The Effect of Two Different Light-Curing Units and Curing Times on Bulk-Fill Restorative Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Microhardness Measurement
2.3. Compressive Strength Measurement
2.4. Volumetric Polymerization Shrinkage Evaluation
2.5. Statistical Analysis
3. Results
3.1. Microhardness
3.2. Hardness Ratio
3.3. Compressive Strength
3.4. Volumetric Shrinkage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamlin, N.J.; Bailey, C.; Motyka, N.C.; Vandewalle, K.S. Effect of tooth-structure thickness on light attenuation and depth of cure. Oper. Dent. 2016, 41, 200–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flury, S.; Hayoz, S.; Peutzfeldt, A.; Hüsler, J.; Lussi, A. Depth of cure of resin composites: Is the ISO 4049 method suitable for bulk fill materials. Dent. Mater. 2012, 28, 521–528. [Google Scholar] [CrossRef]
- Croll, T.P.; Berg, J.H.; Donly, K.J. Dental repair material: A resin-modified glass-ionomer bioactive ionic resin-based composite. Compend. Contin. Educ. Dent. 2015, 36, 60–65. [Google Scholar]
- Owens, B.M.; Rodriguez, K.H. Radiometric and spectrophotometric analysis of third generation light-emitting diode (LED) light-curing units. J. Contemp. Dent. Pract. 2007, 8, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonulol, N.; Ozer, S.; Tunc, E.S. Effect of a third-generation LED LCU on microhardness of tooth-colored restorative materials. Int. J. Paediatr. Dent. 2016, 26, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Flury, S.; Lussi, A.; Hickel, R.; Ilie, N. Light curing through glass ceramics with a second- and a third generation LED curing unit: Effect of curing mode on the degree of conversion of dual-curing resin cements. Clin. Oral Investig. 2013, 17, 2127–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slawinski, D.; Wilson, S. Rubber dam use: A survey of pediatric dentistry training programs and private practitioners. Pediatr. Dent. 2010, 32, 64–68. [Google Scholar] [PubMed]
- Domarecka, M.; Szczesio-Wlodarczyk, A.; Krasowski, M.; Fronczek, M.; Gozdek, T.; Sokolowski, J.; Bociong, K. A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Composites. Coatings 2021, 11, 1255. [Google Scholar] [CrossRef]
- Cidreira Boaro, L.C.; Pereira Lopes, D.; de Souza, A.S.C.; Lie Nakano, E.; Ayala Perez, M.D.; Pfeifer, C.S.; Gonçalves, F. Clinical performance and chemical-physical properties of bulk fill composites resin—A systematic review and meta-analysis. Dent. Mater. 2019, 35, 249–264. [Google Scholar] [CrossRef]
- Warangkulkasemkit, S.; Pumpaluk, P. Comparison of physical properties of three commercial composite core build-up materials. Dent. Mater. J. 2019, 38, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Alpöz, A.R.; Ertugrul, F.; Cogulu, D.; Ak, A.T.; Tanoglu, M.; Kaya, E. Effects of Light Curing Method and Exposure Time on Mechanical Properties of Resin Based Dental Materials. Eur. J. Dent. 2008, 2, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spajic, J.; Par, M.; Milat, O.; Demoli, N.; Bjelovucic, R.; Prskalo, K. Effects of Curing Modes on the Microhardness of Resin-modified Glass Ionomer Cements. Acta Stomatol. Croat. 