H2 Uptake and Diffusion Characteristics in Sulfur-Crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers after High-Pressure Hydrogen Exposure Reaching 90 MPa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Composition
2.2. Exposure to H2 Gas
2.3. Transmission Electron Microscopy
3. Measurement Method and Diffusion Analysis Program
3.1. Volumetric Measurement for Emitting H2
3.2. Diffusion Analysis Program
4. Results and Discussion
4.1. TEM
4.2. Filler Effects on H2 Uptake
4.3. Filler Effects on H2 Diffusion
4.4. Correlations of Permeation with Density and Tensile Strength
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pegoretti, A.; Dorigato, A. Polymer composites: Reinforcing fillers. In Encyclopedia of Polymer Science and Technology; Mark, H.F., Ed.; Wiley: New York, NY, USA, 2019; pp. 1–72. [Google Scholar]
- Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in multi-scale polymer composites: Processing, properties, and applications. Compos. Part B Eng. 2018, 138, 122–139. [Google Scholar] [CrossRef]
- Liu, Q.; Paavola, J. Lightweight design of composite laminated structures with frequency constraint. Compos. Struct. 2016, 156, 356–360. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.-J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S.M.; Anwer, T.; Jawaid, M.; Hoque, M.E. Natural fiber reinforced conductive polymer composites as functional materials: A review. Synth. Met. 2015, 206, 42–54. [Google Scholar] [CrossRef]
- Hung, P.-Y.; Lau, K.-T.; Cheng, L.-K.; Leng, J.; Hui, D. Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Compos. B Eng. 2018, 133, 86–90. [Google Scholar] [CrossRef]
- Farida, E.; Bukit, N.; Ginting, E.M.; Bukit, B.F. The effect of carbon black composition in natural rubber compound. Case Stud. Therm. Eng. 2019, 16, 100566. [Google Scholar] [CrossRef]
- Pandey, K.; Setua, D.; Mathur, G. Material behaviour: Fracture topography of rubber surfaces: An SEM study. Polym. Test. 2003, 22, 353–359. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, L.; Zhou, Y. A study on rheological properties of carbon black extended powdered SBR using a torque rheometer. Polym. Test. 2003, 22, 133–141. [Google Scholar] [CrossRef]
- Fröhlich, J.; Niedermeier, W.; Luginsland, H.D. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. Part A Appl. Sci. Manuf. 2005, 36, 449–460. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Lodha, V.; Dasgupta, S.; Mukhopadhyay, R.; Guha, A.; Sarkar, P.; Saha, T.; Bhowmick, A.K. Influence of highly dispersible silica filler on the physical properties, tearing energy, and abrasion resistance of tire tread compound. J. Appl. Polym. Sci. 2019, 136, 47560. [Google Scholar] [CrossRef]
- Mark, J.E.; Erman, B.; Eirich, F.R. Chapter 9 the science of rubber compounding. In The Science and Technology of Rubber; Rodgers, B., Waddell, W., Eds.; Academic Press: London, UK, 2005; pp. 401–454. [Google Scholar]
- Dick, J.; Rader, C. Raw Materials Supply Chain for Rubber Products; Carl Hanser Verlag: Munich, Germany, 2014. [Google Scholar]
- Chakraborty, S.; Sengupta, R.; Dasgupta, S.; Mukhopadhyay, R.; Bandyopadhyay, S.; Joshi, M.; Ameta, S.C. Synthesis and characterization of in situ sodium-activated and organomodified bentonite clay/styrene–butadiene rubber nanocomposites by a latex blending technique. J. Appl. Polym. Sci. 2009, 113, 1316–1329. [Google Scholar] [CrossRef]
- Waddell, W.H.; Evans, L.R. Rubber Technology Compounding and Testing for Performance; Carl Hanser Verlag: Munich, Germany, 2009. [Google Scholar]
- Most, C.F., Jr. Some filler effects on diffusion in silicone rubber. J. Appl. Polym. Sci. 1970, 14, 1019–1024. [Google Scholar] [CrossRef]
