Synthetic Polypeptides with Cationic Arginine Moieties Showing High Antimicrobial Activity in Similar Mineral Environments to Blood Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Antibacterial Test
2.3. Hemolysis Test
2.4. Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of Copolypeptides
3.2. Antimicrobial Activities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedman, N.D.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016, 22, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.-M.; Bechinger, B.; Naas, T. Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics 2021, 10, 1095. [Google Scholar] [CrossRef]
- Dijksteel, G.S.; Ulrich, M.M.W.; Middelkoop, E.; Boekema, B.K.H. Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front. Microbiol. 2021, 12, 616979. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infec. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action, and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Wang, G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 2008, 283, 32637–32643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides at the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Ambrosio, P.J.S.; Tronnet, A.; Verhaeghe, P.; Bonduelle, C. Synthetic polypeptide polymers as simplified analogues of antimicrobial peptides. Biomacromolecules 2021, 22, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, W.; Li, S.; Kim, D.; Kim, J.H.; Kim, J.R.; Kim, I. Facile and scalable synthesis of topologically nanoengineered polypeptides with excellent antimicrobial activities. Chem. Commun. 2020, 56, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhou, X.; Tan, Z.; Zhou, C. Highly efficient antibacterial diblock copolypeptides based on lysine and phenylalanine. Biopolymers 2017, 107, e23041. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; He, J.; Zhou, C. Strategies from nature: Polycaprolactone-based mimetic antimicrobial peptide block copolymers with low cytotoxicity and excellent antibacterial efficiency. Polym. Chem. 2019, 10, 945–953. [Google Scholar] [CrossRef]
- Xi, Y.; Song, T.; Tang, S.; Wang, N.; Du, J. Preparation and antibacterial mechanism of polypeptide-based micelles with excellent antibacterial activities. Biomacromolecules 2016, 17, 3922–3930. [Google Scholar] [CrossRef] [PubMed]
- Andreev, K.; Bianchi, C.; Laursen, J.S.; Citterio, L.; Hein-Kristensen, L.; Gram, L.; Kuzmenko, I.; Olsen, C.A.; Gidalevitz, D. Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes. Biochim. Biophys. Acta Biomembr. 2014, 1838, 2492–2502. [Google Scholar] [CrossRef] [Green Version]
- Albertshofer, K.; Siwkowski, A.M.; Wancewicz, E.V.; Esau, C.C.; Watanabe, T.; Nishihara, K.C.; Kinberger, G.A.; Malik, L.; Eldrup, A.B.; Manoharan, M.; et al. Structure—Activity relationship study on a simple cationic peptide motif for cellular delivery of antisense peptide nucleic acid. J. Med. Chem. 2005, 48, 6741–6749. [Google Scholar] [CrossRef]
- Exley, S.E.; Paslay, L.C.; Sahukhal, G.S.; Abel, B.A.; Brown, T.D.; McCormick, C.L.; Heinhorst, S.; Koul, V.; Choudhary, V.; Elasri, M.O.; et al. Antimicrobial peptide mimicking primary amine and guanidine containing methacrylamide copolymers prepared by raft polymerization. Biomacromolecules 2015, 16, 3845–3852. [Google Scholar] [CrossRef]
- Mbizana, S.; Hlalele, L.; Pfukwa, R.; Du Toit, A.; Lumkwana, D.; Loos, B.; Klumperman, B. Synthesis and cell interaction of statistical l-arginine–glycine–l-aspartic acid terpolypeptides. Biomacromolecules 2018, 19, 3058–3066. [Google Scholar] [CrossRef]