2019, 53, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.M.; Calixto, A.L.; Santos, F.A.; Gomes, O.M.; D’Alpino, P.H.; Gomes, J.C. Hardness of a bleaching-shade resin composite polymerized with different light-curing sources. Braz. Oral Res. 2006, 20, 337–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberholzer, T.G.; Grobler, S.R.; Pameijer, C.H.; Hudson, A.P.G. The effects of light intensity and method of exposure on the hardness of four light-cured dental restorative materials. Int. Dent. J. 2003, 53, 211–215. [Google Scholar] [CrossRef]
- Park, S.M.; Lee, J.Y.; Han, S.R.; Ha, S.Y.; Shin, D.H. Microhardness and microleakage of composite resin cured by visible light with various band of wavelength. J. Korean Acad. Conserv. Dent. 2002, 27, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Ozakar-Ilday, N.; Bayindir, Y.Z.; Bayindir, F.; Gurpinar, A. The effect of light curing units, curing time, and veneering materials on resin cement microhardness. J. Dent. Sci. 2013, 8, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Rizzante, F.A.P.; Duque, J.A.; Duarte, M.A.H.; Mondelli, R.F.L.; Mendonça, G.; Ishikiriama, S.K. Polymerization shrinkage, microhardness and depth of cure of bulk fill resin composites. Dent. Mater. J. 2019, 38, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Leprince, J.G.; Palin, W.M.; Vanacker, J.; Sabbagh, J.; Devaux, J.; Leloup, G. Physico-mechanical characteristics of commercially available bulk-fill composites. J. Dent. 2014, 42, 993–1000. [Google Scholar] [CrossRef]
- Ikeda, I.; Otsuki, M.; Sadr, A.; Nomura, T.; Kishikawa, R.; Tagami, J. Effect of filler content of flowable composites on resin-cavity interface. Dent. Mater. J. 2009, 28, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.; Yaman, P.; Dennison, J.; Neiva, G. Polymerization shrinkage and depth of cure of bulk fill flowable composite resins. Oper. Dent. 2014, 39, 441–448. [Google Scholar] [CrossRef]
- Ozcan, S.; Yikilgan, I.; Uctasli, M.B.; Bala, O.; Bek Kurklu, Z.G. Comparison of time-dependent changes in the surface hardness of different composite resins. Eur. J. Dent. 2013, 7, 20–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peutzfeldt, A.; Asmussen, E. Resin composite properties and energy density of light cure. J. Dent. Res. 2005, 84, 659–662. [Google Scholar] [CrossRef]
- Ilie, N.; Felten, K.; Trixner, K.; Hickel, R.; Kunzelmann, K.H. Shrinkage behavior of a resin-based composite irradiated with modern curing units. Dent. Mater. 2005, 21, 483–489. [Google Scholar] [CrossRef] [PubMed]
- D’Alpino, P.H.; Svizero, N.R.; Pereira, J.C.; Rueggeberg, F.A.; Carvalho, R.M.; Pashley, D.H. Influence of light-curing sources on polymerization reaction kinetics of a restorative system. Am. J. Dent. 2007, 20, 46–52. [Google Scholar] [PubMed]