- Odrobina, E.; Feng, J.; Pham, H.H.; Winnik, M.A. Effect of soft filler particles on polymer diffusion in poly(butyl methacrylate) latex films. Macromolecules 2001, 34, 6039–6051. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Parkinson, D. Reinforcement of Rubbers; Lakeman & Co.: London, UK, 1957. [Google Scholar]
- El-Gamal, A.A. Effect of reinforcement filler on vulcanization, diffusion, mechanical, and electrical properties of natural rubber. J. Elastomers Plast. 2018, 51, 512–526. [Google Scholar] [CrossRef]
- Thomas, S.P.; Thomas, S.; Mathew, E.J.; Marykutty, C.V. Transport and electrical properties of natural rubber/nitrile rubber blend composites reinforced with multiwalled carbon nanotube and modified nano zinc oxide. Polym. Compos. 2014, 35, 956–963. [Google Scholar] [CrossRef]
- Dasan, P.; Unnikrishnan, G.; Purushothaman, E. Solvent transport through carbon black filled poly(ethylene-co-vinyl acetate) composites. Express Polym. Lett. 2008, 2, 382–390. [Google Scholar] [CrossRef]
- Yamabe, J.; Nishimura, S. Influence of carbon black on decompression failure and hydrogen permeation properties of filled ethylene-propylene–diene–methylene rubbers exposed to high-pressure hydrogen gas. J. Appl. Polym. Sci. 2011, 122, 3172–3187. [Google Scholar] [CrossRef]
- Jung, J.K.; Lee, C.H.; Son, M.S.; Lee, J.H.; Baek, U.B.; Chung, K.S.; Choi, M.C.; Bae, J.W. Filler effects on H(2) diffusion behavior in nitrile butadiene rubber blended with carbon black and silica fillers of different concentrations. Polymers 2022, 14, 700. [Google Scholar] [CrossRef]
- Jung, J.K.; Lee, C.H.; Baek, U.B.; Choi, M.C.; Bae, J.W. Filler influence on H(2) permeation properties in sulfur-crosslinked ethylene propylene diene monomer polymers blended with different concentrations of carbon black and silica fillers. Polymers 2022, 14, 592. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Choi, M.C.; Lee, J.H.; Yun, Y.M.; Jang, J.S.; Chung, N.K.; Jeon, S.K.; Jung, J.K.; Lee, J.H.; Lee, J.H.; et al. Effect of the high-pressure hydrogen gas exposure in the silica-filled EPDM sealing composites with different silica content. Polymers 2022, 14, 1151. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.K.; Kim, I.G.; Kim, K.T.; Ryu, K.S.; Chung, K.S. Evaluation techniques of hydrogen permeation in sealing rubber materials. Polym. Test. 2021, 93, 107016. [Google Scholar] [CrossRef]
- Jung, J.K.; Kim, I.G.; Jeon, S.K.; Kim, K.-T.; Baek, U.B.; Nahm, S.H. Volumetric analysis technique for analyzing the transport properties of hydrogen gas in cylindrical-shaped rubbery polymers. Polym. Test. 2021, 99, 107147. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Demarez, A.; Hock, A.G.; Meunier, F.A. Diffusion of hydrogen in mild steel. Acta Metall. 1954, 2, 214–223. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Sander, R.; Acree, W.E.; Visscher, A.D.; Schwartz, S.E.; Wallington, T.J. Henry’s law constants (IUPAC Recommendations 2021). Pure Appl. Chem. 2022, 94, 71–85. [Google Scholar] [CrossRef]
- Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef] [Green Version]
- Kanehashi, S.; Nagai, K. Analysis of dual-mode model parameters for gas sorption in glassy polymers. J. Membr. Sci. 2005, 253, 117–138. [Google Scholar] [CrossRef]
- Wang, J.; Kamiya, Y. Evaluation of gas sorption parameters and prediction of sorption isotherms in glassy polymers. J. Polym. Sci. B-Polym. Phys. 2000, 38, 883–888. [Google Scholar] [CrossRef]
- Vieth, W.R.; Tam, P.M.; Michaels, A.S. Dual sorption mechanisms in glassy polystyrene. J. Colloid Interface Sci. 1966, 22, 360–370. [Google Scholar] [CrossRef]
- Paul, D.R. Gas sorption and transport in glassy polymers. Ber. Bunsenges. Phys. Chem. 1979, 83, 294–302. [Google Scholar] [CrossRef]
