde (PF) Resin I: Effects of Pressing Pressure and Pressure Holding. J. Wood Sci. 2004, 50, 337–342. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, R.; Huang, Y.; Meng, F.; Yu, W. Preparation, Physical, Mechanical, and Interfacial Morphological Properties of Engineered Bamboo Scrimber. Constr. Build. Mater. 2017, 157, 1032–1039. [Google Scholar] [CrossRef]
- Du, C.G.; Li, R. Study on Bamboo Particleboard Bambooceramics—PF Resin Content Influence on Properties of Bambooceramics. Adv. Mater. Res. 2014, 1035, 41–44. [Google Scholar] [CrossRef]
- Grinins, J.; Biziks, V.; Irbe, I.; Rizikovs, J. Water Related Properties of Birch Wood Modified with Phenol-Formaldehyde (PF) Resins. Key Eng. Mater. 2019, 800, 246–250. [Google Scholar] [CrossRef]
- Wei, J.; Rao, F.; Huang, Y.; Zhang, Y.; Qi, Y.; Yu, W.; Hse, C.Y. Structure, Mechanical Performance, and Dimensional Stability of Radiata Pine (Pinus Radiata D. Don) Scrimbers. Adv. Polym. Technol. 2019, 2019, 5209624. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, Y.; Huang, Y.; Wei, X.; Yu, W. Influence of Board Density on the Physical and Mechanical Properties of Bamboo Oriented Strand Lumber. Forests 2020, 11, 567. [Google Scholar] [CrossRef]
- Bao, M.; Huang, X.; Zhang, Y.; Yu, W.; Yu, Y. Effect of Density on the Hygroscopicity and Surface Characteristics of Hybrid Poplar Compreg. J. Wood Sci. 2016, 62, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Liu, R.; Zhang, Y.; Huang, Y.; Yu, Y.; Yu, W. Improvement of the Water Repellency, Dimensional Stability, and Biological Resistance of Bamboo-Based Fiber Reinforced Composites. Polym. Compos. 2019, 40, 506–513. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, Y.; Zhang, Y.; Liu, R.; Meng, F.; Yu, W. The Reinforcing Mechanism of Mechanical Properties of Bamboo Fiber Bundle-Reinforced Composites. Polym. Compos. 2019, 40, 1463–1472. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhu, R.X.; Wen-Ji, Y.U.; Ren, D.H. Performance of Exterior Crushed Bamboo-Mat Composite after Accelerated Aging Test. China Wood Ind. 2012, 26, 6–8. [Google Scholar]
- Doan, T.T.L.; Gao, S.L.; Mäder, E. Jute/Polypropylene Composites I. Effect of Matrix Modification. Compos. Sci. Technol. 2006, 66, 952–963. [Google Scholar] [CrossRef]
- Vitas, S.; Segmehl, J.S.; Burgert, I.; Cabane, E. Porosity and Pore Size Distribution of Native and Delignified Beech Wood Determined by Mercury Intrusion Porosimetry. Materials 2019, 12, 416. [Google Scholar] [CrossRef] [Green Version]
- Gardner, W. Note on the Dynamics of Capillary Flow. Phys. Rev. 1921, 18, 206–209. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, C.K.; Jawaid, M.; Abdul Khalil, H.P.S.; Zaidon, A.; Hadiyane, A. Oil Palm Trunk Polymer Composite: Morphology, Water Absorption, and Thickness Swelling Behaviours. BioResources 2012, 7, 2948–2959. [Google Scholar] [CrossRef]
- Gabrielli, C.P.; Kamke, F.A. Phenol-Formaldehyde Impregnation of Densified Wood for Improved Dimensional Stability. Wood Sci. Technol. 2010, 44, 95–104. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Bhat, A.H.; Jawaid, M.; Amouzgar, P.; Ridzuan, R.; Said, M.R. Agro-Wastes: Mechanical and Physical Properties of Resin Impregnated Oil Palm Trunk Core Lumber. Polym. Compos. 2010, 31, 638–644. [Google Scholar] [CrossRef]
- Deka, M.; Saikia, C.N.; Baruah, K.K. Treatment of Wood with Thermosetting Resins: Effect on Dimensional Stability, Strength and Termite Resistance. Indian J. Chem. Technol. 2000, 7, 312–317. [Google Scholar]