- Ilie, N.; Kunzelmann, K.H.; Visvanathan, A.; Hickel, R. Curing behavior of a nanocomposite as a function of polymerization procedure. Dent. Mater. J. 2005, 24, 469–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, D.M.; Park, J.K.; Son, S.A.; Ko, C.C.; Garcia-Godoy, F.; Kim, H.I.; Kwon, Y.H. Mechanical properties of composite resins light-cured using a blue DPSS laser. Lasers Med. Sci. 2013, 28, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Alkhudhairy, F.I. The effect of curing intensity on mechanical properties of different bulk-fill composite resins. Clin. Cosmet. Investig. Dent. 2017, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Nik Abdul Ghani, N.R.; Karobari, M.I.; Noorani, T.Y.; Halim, M.S. Evaluation of light-curing units used in dental clinics at a University in Malaysia. J. Int. Oral Health. 2018, 10, 206–209. [Google Scholar]
- Rodrigues Jr, S.A.; Scherrer, S.S.; Ferracane, J.L.; Della Bona, A. Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite. Dent. Mater. 2008, 24, 1281–1288. [Google Scholar] [CrossRef]
- Pameijer, C.H.; Garcia-Godoy, F.; Morrow, B.R.; Jefferies, S.R. Flexural strength and flexural fatigue properties of resin-modified glass ionomers. J. Clin. Dent. 2015, 26, 23–27. [Google Scholar]
- Akan, E. Influence of shade of adhesive resin cement on its polymerization shrinkage. Biotechnol. Biotechnol. Equip. 2016, 30, 574–577. [Google Scholar] [CrossRef] [Green Version]
- Suiter, E.A.; Watson, L.E.; Tantbirojn, D.; Lou, J.S.B.; Versluis, A. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion. J. Dent. Res. 2016, 95, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, S.; Takamizawa, T.; Nojiri, K.; Imai, A.; Tsujimoto, A.; Endo, H.; Suzuki, S.; Suda, S.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Polymerization Behavior and Mechanical Properties of High-Viscosity Bulk Fill and Low Shrinkage Resin Composites. Oper. Dent. 2017, 42, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.N.; Hefnawy, S.M.; Nagi, S.M. Degree of Conversion and Polymerization Shrinkage of Low Shrinkage Bulk-Fill Resin Composites. Contemp. Clin. Dent. 2019, 10, 465–470. [Google Scholar] [PubMed]
- Yu, P.; Yap, A.; Wang, X.Y. Degree of Conversion and Polymerization Shrinkage of Bulk-Fill Resin-Based Composites. Oper. Dent. 2017, 42, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Baek, C.J.; Hyun, S.H.; Lee, S.K.; Seol, H.J.; Kim, H.I.; Kwon, Y.H. The effects of light intensity and light-curing time on the degree of polymerization of dental composite resins. Dent. Mater. J. 2008, 27, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Ide, K.; Nakajima, M.; Hayashi, J.; Hosaka, K.; Ikeda, M.; Shimada, Y.; Foxton, R.M.; Sumi, Y.; Tagami, J. Effect of light-curing time on light-cure/post-cure volumetric polymerization shrinkage and regional ultimate tensile strength at different depths of bulk-fill resin composites. Dent. Mater. J. 2019, 38, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Zorzin, J.; Maier, E.; Harre, S.; Fey, T.; Belli, R.; Lohbauer, U.; Petschelt, A.; Taschner, M. Bulk-fill resin composites: Polymerization properties and extended light curing. Dent. Mater. 2015, 31, 293–301. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Latta, M.A.; Miyazaki, M. Depth of cure, flexural properties and volumetric shrinkage of low and high viscosity bulk-fill giomers and resin composites. Dent. Mater. J. 2017, 36, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Daugherty, M.M.; Lien, W.; Mansell, M.R.; Risk, D.L.; Savett, D.A.; Vandewalle, K.S. Effect of high-intensity curing lights on the polymerization of bulk-fill composites. Dent. Mater. 2018, 34, 1531–1541. [Google Scholar] [CrossRef]