- Bondar, V.I.; Kamiya, Y.; Yampol’skii, Y.P. On pressure dependence of the parameters of the dual-mode sorption model. J. Polym. Sci. B Polym. Phys. 1996, 34, 369–378. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, S. Estimation and modeling of pressure-dependent gas diffusion coefficient for coal: A fractal theory-based approach. Fuel 2019, 253, 588–606. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S. Estimation of pressure-dependent diffusive permeability of coal using methane diffusion coefficient: Laboratory measurements and modeling. Energy Fuels 2016, 30, 8968–8976. [Google Scholar] [CrossRef]
- Knudsen, M. Die gesetze der molekularströmung und der inneren reibungsströmung der gase durch röhren. Ann. Phys. 1909, 333, 75–130. [Google Scholar] [CrossRef] [Green Version]
- Welty, J.R.; Wicks, C.E.; Wilson, R.E. Fundamentals of Momentum, Heat, and Mass Transfer; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Alter, H. A critical investigation of polyethylene gas permeability. J. Polym. Sci. 1962, 57, 925–935. [Google Scholar] [CrossRef]
- Michaels, A.S.; Parker Jr, R.B. Sorption and flow of gases in polyethylene. J. Polym. Sci. 1959, 41, 53–71. [Google Scholar] [CrossRef]
Composites | EPDM | ZnO | St/A | HAF N330 | SRF N774 | Silica S-175 | Si-69 | PEG | S | TBBS | MBT |
---|---|---|---|---|---|---|---|---|---|---|---|
Neat EPDM | 100 | 3.0 | 1.0 | 1.5 | 1.0 | 0.5 | |||||
EPDM HAF 20 | 100 | 3.0 | 1.0 | 20 | 1.5 | 1.0 | 0.5 | ||||
EPDM HAF 40 | 100 | 3.0 | 1.0 | 40 | 1.5 | 1.0 | 0.5 | ||||
EPDM HAF 60 | 100 | 3.0 | 1.0 | 60 | 1.5 | 1.0 | 0.5 | ||||
EPDM SRF 20 | 100 | 3.0 | 1.0 | 20 | 1.5 | 1.0 | 0.5 | ||||
EPDM SRF 40 | 100 | 3.0 | 1.0 | 40 | 1.5 | 1.0 | 0.5 | ||||
EPDM SRF 60 | 100 | 3.0 | 1.0 | 60 | 1.5 | 1.0 | 0.5 | ||||
EPDM S 20 | 100 | 3.0 | 1.0 | 20 | 1.6 | 0.8 | 1.5 | 1.0 | 0.5 | ||
EPDM S 40 | 100 | 3.0 | 1.0 | 40 | 3.2 | 1.6 | 1.5 | 1.0 | 0.5 | ||
EPDM S 60 | 100 | 3.0 | 1.0 | 60 | 4.8 | 2.4 | 1.5 | 1.0 | 0.5 |
Composites | k | a | B | R2 | Langmuir Contribution (%) |
---|---|---|---|---|---|
Neat EPDM | 23.6 | 0 | 0 | 0.98 | 0 |
EPDM HAF20 | 17.8 | 909 | 0.0315 | 0.99 | 18 |
EPDM HAF40 | 16.8 | 1314 | 0.0344 | 0.99 | 25 |
EPDM HAF60 | 5.18 | 1367 | 0.0547 | 0.98 | 55 |
EPDM SRF20 | 18.6 | 502 | 0.0498 | 0.99 | 14 |
EPDM SRF40 | 18.5 | 858 | 0.0428 | 0.99 | 21 |
EPDM SRF60 | 18.0 | 1528 | 0.0294 | 0.99 | 32 |
EPDM S20 | 23.9 | 0 | 0 | 0.98 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.K.; Lee, J.H.; Jeon, S.K.; Baek, U.B.; Lee, S.H.; Lee, C.H.; Moon, W.J. H2 Uptake and Diffusion Characteristics in Sulfur-Crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers after High-Pressure Hydrogen Exposure Reaching 90 MPa. Polymers 2023, 15, 162. https://doi.org/10.3390/polym15010162
Jung JK, Lee JH, Jeon SK, Baek UB, Lee SH, Lee CH, Moon WJ. H2 Uptake and Diffusion Characteristics in Sulfur-Crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers after High-Pressure Hydrogen Exposure Reaching 90 MPa. Polymers. 2023; 15(1):162. https://doi.org/10.3390/polym15010162
Chicago/Turabian StyleJung, Jae Kap, Ji Hun Lee, Sang Koo Jeon, Un Bong Baek, Si Hyeon Lee, Chang Hoon Lee, and Won Jin Moon. 2023. "H2 Uptake and Diffusion Characteristics in Sulfur-Crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers after High-Pressure Hydrogen Exposure Reaching 90 MPa" Polymers 15, no. 1: 162. https://doi.org/10.3390/polym15010162
APA StyleJung, J. K., Lee, J. H., Jeon, S. K., Baek, U. B., Lee, S. H., Lee, C. H., & Moon, W. J. (2023). H2 Uptake and Diffusion Characteristics in Sulfur-Crosslinked Ethylene Propylene Diene Monomer Polymer Composites with Carbon Black and Silica Fillers after High-Pressure Hydrogen Exposure Reaching 90 MPa. Polymers, 15(1), 162. https://doi.org/10.3390/polym15010162