- Tsogas, I.; Theodossiou, T.; Sideratou, Z.; Paleos, C.M.; Collet, H.; Rossi, J.C.; Romestand, B.; Commeyras, A. Interaction and transport of poly(l-lysine) dendrigrafts through liposomal and cellular membranes: The role of generation and surface functionalization. Biomacromolecules 2007, 8, 3263–3270. [Google Scholar] [CrossRef]
- Carlson, P.M.; Schellinger, J.G.; Pahang, J.A.; Johnson, R.N.; Pun, S.H. Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery. Biomater. Sci. 2013, 1, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Sideratou, Z.; Sterioti, N.; Tsiourvas, D.; Tziveleka, L.; Thanassoulas, A.; Nounesis, G.; Paleos, C.M. Arginine end-functionalized poly(l-lysine) dendrigrafts for the stabilization and controlled release of insulin. J. Colloid Interface Sci. 2010, 351, 433–441. [Google Scholar] [CrossRef]
- Bernatowicz, M.S.; Wu, Y.; Matsueda, G.R. 1H-Pyrazole-1-carboxamidine hydrochloride an attractive reagent for guanylation of amines and its application to peptide synthesis. J. Org. Chem. 1992, 57, 2497–2502. [Google Scholar] [CrossRef]
- Tencza, S.B.; A Miller, M.; Islam, K.; Mietzner, T.A.; Montelaro, R.C. Effect of amino acid substitutions on calmodulin binding and cytolytic properties of the LLP-1 peptide segment of human immunodeficiency virus type 1 transmembrane protein. J. Virol. 1995, 69, 5199–5202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, D.J.; Steinman, L.; Kim, D.T.; Fathman, C.G.; Rothbard, J.B. Polyarginine enters cells more efficiently than other polycationic homopolymers. J. Pept. Res. 2000, 56, 318–325. [Google Scholar] [CrossRef]
- Phadke, S.M.; Lazarevic, V.; Bahr, C.C.; Islam, K.; Stolz, D.B.; Watkins, S.; Tencza, S.B.; Vogel, H.J.; Montelaro, R.C.; Mietzner, T.A. Lentivirus lytic peptide 1 perturbs both outer and inner membranes of Serratia marcescens. Antimicrob. Agents Chemother. 2002, 46, 2041–2045. [Google Scholar] [CrossRef] [Green Version]
- Kalia, V.; Sarkar, S.; Gupta, P.; Montelaro, R.C. Rational site-directed mutations of the LLP-1 and LLP-2 lentiviral lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation. J. Virol. 2003, 77, 3634–3646. [Google Scholar] [PubMed] [Green Version]
- Phadke, S.M.; Islam, K.; Deslouches, B.; Kapoor, S.A.; Stolz, D.B.; Watkins, S.C.; Montelaro, R.C.; Pilewski, J.M.; Mietzner, T.A. Selective toxicity of engineered lentivirus lytic peptides in a CF airway cell model. Peptides 2003, 24, 1099–1107. [Google Scholar] [CrossRef]
- Phadke, S.M.; Deslouches, B.; Hileman, S.E.; Montelaro, R.C.; Wiesenfeld, H.C.; Mietzner, T.A. Antimicrobial peptides in mucosal secretions: The importance of local secretions in mitigating infection. J. Nutr. 2005, 135, 1289–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Doherty, T.; Waring, A.J.; Ruchala, P.; Hong, M. Roles of arginine and lysine residues in the translocation of a cell-penetrating peptide from 13C, 31P, and 19F solid-state NMR. Biochem. 2009, 48, 4587–4595. [Google Scholar] [CrossRef] [Green Version]
- Deslouches, B.; Hasek, M.L.; Craigo, J.K.; Steckbeck, J.D.; Montelaro, R.C. Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. J. Med. Microbiol. 2016, 65, 554–565. [Google Scholar] [CrossRef]
- Lee, J.-K.; Park, Y. All d-lysine analogues of the antimicrobial peptide HPA3NT3-A2 increased serum stability and without drug resistance. Int. J. Mol. Sci. 2020, 21, 5632. [Google Scholar] [CrossRef]