- Bucuta, S.; Ilie, N. Light transmittance and micro-mechanical properties of bulk fill vs. conventional resin-based composites. Clin. Oral Investig. 2014, 18, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Bilgrami, A.; Alam, M.K.; Qazi, F.U.; Maqsood, A.; Basha, S.; Ahmed, N.; Syed, K.A.; Mustafa, M.; Shrivastava, D.; Nagarajappa, A.K.; Srivastava, K.C. An In-Vitro Evaluation of Microleakage in Resin-Based Restorative Materials at Different Time Intervals. Polymers 2022, 24, 466. [Google Scholar] [CrossRef] [PubMed]
- Dejak, B.; Młotkowski, A. A comparison of stresses in molar teeth restored with inlays and direct restorations, including polymerization shrinkage of composite resin and tooth loading during mastication. Dent. Mater. 2015, 31, 77–87. [Google Scholar] [CrossRef]
- Anadioti, E.; Kane, B.; Soulas, E. Current and Emerging Applications of 3D Printing in Restorative Dentistry. Curr. Oral Health Rep. 2018, 5, 133–139. [Google Scholar] [CrossRef]
- Al-Qahtani, A.S.; Tulbah, H.I.; Binhasan, M.; Abbasi, M.S.; Ahmed, N.; Shabib, S.; Farooq, I.; Aldahian, N.; Nisar, S.S.; Tanveer, S.A.; Vohra, F. Surface Properties of Polymer Resins Fabricated with Subtractive and Additive Manufacturing Techniques. Polymers 2021, 13, 4077. [Google Scholar] [CrossRef] [PubMed]
Material | Shade | Composition | Filler Load wt% (vol%) | Recommended Curing Time and Light Intensity | Recommended Thickness | Manufacturer Lot No. |
---|---|---|---|---|---|---|
FiltekTM Z250 | A1 | Filler:Zirconia/silica Resin matrix: Bis-GMA, UDMA, Bis-EMA, TEGDMA | 84.5% (60%) | 20 s ≥400 mW/cm2 | 2.5 mm | 3M ESPE, St. Paul, MN, USA (N795944) |
FiltekTM Bulk Fill | A1 | Filler:Zirconia/Silica Ytterbiyum trifloride Resin matrix: UDMA, Bis-GMA, Bis-EMA | 76.5% (58.4%) | 20 s ≥1000 mW/cm2 | 4 mm | 3M ESPE, St. Paul, MN, USA (NA50988) |
40 s 550–1000 mW/cm2 | ||||||
Beautifil® Bulk Restorative | A1 | Filler: S-PRG filler based on fluoroboroaluminosilicate glass, polymerization initiator, pigments and others Resin matrix: Bis-GMA, UDMA, Bis-MPEPP, TEGDMA | 87% (74.5%) | 10 s ≥1000 mW/cm2 | 4 mm | Shofu Co, Kyoto Japan (031828) |
ACTIVA™ Bioactive-Restorative | A2 | Filler: Modified polyacrylic acid (44.6%), amorphous silica (6.7%), and sodium fluoride (0.75%) Resin matrix: Blend of diurethane and other methacrylates | 55.4% (44.6%) | 20 s 550–1000 mW/cm2 | 4 mm | Pulpdent, Watertown, USA (190110) |
Light-Curing Unit | Company | Wavelength (nm) | Irradiance (mW/cm2) | Serial No. |
---|---|---|---|---|
Woodpecker LED-E (W) | Woodpecker Medical Instrument Co., Guilin, China | 420–480 | 850–1000 | L1980545XE |