- Guan, M.; Huang, Z.; Zeng, D. Shear Strength and Microscopic Characterization of a Bamboo Bonding Interface with Phenol Formaldehyde Resins Modified with Larch Thanaka and Urea. BioResources 2016, 11, 492–502. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Q.; Yang, C.; Bian, G.; Zhang, Y.; Yu, W. Multi-Scale Characterization of Bamboo Bonding Interfaces with Phenol-Formaldehyde Resin of Different Molecular Weight to Study the Bonding Mechanism. J. R. Soc. Interface 2020, 17, 20190755. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, X.; Yu, W. A Novel Process to Improve Yield and Mechanical Performance of Bamboo Fiber Reinforced Composite via Mechanical Treatments. Compos. Part B Eng. 2014, 56, 48–53. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, R.; Wu, B.; Hu, Y.; Yu, W. Fabrication, Material Properties, and Application of Bamboo Scrimber. Wood Sci. Technol. 2015, 49, 83–98. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, W. Manufacturing Technology of Bamboo-Based Fiber Composites with High-Performance. World Bamboo Ratt. 2013, 11, 6–10. [Google Scholar]
- Lian, C.P.; Liu, R.; Zhang, S.Q.; Luo, J.J.; Fei, B.H. Research Progress on Anatomical Structure of Bamboo Vascular Bundles. China For. Prod. Ind. 2018, 45, 8–12. [Google Scholar]
- Liu, X.E.; Liu, Z.; Wang, Y.H.; Fei, B.H.; Zhou, X.; Zhang, L.F.; Gao, L.Y.; Jin, L.U. Investigation on Main Anatomical Characteristics of Dendrocalamus Giganteus. J. Anhui Agric. Univ. 2012, 39, 890–893. [Google Scholar]
- Wang, Y.; Zhan, H.; Ding, Y.; Wang, S.; Lin, S. Variability of Anatomical and Chemical Properties with Age and Height in Dendrocalamus Brandisii. BioResources 2016, 11, 1202–1213. [Google Scholar] [CrossRef]
- Lian, C.; Liu, R.; Xiufang, C.; Zhang, S.; Luo, J.; Yang, S.; Liu, X.; Fei, B. Characterization of the Pits in Parenchyma Cells of the Moso Bamboo [Phyllostachys Edulis (Carr.) J. Houz.] Culm. Holzforschung 2019, 73, 629–636. [Google Scholar] [CrossRef]
Sample | Preparation Conditions | |
---|---|---|
Resin Content (%) | Density (g/cm3) | |
BSC-10-1.0 | 10 | 1.00 |
BSC-10-1.15 | 10 | 1.15 |
BSC-10-1.3 | 10 | 1.30 |
BSC-15-1.0 | 15 | 1.00 |
BSC-15-1.15 | 15 | 1.15 |
BSC-15-1.3 | 15 | 1.30 |
BSC-20-1.0 | 20 | 1.00 |
BSC-20-1.15 | 20 | 1.15 |
BSC-20-1.3 | 20 | 1.30 |
Factor | WSR | TSR | WAR | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
resin content | 7.057 | 0.004 | 55.425 | 0.000 | 8.770 | 0.001 |
density | 4.881 | 0.017 | 1.301 | 0.291 | 6.260 | 0.006 |
interaction | 3.293 | 0.034 | 3.912 | 0.019 | 9.395 | 0.000 |
Sample | D-Value/% |
---|---|
BSC-10-1.15 | 12.3275 |
BSC-15-1.15 | 4.9813 |
BSC-20-1.0 | 4.0425 |
BSC-20-1.15 | 2.6535 |
BSC-20-1.3 | 13.4705 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Lei, W.; Huang, Y.; Wu, J.; Yu, W. Influence of Resin Content and Density on Water Resistance of Bamboo Scrimber Composite from a Bonding Interface Structure Perspective. Polymers 2022, 14, 1856. https://doi.org/10.3390/polym14091856
Ji Y, Lei W, Huang Y, Wu J, Yu W. Influence of Resin Content and Density on Water Resistance of Bamboo Scrimber Composite from a Bonding Interface Structure Perspective. Polymers. 2022; 14(9):1856. https://doi.org/10.3390/polym14091856
Chicago/Turabian StyleJi, Yaohui, Wencheng Lei, Yuxiang Huang, Jiangyuan Wu, and Wenji Yu. 2022. "Influence of Resin Content and Density on Water Resistance of Bamboo Scrimber Composite from a Bonding Interface Structure Perspective" Polymers 14, no. 9: 1856. https://doi.org/10.3390/polym14091856
APA StyleJi, Y., Lei, W., Huang, Y., Wu, J., & Yu, W. (2022). Influence of Resin Content and Density on Water Resistance of Bamboo Scrimber Composite from a Bonding Interface Structure Perspective. Polymers, 14(9), 1856. https://doi.org/10.3390/polym14091856