- Sell, D.R.; Monnier, V.M. Conversion of arginine into ornithine by advanced glycation in senescent human collagen and lens crystallins. J. Biol. Chem. 2004, 279, 54173–54184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granier, C.; Muller, E.P.; Van Rietschoten, J. Use of synthetic analogs for a study on the structure-activity relationship of apamin. Eur. J. Biochem. 1978, 82, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Jen, T.; Van Hoeven, H.; Groves, W.; McLean, R.A.; Loev, B. Amidines and related compounds. 6. Structure-activity relations of antihypertensive and antisecretory agents related to clonidine. J. Med. Chem. 1975, 18, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Bannard, R.A.B.; Casselman, A.A.; Cockburn, W.F.; Brown, G.M. Guanidine compounds. II. preparation of Mono-and N, N-di-alkylguanidines. Can. J. Chem. 1958, 36, 1541–1549. [Google Scholar] [CrossRef]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, L.M.; Edwards, M.A.; Li, J.; Yip, C.M.; Deber, C.M. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem. 2012, 287, 7738–7745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raetz, C.R.; Dowhan, W. Biosynthesis and function of phospholipids in Escherichia coli. J. Biol. Chem. 1990, 265, 1235–1238. [Google Scholar] [CrossRef]
- Clejan, S.; Krulwich, T.A.; Mondrus, K.R.; Seto-Young, D. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J. Bacteriol. 1986, 168, 334–340. [Google Scholar] [CrossRef] [Green Version]
Entry | No. Repeat Unit in Feed | Initiator 1 | No. Repeat Unit in Copolymer 2 | Mn 3 (kg mol−1) | ζ 4 (mV) | MIC 5 (μg mL−1) | |||
---|---|---|---|---|---|---|---|---|---|
Cbz-Lys NCA | Phe NCA | Lys | Phe | E. coli | B. substilis | ||||
1 | 120 | 0 | TREN | 128 | 0 | 16.5 | 42.5 | 64 | 64 |
2 | 96 | 24 | TREN | 94 | 25 | 15.9 | 37.7 | 96 | 64 |
3 | 72 | 48 | TREN | 74 | 45 | 16.2 | 36.7 | >128 | >128 |
4 | 90 | 0 | TREN | 92 | 0 | 11.9 | 42.2 | 96 | 64 |
5 | 72 | 18 | TREN | 71 | 20 | 12.2 | 37.2 | 48 | 48 |
6 | 54 | 36 | TREN | 57 | 34 | 12.4 | 36.9 | 64 | 128 |
7 | 60 | 0 | TREN | 63 | 0 | 8.2 | 43.0 | >128 | >128 |
8 | 48 | 12 | TREN | 49 | 12 | 8.2 | 39.2 | >128 | >128 |
9 | 36 | 24 | TREN | 38 | 27 | 9.0 | 38.3 | >128 | >128 |
10 | 24 | 6 | HA | 23 | 7 | 4.1 | 41.1 | >64 | >64 |
11 | 200 | 50 | PEI 6 | 195 | 57 | 34.0 | 38.0 | 32 | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eom, K.H.; Li, S.; Lee, E.G.; Kim, J.H.; Kim, J.R.; Kim, I. Synthetic Polypeptides with Cationic Arginine Moieties Showing High Antimicrobial Activity in Similar Mineral Environments to Blood Plasma. Polymers 2022, 14, 1868. https://doi.org/10.3390/polym14091868
Eom KH, Li S, Lee EG, Kim JH, Kim JR, Kim I. Synthetic Polypeptides with Cationic Arginine Moieties Showing High Antimicrobial Activity in Similar Mineral Environments to Blood Plasma. Polymers. 2022; 14(9):1868. https://doi.org/10.3390/polym14091868
Chicago/Turabian StyleEom, Kuen Hee, Shuwei Li, Eun Gyeong Lee, Jae Ho Kim, Jung Rae Kim, and Il Kim. 2022. "Synthetic Polypeptides with Cationic Arginine Moieties Showing High Antimicrobial Activity in Similar Mineral Environments to Blood Plasma" Polymers 14, no. 9: 1868. https://doi.org/10.3390/polym14091868
APA StyleEom, K. H., Li, S., Lee, E. G., Kim, J. H., Kim, J. R., & Kim, I. (2022). Synthetic Polypeptides with Cationic Arginine Moieties Showing High Antimicrobial Activity in Similar Mineral Environments to Blood Plasma. Polymers, 14(9), 1868. https://doi.org/10.3390/polym14091868