CarboLED (C) | GCP Dental, Ridderkerk, Netherlands | 395–480 | 1400 | DYL31406034 |
Material (n = 7) | Light-Curing Unit | Top Surface (Mean ± SD) | Bottom Surface (Mean ± SD) | ||
---|---|---|---|---|---|
Curing Time | |||||
10 s | 20 s | 10 s | 20 s | ||
Filtek Z250 | W | 105.5 ± 2.21 a,A,x | 113.35 ± 1.22 a,B,x | 93.2 ± 3.43 c,C | 96.81 ± 1.59 c,D |
C | 114.13 ± 0.83 b,A,X | 119.25 ± 0.81 b,B,X | 104.34 ± 2.72 d,C | 107.13 ± 2.67 d,C | |
Filtek Bulk Fill | W | 106.98 ± 2.07 a,A,x | 113.4 ± 1.71 a,B,x | 81 ± 3.17 c,C | 96.22 ± 3.87 c,D |
C | 112.54 ± 0.64 bA,Y | 113.77 ± 1.57 a,A,Y | 86.19 ± 1.52 d,C | 92.77 ± 1.47 d,D | |
Beautifil Bulk Restorative | W | 103.16 ± 1.8 a,A,x | 105.46 ± 0.72 a,B,y | 85.62 ± 3.27 c,C | 89.91 ± 4.0 c,D |
C | 112.75 ± 0.74 b,A,Y | 113.39 ± 1.54 b,A,Y | 86.21 ± 1.63 c,C | 91.92 ± 2.38 c,D | |
ACTIVA Bioactive Restorative | W | 57.22 ± 1.06 a,A,y | 63.49 ± 0.99 a,B,z | 48.51 ± 1.71 c,C | 52.2 ± 0.93 c,D |
C | 70.63 ± 1.21 b,A,Z | 72.57 ± 1.52 b,B,Z | 52.56 ± 0.38 d,C | 55.81 ± 2.2 d,D |
Material | Light-Curing Unit | Curing Time | |
---|---|---|---|
10 s | 20 s | ||
Filtek Z250 | W | 173.13 ± 19.76 a,A,x | 183.63 ± 18.39 a,A,x |
C | 201.89 ± 24.43 b,A,X | 245.38 ± 39.09 b,B,X | |
Filtek Bulk Fill | W | 118.22 ± 14.51 a,A,y | 152.06 ± 12.95 a,B,y |
C | 164.91 ± 33.03 b,A,Y | 167.29 ± 25.15 a,A,Y | |
Beautifil Bulk Restorative | W | 178.39 ± 9.59 a,A,x | 188.97 ± 10.3 a,B,x |
C | 188.22 ± 10.85 b,A,X,Y | 208.2 ± 11.84 b,B,Z | |
ACTIVA Bioactive Restorative | W | 137.08 ± 13.72 a,A,z | 163.03 ± 6.98 a,B,y |
C | 166.25 ± 7.95 b,A,Y | 179.67 ± 6.94 b,B,Y,Z |
Material | Light-Curing Unit | Curing Time | |
---|---|---|---|
10 s | 20 s | ||
Filtek Z250 | W | 2.31 ± 0.11 a,A,x | 2.34 ± 0.13 a,A,x |
C | 2.45 ± 0.40 a,A,X | 2.27 ± 0.31 a,A,X | |
Filtek Bulk Fill | W | 1.81 ± 0.22 a,A,y | 1.93 ± 0.19 a,A,x |
C | 1.86 ± 0.20 a,A,Y | 1.64 ± 0.28 b,A,Y | |
Beautifil Bulk Restorative | W | 1.64 ± 0.09 a,A,y | 1.78 ± 0.11 a,B,x,y |
C | 1.61 ± 0.18 a,A,Y | 1.85 ± 0.07 a,B,X,Y | |
ACTIVA Bioactive Restorative | W | 3.70 ± 0.40 a,A,z | 3.82 ± 0.54 a,A,z |
C | 3.71 ± 0.46 a,A,Z | 3.92 ± 0.65 a,A,Z |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayrak, G.D.; Yaman-Dosdogru, E.; Selvi-Kuvvetli, S. The Effect of Two Different Light-Curing Units and Curing Times on Bulk-Fill Restorative Materials. Polymers 2022, 14, 1885. https://doi.org/10.3390/polym14091885
Bayrak GD, Yaman-Dosdogru E, Selvi-Kuvvetli S. The Effect of Two Different Light-Curing Units and Curing Times on Bulk-Fill Restorative Materials. Polymers. 2022; 14(9):1885. https://doi.org/10.3390/polym14091885
Chicago/Turabian StyleBayrak, Gokcen Deniz, Elif Yaman-Dosdogru, and Senem Selvi-Kuvvetli. 2022. "The Effect of Two Different Light-Curing Units and Curing Times on Bulk-Fill Restorative Materials" Polymers 14, no. 9: 1885. https://doi.org/10.3390/polym14091885
APA StyleBayrak, G. D., Yaman-Dosdogru, E., & Selvi-Kuvvetli, S. (2022). The Effect of Two Different Light-Curing Units and Curing Times on Bulk-Fill Restorative Materials. Polymers, 14(9), 1885. https://doi.org/10.3390/polym14091885